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ABSTRACT 

ANEESH RAMGOPAL. An efficient multicore implementation of compressed sensing 

reconstruction using Walsh-Hadamard transform. (Under the direction of Dr. BHARAT 

JOSHI) 

 

The recent development of the compressed sensing (CS) theory has given rise to several 

algorithms being proposed for signal acquisition and reconstruction. Implementing these 

algorithms are computationally demanding and pose several challenges for effective shared 

resource utilization. We describe a native, parallelized realization of the compressed 

sensing problem on a commercially available multicore architecture. A quick and efficient 

reconstruction algorithm, Smoothed L0 (SL0), is parallelized and adapted to benefit from 

the multicore implementation of the sampling basis, the Walsh-Hadamard transform 

(WHT). 

Valuable insights on data cache locality are presented from the characterization of miss 

rate patterns using a cache profiler. We develop performance models for the algorithms 

using regression, correlating response time with application parameters, memory 

utilization and other overheads. The matrix generation algorithm shows a high degree of 

parallelizability with speedup up to 5.6 on an 8-core Intel Xeon, while the recovery 

algorithm shows a speedup up to 4.5. Our models also demonstrate the synchronization 

bottlenecks and cache limitations of such threaded multicore implementations. 
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CHAPTER 1. INTRODUCTION 

Compressed sensing has led to a paradigm shift in the field of signal acquisition 

and reconstruction due to its significant implications in diverse applications. The central 

idea behind compressed sensing is to sample inherently ‘sparse’ signals below the Nyquist 

rate and still adequately reconstruct the signal. Capturing signals or images that are 

compressively sensed has necessitated utilization of suitable patterns in the acquisition 

stage. The choice of such basis patterns largely determine the ability to extract necessary 

features and the resultant image quality. In imaging systems, such as magnetic resonance 

imaging, images are encoded with sinusoids, essentially amounting to collecting Fourier 

coefficients. Generating these Fourier transform matrix values are time-consuming and, 

therefore, one of the primary objectives of this thesis is to look at an efficient algorithm to 

generate these large matrices on a symmetrical multiprocessing (SMP) system. The 

optimizations that enable the proposed algorithm to exploit the characteristics of a 

multilevel hierarchical cache memory are also explored. 

 Arriving at sparse solutions from an underdetermined system of equations has led 

to development of suitable approaches, requiring a computationally involved process 

called reconstruction. There has been considerable interest towards improving algorithmic 

performance for reconstruction on modern multicore systems which is another objective of 

this research. 
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Chapter 2 introduces some of the basic concepts of compressed sensing, an 

overview of the coding functions and the specific advantages of the Fourier transform 

variant employed. Furthermore, the chapter delves into the process of CS reconstruction 

and the relevance of the particular technique used in this thesis. Chapter 3 describes the 

algorithms used for matrix generation and reconstruction as well as a brief overview of the 

Intel architecture, which is used to implement and analyze these algorithms. Chapter 4 

reports on the efficiency of the algorithm’s implementation on the hardware, described by 

profiling for cache performance and through regression modeling of the relevant 

parameters. 

 



CHAPTER 2. COMPRESSED SENSING 

Nearly every conventional form of signal acquisition protocol used in modern-day 

communications, audio/video electronics, medical imaging etc. is dictated by the Shannon-

Nyquist theorem – that is the sampling rate must be at least twice the maximum signal 

frequency or the Nyquist rate. Compressed sensing (interchangeably referred to as 

compressive sampling and abbreviated as CS) is a novel sensing idea that goes against the 

grain by challenging the traditional sampling methodologies. 

2.1. Overview 

CS theory asserts that it is possible to recover signals from far lesser samples or 

measurements in comparison to the Nyquist criterion. Essential to this assertion are the 

dual principles upon which lay the foundations for CS – sparsity and incoherence. 

 Sparsity of an image represents the notion that an image is inherently sparse or that 

the essential information contained in an image is generally concentrated in fewer 

concise data points. This means that a natural image is compressible when it has a 

sparse representation using an appropriate basis. 

 Incoherence represents the notion that the sparse representation of the signal in a 

certain basis implies that this sampling basis is incoherent with the signal of 

interest. This also expresses the duality between the time and frequency domain 

signal representations, for instance, the time-domain Dirac delta spreads out in the 



4 

frequency domain. In other words, the sampling basis should be dense in order to 

sufficiently correlate with the sparse representative basis. 

Essentially, compressed sensing relies on the inherent sparsity of signals and the 

incoherence between the representation basis and the sensing basis. Mathematically 

speaking, a signal represented by 𝑥 ∈ ℝ𝑛, which is an N × 1 vector, a sampling basis A, 

which is an m × N matrix appropriately chosen from the sensing basis Φ, and the sampled 

signal 𝑦 ∈ ℝ𝑛, which is an m × 1 vector, can be depicted as: 

𝑦 = 𝐴𝑥 

Here m << N, where N is the total number of signal points in the source signal and 

m is the number of measurements. The representative basis Ψ induces sparsity in the signal 

and this continuous-time signal is represented in a discretized space as the S-sparse vector 

x, that is it consists of S non-zero entities and S << N. The sensing matrix A consists of the 

row vectors φ1 … φm. Since there are m measurements of y from the N × 1 vector x, the 

acquisition of the signal accomplishes sampling and compression in a single step. The 

coherence between the representation basis Ψ and the sensing basis Φ, both of which are 

considered to be orthonormal bases in ℝ𝑛, can be defined as: 

μ(Φ,Ψ) =  √𝑛 . max
1≤𝑘,𝑗≤𝑛

|〈ϕ𝑘, ψ𝑗〉| 

This calculates the maximum coherence between any two elements of the bases Φ 

and Ψ. The possible values of this coherence pair lies in the range [1, √n]. If μ(Φ,Ψ) = 1, 

the bases are maximally incoherent. This means that for a low coherence value if the signal 

is sparse in Ψ, it would have a dense representation in Φ. This necessitates identification 

of suitable incoherent pairs of bases for the purposes of compressed sensing. Some 

examples of incoherent Φ-Ψ pairs are a spike-Fourier basis, wavelet-noiselet basis and a 
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random IID matrix paired with a fixed basis. Here, IID refers to an independent and 

identically distributed matrix. The advantage to using a random matrix that is, for example, 

Gaussian or binary ±1, is that it is quite incoherent with any fixed representative basis Ψ 

[1]. In addition to this, a ±1 matrix can be stored in a compact data structure and 

manipulated efficiently using appropriate code transformations. Hence, this work explores 

generating the ±1 sampling matrix from a Walsh-Hadamard Transformation matrix. 

2.2. Walsh-Hadamard Transform 

The Walsh-Hadamard Transform (also known as the Hadamard Transform and 

abbreviated herewith as WHT) is a digital signal processing (DSP) transform with 

applications in video compression, data encryption and quantum computing. It performs 

symmetric, orthogonal, linear operations on a set of real numbers that are in powers of two. 

The WHT can be constructed using several size-2 discrete Fourier transforms (DFT). The 

WHT of size N, represented by WHTN, is an N × N matrix and N takes powers of two 

values i.e. N = 2, 4, 8 … The WHT matrix is composed of only ±1 values and the basic 2 

× 2 WHT construct is depicted as: 

WHT2  =  [
1    1
1 −1

] 

The generalized form for WHT can be written using the Kronecker product, 

denoted by the symbol ⊗, as follows: 

WHT𝑁 = 
𝑛
⊗
𝑖 = 1

WHT2 = WHT2  ⊗ … ⊗ WHT2 

Here, N = 2n. The Kronecker product, which is a direct matrix product, of two 

matrices A and B is defined as: 

𝐴 ⊗  𝐵 = [𝑎𝑖𝑗𝐵],    where    𝐴 = [𝑎𝑖𝑗] 
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For instance, 

WHT4 = WHT2  ⊗ WHT2 

= [

1    1    1    1
1 −1    1 −1
1    1 −1 −1
1 −1 −1    1

] 

And, 

WHT8 = WHT2  ⊗ WHT2  ⊗ WHT2  =  WHT4  ⊗ WHT2 

Thus, the higher indices can be expressed as a Kronecker product of the lower 

indices recursively generating the result. This recursive process, known as the Cooley 

Tukey Algorithm, can be optimized to work with modern memory systems and will be 

detailed in the algorithm section 3.1. It can also be noticed that each row of the WHT matrix 

are orthonormal and they have uniform distribution, befitting the criteria to be a CS matrix 

that can show incoherence with any fixed basis. Hence, the chosen sampling matrix 

consists of m rows of the WHT, where m is much smaller than N. The requirement for the 

number of measurements, m, is decided beforehand and can be delivered to the acquisition 

system after parallel generation of the necessary pattern. This matrix pattern is optically 

represented using opaque/black (0) and transparent/white (1), and the setup, as depicted in 

FIGURE 1, is used in single pixel cameras for compressively sampling images [2]. It uses 

bi-convex lenses to focus the incident light from the image onto a digital micro-mirror 

device (DMD) and again onto a single photodiode. The DMD’s tiny mirrors are 

programmed to black or white with the rows of the sampling matrix. Another aperture 

assembly alternative to DMD is a lens less device that uses a transparent monochromatic 

LCD. 
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FIGURE 1: Single-pixel camera setup [2] 

2.3. Reconstruction Techniques 

While the acquisition stage is a linear process, the CS recovery procedure is 

decidedly non-linear, as it shall be seen here. The process of reconstructing a compressively 

sampled signal involves using the sampled vector y with m compressive measurements to 

recover x* which has N signal points, i.e. solving for x* in the equation, Ax* = y, where A 

is the sampling matrix. Since, the number of measurements taken are far lesser than number 

of data points, the equation above is underdetermined and there exists infinitely many 

solutions for x*. So, reconstruction requires solving an optimization or a minimization 

problem within a feasible region. 

Before discussing the available minimization problems, a quick overview of the 

vector norms is in order. A norm assigns a positive magnitude on each vector in vector 

space. Starting with the well-known Euclidean norm defined over the n-dimensional 

Euclidean ℝ𝑛 space is: 
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‖𝑥‖2 = √𝑥1
2 +⋯+ 𝑥𝑛2 

This is the Euclidean distance of the vector x from the origin, also known as the ℓ2-

distance or the ℓ2-norm. This can be extended to an ℓp-norm defined as: 

‖𝑥‖𝑝 = √|𝑥1|𝑝 +⋯+ |𝑥𝑛|𝑝
𝑝

 

It can further be seen that for p = 1, the ℓ1-norm defined for x is a summation of the 

absolute values. This is also known as the Manhattan distance. For p = 0, the so-called ℓ0-

norm is not homogeneous and is defined as follows: 

min ‖𝑥‖ → ‖𝑥‖0 = # (𝑖 |𝑥𝑖
∗ ≠ 0)  

This indicates that the ℓ0-norm finds the number of non-zero entries in the vector x. 

This non-zero counting norm can find sparse solutions useful for CS recovery. 

Given a known m × 1 vector y and a matrix A with dimensions m × N where m < N, 

an optimal solution is needed for x*, an N × 1 signal being recovered from an S-sparse 

signal x, by solving the constraint minimization problem: 

min‖𝑥∗‖0        subject to      𝐴𝑚×𝑁𝑥
∗
𝑁×1  =  𝑦𝑚×1 

This is the ℓ0-norm minimization, which indicates the number of non-zero 

components in the vector. Hence, finding a solution for x* requires locating the S non-zero 

entities of the original vector x. There are two relevant criteria for reconstructing from an 

IID matrix (a Walsh-Hadamard matrix in this work): 

 The sensing matrix A can guarantee discriminating S-sparse signals from m 

compressive measurements provided that all subsets of S-columns taken from A are 

nearly orthogonal. This condition is known as the Restricted Isometry Property 

(RIP). 
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 These matrices can demonstrably reconstruct S-sparse vectors from m samples 

provided that: 

𝑚 ≥  𝐶. 𝑆 log
𝑁

𝑆
,          where 𝐶 is a + ve constant  

One method of achieving reconstruction using minimization, is by minimizing the 

ℓ0-norm of the vector x* as shown above. Another common technique is the ℓ1-norm 

minimization that approximates the ℓ0-minimizer’s solution. The ℓ1-minimization is a 

convex optimization problem with a feasible set that is convex as well. Whereas, the ℓ0-

minimization is non-convex, that is, it has numerous local minima and maxima. Finding 

the solution to a global optimization, such as the ℓ0-minimization, is numerically 

challenging and is NP-hard. There are many deterministic as well as heuristic methods to 

numerically approximate the solution to this problem. Graduated optimization is one such 

heuristic strategy that attempts to arrive at the global optimum for the hard problem by 

starting at a conveniently easy or convex problem and gradually moving towards the harder 

problem by passing on the solution at each step to use as a starting point for the next step. 

This is also called a Graduated Non-Convexity procedure and forms the basis of the 

algorithm used for CS reconstruction in this research. 

2.4. Related Work 

Compressed sensing has been receiving a lot of attention from researchers ever 

since 2006 when Emmanuel Candès et al. proposed the theory in [3, 4] for recovering 

sparse signals from fewer samples than stipulated by the Shannon-Nyquist sampling 

theorem. This concept has found applications in several fields like information theory [5], 

machine learning [6], image processing [2, 7] among others. This research deals 

specifically with multicore CS processing and enables efficient computational realization 
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of CS imaging systems, such as single-pixel compressive sensing [8]. This work 

contributes the ability to service a large sampling pattern on-demand to a compressively 

sensed acquisition system using modern parallel computing devices. 

Identifying matrices that are feasible for CS reconstruction are described in [3, 9, 

10]. The suitability of using the Walsh-Hadamard matrix in this work is justified by [1], 

which describes WHT fitting the feasibility criteria of having nearly orthogonal rows and 

being largely incoherent with any fixed representative basis. Unlike other transforms that 

require double-precision floats, the binary ±1 valued WHT stores into integer or short 

integer variables, contributing to superior memory management and a performance boost 

due to integer operations. While the famous FFTW package realizes multicore DFT 

implementations on varying architectures [11, 12], specialized parallel packages of the 

WHT have been developed by the SPIRAL project [13]. While these packages are useful 

to perform DSP transforms, they are not optimized for forward and inverse transforms as 

a single, integrated program. This research focuses on an optimum parallel WHT 

implementation that uses minimal storage and is effectively manipulated for sparse 

recovery by exploiting the matrix’s unique properties. 

The sampling matrices chosen can be effective at CS recovery provided they can 

satisfy the Restricted Isometry Property (RIP) [14], which has formed the basis for many 

compressed sensing reconstruction algorithms like the Basis Pursuit (BP) [15] and 

Matching Pursuit (MP) [16] greedy algorithms, ℓ1-norm based iterative thresholding 

algorithms [17] and others. Beyond the RIP criteria and the Donoho-Tanner phase 

transitions [18], other solvers have been devised using different heuristics that achieve 

better phase transitions. One such recent solver, which is used as the basis for the parallel 
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algorithm in this thesis, is the global optimization based Smoothed L0 (SL0) algorithm [19, 

20], which has been shown to have improved performance with adaptive parameter 

selection in [21]. A random IID matrix, such as WHT, shows excellent convergence for 

the SL0 recovery and also reduces the number of matrix-vector multiplications, making it 

a suitable choice for this research. While CS reconstruction using ℓ1-minimization 

techniques have been implemented on shared-memory multicore and vectorized GPU 

processors [22, 23], this research implements parallel SL0, a fast ℓ0-minimization, with 

appropriate cache and algorithmic optimizations to envision real-time recovery of sparse 

images. Such realizations of compressed sensing favor uses in surveillance low-light 

imaging and feature extraction processing like template matching or motion detection.  

 



CHAPTER 3. ALGORITHM STRATEGY AND DESIGN ANALYSIS 

The late 1980’s marked the arrival of the first shared memory architectures, 

spawning research leading up to development of parallelizing compilers today. These 

compilers, while providing good performance scaling for straightforward simple programs, 

are unable to achieve parallel speedup for more complicated programs like DFT or convex 

optimization. Moreover, image processing researchers use standard software packages, 

such as MATLAB, that do not support thread-core bindings or identify program-specific 

parallelization capabilities. It is for this reason that this research presents explicit methods 

to write fast parallel programs, which are invariably harder than their sequential 

counterparts. Generally, when writing parallel programs, the programmer needs to address: 

 Load Balancing/Task Granularity – Equal sharing of the workload between 

processors. Sequential execution should be minimal as speedup is affected as per 

Amdahl’s Law. 

 Avoiding False-Sharing – Ensuring that processors do not share private data in the 

same cache line as this could severely impact performance due to cache thrashing.  

 Synchronization Overhead – Ensuring that threads do not unduly wait at 

synchronization points by minimizing cache bandwidth usage and reducing 

simultaneous shared cache line accesses.  

 Memory Hierarchy – Writing code that effectively utilizes temporal and spatial 

locality on shared and private caches. 
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3.1. Multicore Cooley-Tukey Algorithm 

The Cooley-Tukey algorithm, in its recursive depth-first form, is a divide-and-

conquer algorithm most commonly used to compute fast Fourier transform and its variants. 

It recursively re-expresses the discrete Fourier transform (DFT) as a product composed of 

two smaller DFTs, which are in turn computed recursively from two smaller DFTs, as well 

as the application of the twiddle factors. This algorithm can be applied to the Walsh-

Hadamard transform by dividing into smaller sizes and computing upwards. It can be 

illustrated with the following equations using matrix formalism, manipulated to efficiently 

map on to multicore architectures. 

𝑦 = WHT𝑁𝑥 

WHT𝑁  =  WHT𝑅  ⊗ WHT𝑆 , 

where vector size is N and N = R × S. 

WHT𝑁  =  (WHT𝑅  ⊗ I𝑆) ( I𝑅  ⊗  WHT𝑆) 

WHT𝑁  =  ((WHT𝑅  ⊗ I𝑆
𝑝
) ⊗ I𝑝)(I𝑝  ⊗ (I𝑅

𝑝
 ⊗  WHT𝑆)) , 

where p indicates the number of threads ( = number of cores for 1 thread/core) and 

the Identity Matrix (Ix) can be represented for x = 2 as: [
1 0
0 1

]. The above expression can 

be further rearranged using a stride permutation matrix, L𝑚
𝑛 , which is a matrix with m-stride 

accesses in an n-by-n matrix. For example, 

L2
8  =  

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1]
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Stride permutations can be used to dynamically permute data. For example, for an 

n × n matrix A, 

𝐴 ⊗ I𝑚 = L𝑛
𝑚𝑛 (I𝑚  ⊗  𝐴) L𝑚

𝑚𝑛

The parallel expression for WHT can be further rearranged using a) parallel 

constructs as depicted in FIGURE 2; and b) a stride permutation matrix, L𝑚
𝑛 , which is a 

matrix with m-stride accesses in an n-by-n matrix. The first parallel construct is (I𝑝  ⊗

 WHTμ), which expresses block diagonal matrices with ‘p’ blocks i.e. could be mapped on 

to ‘p’ cores using embarrassingly parallel computations with µ WHT elements. Here, 

moving µ elements of WHT at a time, where µ is the number of elements in a cache line, 

ensures false sharing free usage patterns. For example, for an integer data type element, 

which is 4-bytes in size, µ = 16 for a 64-byte cache block size. This would mean that for N 

≥ 64, each processor in a quad-core system (p = 4) would control 16 or more WHT elements 

among the 64 elements in a row of the matrix. This implies the construct is communication 

free and avoids sharing cache lines between cores. The second is a vector construct of the 

form (WHTμ  ⊗ I𝑝), which reorders blocks of µ consecutive elements, thus moving 

elements in the size of the cache line keeping communication overheads to a minimum. 

The stride permutation construct L𝑛
𝑚𝑛 restructures the vector form to the parallel form as 

indicated in the equation above. 
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FIGURE 2: Parallel constructs

Using the parallel constructs and the stride construct, the recursive expression can 

be further expanded as: 

WHT𝑁  =  L𝑅𝑆
𝑝

𝑅𝑆 (I𝑝  ⊗ (WHT𝑅  ⊗ I𝑆
𝑝
)) L𝑝

𝑅𝑆  (I𝑝  ⊗ (I𝑅
𝑝
 ⊗  WHT𝑆)) 

Finally, the above expression is modified to make it cache-aware, resulting in the 

expression for the Multicore Cooley-Tukey Algorithm: 

WHT𝑁  =  ((L𝑅
𝑅𝑝  ⊗ I 𝑆

𝑝μ
) ⊗ Iμ) (I𝑝  ⊗ (WHT𝑅  ⊗ I𝑆

𝑝
)) ((L𝑝

𝑅𝑝  ⊗ I 𝑆
𝑝μ
) 

⊗ Iμ) (I𝑝  ⊗ (I𝑅
𝑝
 ⊗  WHT𝑆)) 

The algorithmic implementation scheme of this equation is described as follows. A 

WHT of size N splits into WHT of sizes R and S, where R and S are powers-of-two factors 

of size N and R ≥ S. As shown in FIGURE 3, this splitting process repeats itself in a depth-

X Y 

y = (I
4
 ⊗ DFT

2
) x 

X Y 

y = (DFT
2
 ⊗ I

4
) x 



16 

first recursion until size-2 WHT is reached. As the nodes in bold letters indicate, it is only 

needed to compute the leftmost (or rightmost) nodes of the tree to reach all the way up to 

the root, since nodes at any particular height are exactly the same, hence requiring no 

additional storage or computational time. There is one variation, though, for odd power-

of-two values of N; WHTS is a sub matrix of WHTR, in which case, the program control 

follows the sub-tree under the parent node of size R. 

 

 

FIGURE 3: Depth-first recursion tree for N = 16 

There are synchronization points at the end of each recursion step to ensure that all 

the cores are ready with the necessary data to move on to the next higher computational 

level. To understand the core-wise access workload distribution during computation, 

FIGURE 4 breaks down the inner workings of the algorithm for N = R × S, i.e., 16 = 4 × 4 

running on two threads. The progression on the right side (for S = 4) shows how each core 

obtains complete access to the WHT4 matrix with the shaded letters in the last step 

indicating the work done by each core. The progression on the left side (for R = 4) is quite 

BARRIER

BARRIER

WHT16

WHT4

WHT2WHT2

WHT4

WHT2WHT2
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different from the right side as it can be noticed that the accesses per core in the final step 

are at stride-4 column-wise and stride-2 row-wise. To rectify the strided accesses, the stride 

permutation L is used to convert the vector form into the parallel construct – I2 ⊗ (WHT4 

⊗ I2), with each core bearing the workload of the term within parentheses. It should be 

stressed that WHTR and WHTS are just used to refer to the same intermediate matrix and 

the resultant matrix, WHTN, is stored in-place, with the operations taking place during 

computation described by the right and left figurative depictions. 

 

 

FIGURE 4: Illustration of workload distribution for p = 2, R = 4 and S = 4 

Critical to the algorithm’s performance on each of the cores is the cache access 

patterns when executing their individual workloads. While the WHTS component is equally 

distributed to all the cores, each core accesses R/p columns of WHTR, where ‘p’ is the 

WHT4

WHT4 ⊗ I4

(WHT4 ⊗ I2) ⊗ I2

1 1 1 1

1-1 1-1

1 1-1-1

1-1-1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

1 0 0 0-1 0 0 0 1 0 0 0-1 0 0 0

0 1 0 0 0-1 0 0 0 1 0 0 0-1 0 0 

. . .

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

1 0 0 0-1 0 0 0 1 0 0 0-1 0 0 0

0 1 0 0 0-1 0 0 0 1 0 0 0-1 0 0 

. . .

1 1 1 1

1-1 1-1

1 1-1-1

1-1-1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1-1 1-1 0 0 0 0 0 0 0 0 0 0 0 0 

1 1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 

1-1-1 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 1-1 1-1 0 0 0 0 0 0 0 0 

. . .

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1-1 1-1 0 0 0 0 0 0 0 0 0 0 0 0 

1 1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 

1-1-1 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 1-1 1-1 0 0 0 0 0 0 0 0 

. . .

WHT4

I4 ⊗ WHT4

I2 ⊗ (I2 ⊗ WHT4)
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number of cores, assuming a single thread-core affinity. Simultaneously, the output matrix 

WHTN is split vertically into N × N/p sub matrices. For each of the N2/p iterations per core 

of the algorithm, there are at most three cache lines drawn. Essentially, every µth iteration 

needs two cache lines (i.e. a line each for WHTS and WHTN) with an extra cache line 

required after µ2 iterations (i.e. a line for WHTR). This works out to an average cache line 

requirement of (2µ+1)/µ2 per iteration. Using FIGURE 4 as an example and assuming µ = 

16, it can be seen that a cache line is needed by each core about every 16th iteration from a 

total of 128 iterations. 

The average cache line requirement per iteration doesn’t specify if the lines drawn 

were hits or misses, which would require knowledge of the underlying cache architecture. 

For a α-way set associative cache of size C, there are σ = C / (αµ∙sizeofint) sets, where 

sizeofint is 4 bytes for a C++ int data type and 2 bytes for short-int on an Intel machine. As 

described above, wherein drawing utmost three (aligned) cache lines at a time, it would be 

advisable to use at least a 4-way or higher associativity. So, assuming α > 2 and not 

accounting for compulsory misses, a good measure of keeping the miss rate down is 

through high associativity, i.e. µ2 ≤ σα. So, it must be understood that in picking µ, a value 

too low reduces spatial locality while a large value increases conflict misses. For 

completely in-cache operations of the N2/p elements per core, with (σα) cache lines: 

σαμ <  
𝑁2

𝑝
  

For a quad-core where each have a private L1 cache with two cores sharing an L2 

cache, this would mean that sizes of N > 27 would be expected to miss a 32KB L1 private 

data cache and sizes of N > 29 would fill up a shared L2 cache of size 4 MB, assuming 50% 

of the program are data operations. To handle larger sizes more efficiently, this WHT 
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implementation also uses optimizations to localize cache accesses by exploiting the 

properties of the transform. Loop folding, or folding the WHTS vertically reduces accesses 

by half. Loop interchange presents row-major matrix multiplication. Loop tiling allows 

utilizing the lines present in cache already by partitioning the iterations into chunks or 

blocks of 16 elements (assuming 64-byte cache lines with 4-byte elements). 

This algorithm is quite similar in implementation to the fast Fourier transform, but 

it computes the Fourier basis rather than the transform. The depth-first recursion yields 

⌈log log𝑁 + 1⌉ steps with the number of computations in each recursion step from the root 

to the leaf nodes following the progression (𝑁2, √𝑁
2 2

, √𝑁
4 2

…). In effect, this gives a 

computational complexity of O(N2), with the rest of the terms being quite insignificant. If 

there are p cores, then the computations reduce to O(N2/p) per core. Hence, the speedup of 

the efficient parallel implementation over its sequential (p = 1) counterpart is ideally p. 

In practice, there are significant inter processor communication overheads involved 

and the specific cache memory hierarchy that determine the actual speedup achieved. Task 

granularity and load balancing are decisive factors in understanding the parallel overheads 

incurred by the algorithm. The algorithm balances the workload evenly across all cores, 

assigning larger tasks to each core with increasing input size. This implies that increasing 

input size for a fixed number of threads leads to coarser granularity and decreasing 

corresponding communication overhead. For example, when computing the WHT for 4 

cores: When N = 16, the first level recursion distributes a 4 × 2 input matrix to each core 

while each stores into a 16 × 4 output matrix. When N = 256, each of the four cores works 

on a 16 × 8 matrix to produce its individual output that fits into a 256 × 64 output matrix. 

Therefore, the inter-process cache line requirement between recursion levels can be 
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generalized as (N2/pµ), where µ = number of elements in a cache line and N ≥ µ. An 

inclusive shared L2 cache of size 4MB can service these communication requests until N 

≤ 29. Coarse-grained parallelism for increasing input sizes as described here requires larger 

computation steps followed by relatively smaller communication and recursion control 

overheads. To ensure better cache reuse, a blocking factor is introduced to utilize blocks of 

array elements before moving on to retrieve the next cache line. In general, blocking factor 

is the number of elements in a cache line (µ) = the cache line size ÷ the size of an array 

element. 

3.2. Parallel Smoothed L0 (SL0) Reconstruction Algorithm 

The SL0 algorithm attempts to reconstruct a compressively sampled image by 

approximating the ℓ0-norm with a continuous function. A continuous function with respect 

to x, fσ(x), can be described as follows: 

𝑓σ(𝑥) = 𝑒
−
𝑥2

2σ2  , 𝑥 ∈  ℝ, σ ∈  ℝ+ 

This Gaussian function based on the parameter σ gives the number of zero elements 

in the vector x since: 

lim
σ→0

𝑓σ(𝑥) =  {
1,   |𝑥|  ≪  σ
0,   |𝑥|  ≫  σ

 

Taking the summation of all the cost functions for each vector element yields the 

number of zero elements in vector x, f ‘(x). Hence, the problem in effect is: 

minimize ‖𝑥‖0: 𝑁 − 𝑓
′(𝑥)   subject to 𝑦 = 𝐴𝑥 , 

where A is an m × N sampling WHT matrix. A decreasing sequence of carefully 

selected σ are needed to compute ‖𝑥‖0. This process is called a Graduated Non-Convexity 

procedure, wherein the σmax is gradually reduced to zero while the maxima of fσ is then 
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used to locate the maximum fσ for the next smaller σ. This is essentially a steepest descent 

approach. This process is shown in the algorithm below. 

1. σfactor = 0.7, σmin = 0.01, Lfactor = 1, L = 3, k = 1 

2. x  A+y 

3. µ  [0.001, 0.001, 0.001, 0.05, 0.06, 1.4, …, 1.4] 

4. Search σmax in the vector x 

5. σ  max |x| / (2.75 × δ) 

6. while σ > σmin do 

a. i  0 to L 

i. z  x . exp (–(x2/2σ2)) 

ii. x  x – µk . z 

iii. x  x – A+(Ax – y) 

b. σ  σ . σfactor ; L  L . Lfactor ; k  k + 1 

The parameters – iteration number (L), step-size (µ) as well as the starting point for 

σ are chosen from empirical analysis to result in optimal phase transition for varying values 

of indeterminacy (δ = m/N). In the algorithm above, A+ is an N × m Moore-Penrose pseudo-

inverse matrix, which is used to compute the inverse for non-square matrices. As it can be 

observed right away, the compute-intensive steps of this algorithm are the inverse 

computation and the matrix-vector products in the gradient descent step. The Moore-

Penrose pseudo-inverse of A, denoted as A+, is an extension of the inverse matrix. In this 

case, since A is an m × N matrix where m < N, the equation for the right inverse of A is: 

𝐴+ = 𝐴∗(𝐴𝐴∗)−1    where 𝐴𝐴+ = I𝑚 
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The Walsh-Hadamard transform case, which has linearly independent, orthonormal 

rows with all elements in the real domain, when applied to the equation above results in: 

𝐴+  =  
𝐴T

𝑁
 

Hence, the WHT pseudo-inverse is simply, the transpose of the sampling matrix A. 

This substitution when plugged back into the algorithm hugely simplifies the recurring 

gradient descent step. Keeping in mind these observations and modifications to the SL0 

algorithm, a suitable scheme is devised to parallelize computationally demanding parts of 

the algorithm.  

Step 2 of the algorithm merges the parallel computation of the pseudo-inverse with 

the initial vector calculation of x, as shown below in FIGURE 5. 

 

 

FIGURE 5: Illustration of x = A+y for two threads 

The pseudo-inverse doesn’t need to be directly computed and is implemented 

implicitly by accessing matrix A appropriately. The pseudo-inverse matrix A+ is needed to 

x0

x1

.

.

.

xN-1

a00 a01 . . . . . . . . a0,N-1

a10 a11 . . . . . . . . a1,N-1

...

am-1,0 am-1,1 . . . am-1,N-1

y0

y1

...

ym-1

core1 core0 

co
re

0
 

co
re

1
 

𝑖 



23 

be thread-wise partitioned horizontally, with each core accessing N/p rows; meaning that 

the sampling matrix A is simultaneously partitioned vertically into N/p segments and 

accessed row-major wise as seen in FIGURE 5. This can be further optimized by accessing 

each of the partitioned matrices block-wise in the size of the number of elements in a cache 

line. The search algorithm equally divides the vector x to each of the cores and each runs a 

linear search on its piece of the vector; a maximum is identified from the search results of 

each core. An involved search like mergesort may accrue unnecessary control overheads – 

although an image-based heuristic search could provide significant improvement in 

performance of the search algorithm. 

In the gradient descent iteration, optimizations are used to reduce matrix-vector 

multiplications by equally partitioning the intermediate as well as the reconstructed vector 

x into N/p elements and the matrix A vertically into N/p segments, before supplying the 

sampled vector y to proceed with multiplying this temporary result with the pseudo-inverse. 

This entire process is depicted in FIGURE 6 for a dual core, two thread program. Barrier 

synchronization is required in the algorithm’s iterations after step a.ii, during the (Ax – y) 

computation and after step a.iii. 
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FIGURE 6: Illustration of x = x – A+(Ax – y) for two threads 

Indeterminacy (δ = m/N) of the CS image decides the speed as well as the accuracy 

of the reconstruction. As indicated above, each core receives the workload of N/p elements 

of the vector x and the computation of a single vector element of x requires N row elements 

of matrix A and m row elements of A+ (or m column elements of A). In other words, each 

core performs 2N/p multiplications, iterating m times to compute x. Hence, the cache line 

requirement per iteration is 𝑁/𝑝μ + 2𝑁/𝑝μ = 3𝑁/𝑝μ  before and after the barrier each, 

since µ halves for the single-precision float x. Apart from the 2N/p operations per core, 

there are synchronization overheads incurred to update the intermediate variable tempi, 

which is expected to increase with the number of threads as O(p). In contrast, an alternative 

implementation is to generate tempi on each core individually, requiring (N + N/p) 

multiplications without any barrier stage. Hence, making the assumption that each 
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operation executes in a single cycle and uniform miss rate patterns for either 

implementation method, the benefit to dividing the (Ax – y) workload against performing 

it on each core can be expressed as: 

𝑁 >  
𝑁

p
+ O(𝑝) 

Or, 

𝑁 >  
𝑝

𝑝 − 1
 O(𝑝) 

This means that given the number of threads p, workload distribution of (Ax – y) 

gains for sufficiently larger N. Conversely, for large p, O(p) is large too, making workload 

distribution unsuitable for small sizes of N. 

For a quad-core cache system, given the data cache requests needed per iteration, 

N > 212 will exceed a 32KB L1 private caches of each core and N > 217 would necessitate 

out-of-cache requests in a shared 4MB L2 cache size, assuming half the requests to this 

unified cache are data load/store operations. For acceptable reconstruction at m = 0.4N, 

updating the vector x requires a total of  5𝑁2 2𝑝μ⁄  cache lines in m fully in-cache iterations.  

The convergence analysis of the SL0 algorithm is a bit involved and can be referred 

to in [20]. As explained in that paper, the SL0 algorithm presents an asymptotic 

computational complexity in the order of O(N2). This implementation of the SL0 reduces 

it further. As seen above, the modified algorithm performs implicit transpositions and 

merges computation steps. Hence, the computational complexity for this algorithm is 

O(mN). This indicates a speedup of at least N/m over the generalized SL0 implementation. 

The parallel speedup over its single-threaded counterpart could be affected by the barrier 

synchronization overheads. 
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3.3. Implementation on the Intel Xeon 

The platform used for the implementation of this compressed sensing algorithm is 

an Intel Xeon machine. This uses the dual LGA 771 socket supporting two Intel Xeon 

X5365 processors, codenamed Clovertown, each of which is a 65 nm Intel Core™-based 

quad-core 64-bit processor with a maximum CPU clock rate of 3 GHz. The FSB is quad-

pumped with a 64-bit bus between the two L2 caches running at a frequency of 333 MHz, 

thus delivering a throughput of 10.66 GB/s. The Intel 5000 P (Blackford) chipset’s memory 

controller hub (MCH) interfaces to four FB-DIMM 667 MHz DRAM channels that are 

capable of a read memory bandwidth of 21.66 GB/s. 

 

 

FIGURE 7: Architectural layout of dual-socket quad-core Xeon 

Each of the four cores have private, independent data and instruction L1 caches. 

Each L1 cache is a 32KB cache with 8-way associativity. There are two, inclusive, unified, 
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16-way, 4MB L2 caches, each of which are shared between two cores. All caches have 64-

byte cache lines. 

TABLE 1: Xeon X5365 processor specifications 

  Intel Core 

L1 data cache 32 KB 

L1 instructions cache 32 KB 

L1 latency 3 clock cycles 

L1 associativity 8-way 

L1 TLB size Instructions: 128 entries 

Data: 256 entries 

Max. L2 cache 4 MB for two cores 

L2 latency 14 clock cycles 

L2 associativity 16-way 

L2 cache bus width 256 bit 

L2 TLB size ? 

Pipeline 14 stages 

x86 decoders 1 complex and 3 simple 

Integer execution units 3 ALU + 2 AGU 

Load/Store units 2 (1 Load + 1 Store) 

FP execution units FADD + FMUL + FLOAD + FSTORE 

SSE execution units 3 (128-bit) 

 

 

Apart from the processor features listed above, the Intel Core™ microarchitecture 

includes several enhancements, which are critical to optimizing and fine-tuning the 

multithreaded performance of the program: 
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 Each core has a peak six µops per cycle issue rate, four x86 decoders decoding up 

to five instructions/cycle and a retirement bandwidth up to four µops/cycle in a 14 

stage pipeline. 

 Superscalar out-of-order speculative execution engine that uses memory 

disambiguation to reduce cache-miss exposure  

 Hardware prefetchers that prefetch data in response to data access patterns to reduce 

effective cache-miss latency. The hardware data prefetcher consists of a data cache 

unit (DCU) prefetcher for the L1 data cache and data prefetch logic (DPL) for the 

L2 cache. 

 Advanced branch prediction and stack pointer tracker for efficient procedure 

entry/exit. 

To effectively take advantage of the Core microarchitecture, it is necessary to 

evaluate the code for performance gains measured in terms of the wall-clock time and/or 

the CPU time. Identifying the processes that are CPU-bound or memory-bound are 

important to recognize the bottlenecks and optimize the code to improve performance. 

Apart from elapsed time, compilers also optimize performance of the target hardware and 

have common features to fine-tune code like profile-guided optimization (PGO), 

multithreaded support, cache-management features and so on. These, along with code-

specific optimizations used in the program that target and harness the capabilities of the 

architecture are: 

 Eliminating branches through code rearrangement and loop unrolling. 

 Reorganize data by blocking, loop interchange and loop tiling to reduce cache 

misses through temporal and spatial locality. 
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 Aligned and consistent data access patterns that are in sequential cache lines as well 

as strided locations which can ensure sustained µop throughput and can expect 

reduced latency from employing hardware and software (PREFETCH) prefetching 

mechanisms. 

 Avoiding store forwarding stalls by proper alignment and padding. Using write 

combining buffers to allow threads on multiple cores to write into a single cache 

line. 

 Barrier synchronization (fence) using the PAUSE instruction to indicate a spin-wait 

loop that improves performance by significantly reducing the chance of a memory 

order violation. 

 Utilization of the Loop Stream Detector (LSD) to optimize small loops containing 

branches by replaying instructions from instruction queue back into the decoder. 

 Minimizing bus latency by segmenting code into read phases and write phases of 

bus transactions. 

The Xeon system has 16 GB DDR2 RAM with 120 GB HDD space. It uses an 

installation of the Red Hat Enterprise Linux distribution, which runs a lightweight kernel 

(version 2.6.18) along with the Intel VTune™ Performance Analyzer suite. The Eclipse 

Kepler Software Development Kit (SDK) for Linux is used to write the stand-alone 

program in C++. The program is compiled using the GCC C++ Compiler with ANSI C 

compatibility. The program uses the portable POSIX thread (pthread) library to implement 

threads and synchronization. The real-time extensions library is needed to enable features 

like memory mapped files and high-res timers. Vectors or dynamically allocated arrays are 

used to handle the input images and transform matrices. 
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The basic structure of the program is listed here along with its salient functions. 

1. Main 

 Interpret command line parameters - input image, sampling size, no. of 

measurements, cores and threads. 

 Go to thread initialization and execution 

 Reconstructed signal is encoded as a PNG image 

2. Initialize Threads 

 Setup barrier synchronization functions 

 Create threads and execute respective functions 

3. Thread Function 

 Set each thread's CPU affinity. 

 Decode input Image from PNG 

 Resize arrays based on image size 

 Reinterpret image (or discretization of image) 

 Generate Walsh Hadamard Sampling Matrix 

 Use above matrix and input image to generate the compressively sampled 

signal, which is to be reconstructed in the next step. 

 Smoothed L0 Reconstruction Algorithm 

 Mean Squared Error between input and reconstructed images. 



CHAPTER 4. RESULTS AND DISCUSSION 

Performance of a workload is often measured using the total execution time 

represented in terms of instructions per cycle (IPC) or clocks per instruction (CPI) as: 

𝑡 = 𝑛 × CPI × 1/𝑓 

Here, n is the number of instructions and f is the processor’s clock frequency. While 

CPI is adequate to describe the performance of a single-threaded workload, it is an 

insufficient metric for examining multi-threaded workloads. The instruction throughput 

varies across runs since thread execution paths and thread interleaving are not always the 

same. Performance evaluation on a parallel architecture can be interpreted from the actual 

runtime of user code and the shared resource utilization. The tools used to measure the 

program’s performance in this research are: 

 Cachegrind Profiling Analysis 

 VTune Event Ratios 

 Response Time Regression Model 

4.1. Cachegrind Profiling Analysis 

The data access patterns of multi-threaded programs determine effective usage of 

the CPU cache hierarchy. A useful measure of interactions between the program code, the 

private L1, shared L2 cache levels and the main memory is miss rates. The cache miss rates 

can be broken down into requests missed for loads and stores as well as data and instruction 

misses for the independent L1 D-cache and I-cache units. Cache parameters (cache size, 



32 

associativity, write policy) and problem size dictate the miss rates of the algorithm. This 

work presents two methods to evaluate miss rates; program simulation for varying cache 

parameters on a cache profiler, Cachegrind, and, hardware event based-sampling of the 

program using Intel VTune Performance Analyzer. 

Cachegrind [24] is part of a larger framework called Valgrind, a tool suite that uses 

dynamic binary instrumentation for debugging and profiling programs. Cachegrind 

simulates a machine with independent first-level instruction and data caches backed by a 

unified second-level cache, matching the architectural requirements of the analytical model 

of this work. Moreover, it implements write-allocation but ignores the write policy, and 

since the Intel Core platform uses write-back consistently at all levels, there is no 

requirement to account for any extra write requests. Also, it auto-configures the unified 

4MB L2 cache of the Xeon platform. This makes it viable to use Cachegrind in order to 

model a cache hierarchy that gathers instruction and data cache reads and writes for a 

single-threaded execution of the workload.  

Cachegrind is configured to collect the profiling information for representative 

problem sizes and L1 data cache parameters. L1 miss rates are shown FIGURE 8 (a) – (f) 

on the next page for the matrix generation and the reconstruction algorithm. The miss rate 

variation is depicted for problem sizes N = 1024, 4096, 16384; L1 cache sizes (C) from 

8KB to 64KB and associativity (α) from direct to fully associative. The cache line size for 

this simulation is 64-bytes, consistent with the underlying Intel Xeon. 
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Low associativity and small cache sizes for L1 data caches tend to significantly 

impact performance of code and this can be directly inferred from the higher miss rates for 

direct-mapped and two-way associative caches in FIGURE 8. The miss rates are interpreted 

by observing the contributions of the individual load and store requests missed. Here, the 

total miss rate is the ratio of total misses to total accesses while the read miss rate would 

be the ratio of the read misses to the total read requests to that cache level. 

TABLE 2: Total accesses and last-level misses 

Size (N) Instruction Count Data Reads Data Writes L2 Read Misses L2 Write Misses 

WHT Algorithm 

1024 21,143,031 6,522,529 1,089,106 0 30,778 

4096 331,661,039 101,897,889 17,064,146 840 541,771 

16384 5,266,613,215 1,618,147,521 270,623,746 10,781 8,480,543 

Reconstruction Algorithm 

1024 422,175,603 70,464,085 17,488,718 5 0 

4096 6,672,236,955 1,093,083,644 271,345,259 8,419,824 32 

16384 106,405,567,784 17,347,995,349 4,306,738,435 134,360,760 692 

 

 

In the WHT program, as indicated in TABLE 2 above, the L1 data reads account 

for about 85% of total accesses on average, which translates to 15 write requests for every 

100 accesses. Meanwhile, the read misses account for a larger share (> 50%) of the total 

misses for α ≤ 2 as seen in FIGURE 8 (a) – (c), which is because each iteration has three 

aligned accesses, resulting in large conflict misses. It follows that for α > 2, the L1 read 

miss rate reduces dramatically (~ 70%), which is less than a single read miss for 1000 read 

requests. Simultaneously, for any set associative cache, 1 write miss occurs for about 30 

write requests, which also miss in the L2 cache, indicating a compulsory miss occurs for 

every 32 elements accessed (32 two byte short-int elements occupy a single 64-byte cache 
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line). This works out to a total L1 miss rate of less than 0.005 for α > 2, which is about a 

miss (load/store) for 200 accesses. The latency to service these misses can be hidden by 

non-blocking caches, out-of-order processors and write buffers – all of which are present 

in the Xeon platform. In effect, the execution of this program is close to being processor 

bound since larger problem sizes show reducing miss rates. 

In contrast, the recovery algorithm exhibits quite different miss rate patterns as seen 

in FIGURE 8 (d) – (f). As indicated in TABLE 2, the L1 data reads account for 80% of 

total accesses and the read misses constitute 98% of all misses. This implies that the L1 

write miss rate is negligible with most of the accesses (of the output data) occurring in-

cache. In FIGURE 8 (d) and (e), the miss rates can be seen to drop suddenly for N = 1024 

when C ≥ 16KB and again for N = 4096, when C ≥ 64KB. This behavior is explained by 

the L1 read miss rate dropping by as much as 80% (from about 5 read misses in 100 read 

requests to about 1 in 100) when an iteration i fits in the cache of size C. For instance, when 

N = 1024, a single iteration requires 160 (= 5×1024/32) cache lines and when N = 4096, 

640 cache lines, which fit within the L1 data cache of size C = 16KB and C = 64KB 

respectively. When i fits within C, every L1 read miss almost results in a L2 miss, which 

indicates that these misses are compulsory. When i doesn’t fit within C, about every 5th L1 

miss results in a L2 (capacity/conflict) miss and a main memory access. 

It can be inferred from TABLE 2 that, while the L2 misses for the WHT algorithm 

are compulsory write misses growing in the size N2/µ, the L2 misses for the recovery 

algorithm are read misses growing as the term σN2/µ, where σ = 16 for the Lena image 

used in this program. 
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4.2. VTune Event Ratios 

The Intel’s VTune package is used to execute the multithreaded WHT 

implementation on the Intel Xeon platform and sample relevant hardware events to analyze 

its performance. The L1 and L2 miss rates with respect to the matrix sizes generated are 

depicted in FIGURE 9 and are measured using the following events from VTune: 

L1 Data Miss Rate =  
L1D_REPL

INST_RETIRED. ANY
 

L2 Miss Rate =  
L2_LINES_IN. DEMAND. ANY

INST_RETIRED. ANY
 

The event L1D_REPL counts the number of lines brought into L1 data cache, 

L2_LINES_IN.DEMAND.ANY counts cache lines allocated in L2 due to requests by the 

same L1 data and instruction cache. 

 

 

FIGURE 9: Miss rates for generating WHT on 8-core Xeon 
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Since L1 instruction cache and L2 unified cache are supplanted by prefetchers, the 

instruction miss rates are negligible. As discussed before in section 4.1, increasing problem 

size leads to lower L1 miss rate explained due to reducing write miss rates compensating 

for control overheads. So, as indicated in the FIGURE 9 the L2 miss rate is almost zero for 

sizes of N ≤ 1024 fitting wholly in the 4MB cache. For N > 1024, the number of L2 misses 

serviced grows with the size of problem but the total number of instructions retired brings 

the L2 miss ratio lower. There are some contradictions, though, arising due to the false 

sharing of data. This can be interpreted using the data sharing ratio shown in and measured 

by: 

Modified Data Sharing Ratio =  
EXT_SNOOP. ALL_AGENTS.HITM

INST_RETIRED. ANY
 

 

 

FIGURE 10: Data sharing ratio between threads 
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The EXT_SNOOP.ALL_AGENTS.HITM counts snooped responses for addresses 

in a modified state. The sharing ratio should ideally be zero for good multithreaded 

performance. 

False sharing happens when one thread writes to a cache line and another thread 

attempts to read from or write to the same cache line also known as cache ping-pong. 

Smaller data sizes have false sharing due to threads reading and writing into a small number 

of cache lines; e.g. N = 64 has 2 cache lines per row shared between 8 threads. Meanwhile, 

N = 512 and 4096 shows higher than expected data sharing due to traversing more recursion 

levels and picking sub-trees that have false sharing at each step of the way. 

The CPI ratio can be used to calculate the execution time using the processor 

frequency (3GHz) and the total instructions retired for each matrix generated of size N as 

shown in TABLE 3. The CPI takes a hit when VTune samples a large number of events, 

so execution time needs to be measured with minimal overheads. 

TABLE 3: Execution times calculated using CPI 

Size 65536 32768 16384 8192 4096 2048 1024 512 256 128 64 

CPI 1.162 1.172 1.273 1.296 1.325 1.345 1.556 2 2.25 2.5 3 

Time(s) 31.927 8.100 2.224 0.574 0.155 0.039 0.014 0.010 0.020 0.005 0.006 

 

 

4.3. Response Time Regression Model 

The elapsed time for the algorithms can be measured using a wall clock timer like 

the Linux real-time clock. The tests are run for the WHT algorithm as well as the barrier 

and barrier-less implementations of the SL0 reconstruction algorithm. The representative 

problem sizes of N range from 64 (26) to 65536 (216) for indeterminacy δ = 0.1 to 0.8. The 
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threaded implementation of the workload is tested for 1, 4, 8 and 16 threads. The threads 

are core bound and threads sharing data are assigned to adjacent cores. When p = 16, two 

threads are bound to the same core. The speedup is calculated for a particular thread 

configuration using the ratio of its elapsed time with respect to the corresponding elapsed 

time for the single-threaded workload. The speedups are shown in FIGURE 11 on the 

following page. 

A regression model is constructed from the response time for each of the algorithms 

on single or multiple cores using a hybrid mechanistic-empirical approach, by leveraging 

the understanding of the interaction between the algorithm and the underlying multicore 

system. 

For the compute-bound WHT algorithm, the response time Tp for p threads is 

influenced by the input size N and can be described by the following non-linear model: 

𝑇𝑝 = O(𝑁2) + Overhead =  𝑎𝑝𝑁
2 + 𝑏𝑝 

Here, ap and bp are constants for a given thread configuration where ap denotes the 

instruction cycles spent to perform useful work, i.e., generate the WHT matrix and bp 

denotes the thread setup and control overheads. Hence, expanding these terms deliver the 

overall regression model for the WHT algorithm as presented below: 

𝑇𝑝 = 𝑁2 ( 
𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑝
+ 𝑡𝑠𝑒𝑞) + β ⋅ 𝑝 

where, 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 3.628 × 10−9 

                       𝑡𝑠𝑒𝑞 = 2.504 × 10
−10 

                        β = 0.00001 
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This regression model exhibits good fit to the data with a coefficient of 

determination, R2 = 99.8%. Here, tparallel and tseq are the respective parallel and sequential 

code runtime factors within the algorithm, which indicate the benefit in increasing threads 

for a given working set of the problem. 93.5% of the application code is parallelizable, as 

shown by the equation 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 ∗ 100/(𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 + 𝑡𝑠𝑒𝑞). For N < 256, while the tseq 

component is relatively small, β makes up a significant portion of the overheads that 

threaded workloads have to deal with. Hence, the four thread configuration gains for N ≥ 

128 and the eight thread configuration gains for N ≥ 256 over the single threaded 

counterpart. For p = 16, resource allocation stalls double the tseq component and context 

switching delays increase the overhead β, ensuring that this sees improvement only at N ≥ 

512. The model also shows the threaded workload reaching its performance limit at 3.4 for 

p = 4 and at 5.5 for p = 8. It should be noted here that due to optimized memory access 

patterns, the memory stalls that could occur from compulsory L2 write misses are 

completely hidden by the pipeline and write buffers. 

In the case of the recovery algorithm, apart from the measurement vector size m 

and image size N, the average memory access time (tmem) plays a significant role in 

determining the response time. As explained before, L1 misses are serviced completely 

within the L2 for N < 1024, whereas N ≥ 1024 requires drawing data from the main 

memory. From the analytical model: 

𝑇𝑝 = O(
𝑚𝑁

𝑝
) + 𝑡𝑚𝑒𝑚 + Overhead 

While the L1 misses are in the order O(N/pµ), the L2 misses serviced are in 

O(N2/pµ). In the equation above, overhead accounts for coherency latencies, thread 
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initialization delays and other measurement errors. Hence, the recovery algorithm can be 

depicted in general as follows: 

𝑇𝑝 = (𝑁 (
𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑝
+ 𝑡𝑠𝑒𝑞) + 𝑡𝑏𝑎𝑟𝑟𝑖𝑒𝑟 ⋅ 𝑝)𝑚 + 𝑡𝑚𝑒𝑚  +  β ⋅ 𝑝 

𝑤ℎ𝑒𝑟𝑒, 𝑡𝑚𝑒𝑚 =

{
 
 

 
 γ𝑁

𝑝μ
, 𝑁 < 1024

γ𝑁2

𝑝μ
, 𝑁 ≥ 1024

 

Here, γ is the miss penalty factor and µ is the number of elements contained in a 

cache line. While both the barrier and barrier-less implementations of the algorithm are 

modeled by the equation above, there are some significant variations that distinguish their 

performance for different problem sizes and threads. The values for the input variables 

obtained from the regression analysis are depicted in TABLE 4. 

TABLE 4: Regression values for SL0 algorithms 

Factors Barrier Barrier-less 

tparallel 2.151×10-7 1.245×10-7 

tseq ≈ 0 8.498×10-8 

tbarrier 2×10-4 ≈ 0 

tmem N < 1024 N ≥ 1024 N < 1024 N ≥ 1024 

γ 1.55×10-4 8.921×10-8 1.494×10-4 1.899×10-7 

β 0.0005 0.025 0.00025 0.017 

R2 96.032% 96.711% 

 

 

The barrier implementation sets tseq ≈ 0 indicating a high degree of parallelizability 

(above 99%) but the barrier wait overhead denoted by tbarrier reduces this benefit, with the 

term ‘tbarrier∙p∙m’ significantly impacting performance for small N. On the other hand, the 

barrier-less implementation sets tbarrier ≈ 0 as there are low CPU wait stalls, but performs 
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more computations per core to avoid communication overheads. These computations are 

represented by the variable, tseq, with only 59.43% of the code being parallelizable, 

resulting in a speedup bottleneck of 1.8 for 4 threads and 2.0 for 8 threads at N ≥ 2048. 

For N < 1024, the miss patterns given by the value of γ in TABLE 4 are quite similar 

for a single or multi-threaded workload using either implementation. This changes 

significantly for N ≥ 1024, as the miss penalty factor for the barrier-less implementation is 

about two times that of the barrier implementation. This makes the barrier implementation 

more efficient for N ≥ 16384 for p = 4, compensating for the wait states with lower miss 

penalty. 

 

 



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

The emerging field of compressed sensing has a lot of scope to benefit from 

efficient real-time realizations on modern computing systems and this research looks at 

implementations that exploit shared memory designs. Generation of the Walsh-Hadamard 

matrix using a high performance parallel algorithm shows excellent speedup of up to 5.6 

over using single-core processors, while the CS recovery algorithm implemented for 

multicore systems achieves a speedup boost of up to 4.5. This research also develops 

performance models for the respective algorithms, correlating computational complexity 

and miss rate patterns with the response time over single and multiple threads. 

The insights presented in this work are valuable to drive multicore-aware 

compressed sensing research forward. One such immediate goal would be to develop 

power-optimized parallel algorithms for low power embedded devices. Analytical 

modeling can be extended to include micro-architectural characteristics tailored for CS 

imaging. Apart from WHT, other transforms like Haar wavelets can benefit from multicore 

implementations too. While this work efficiently parallelizes a fast recovery algorithm, it 

does not evaluate the quality of the reproduced image. Picking a suitable algorithm for an 

application by weighing in the accuracy requirements and the computation complexity 

present a broader direction for future research. 
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