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ABSTRACT

MINHAO CAI. Three essays on pricing kernel in asset pricing.
(Under the direction of DR.WEIDONG TIAN)

Pricing Kernel extends concepts from economics and finance to include adjustments

for risk. When pricing kernel is given, by non-arbitrage theory, all securities can be priced.

Searching for a proper pricing kernel is one of the most important tasks for researchers in

asset pricing. In this thesis, we attempt to search a proper pricing kernel in three different

scenarios.

In chapter 1, we attempt to find a robust pricing kernel for a stochastic volatility model

with parameter uncertainty in an incomplete commodity market. Based on a class of s-

tochastic volatility models in Trolle and Schwartz (2009), we investigate how the parameter

uncertainty affects the risk premium and commodity contingent claim pricing. To answer

this question, we follow a two-step procedure. Firstly, we propose a benchmark approach

to find an optimal pricing kernel for the model without parameter uncertainty. Secondly,

we uncover a robust pricing kernel via a robust approach for the model with parameter un-

certainty. Thirdly, we apply the two pricing kernels into the commodity contingent claim

pricing and quantify effect of parameter uncertainty on contingent claim securities. We find

that the parameter uncertainty attributes a negative uncertainty risk premium. Moreover,

the negative uncertainty risk premium yields a positive uncertainty volatility component in

the implied volatilities in the option market.

In chapter 2, we propose a multi-factor model with a quadratic pricing kernel, in which

the underlying asset return is a linear function of multi-factors and the pricing kernel is a

quadratic function of multi-factors. The model provides a potential unified framework to
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link cross sectional literatures, time-series literatures, option pricing literatures and term

structure literatures. By examining option data from 2005 to 2008, this model dramatically

improves the cross-sectional fitting of option data both in sample and out of sample than

many standard GARCH volatility models such as Christoffersen, Heston and Nandi (2011).

This model also offers explanations for several puzzles such as the U shape relationship

between the pricing kernel and market index return, the implied volatility puzzle and fat

tails of risk neutral return density function relative to the physical distribution.

In chapter 3, we investigate whether idiosyncratic volatility risk premium is cross-

sectional variant. We use stock historical moving average price as a proxy for retail owner-

ship and examine whether idiosyncratic volatility is correlated with stock price level. Evi-

dence from cross-sectional regressions and portfolio analysis both suggests that low-priced

stocks (high retail ownership) have a significantly higher idiosyncratic volatility risk pre-

mium than high-priced stocks (low retail ownership). Especially, evidence in subsample

tests suggests that lowest-priced stocks (highest retail ownership) have a significantly pos-

itive idiosyncratic risk premium while highest-priced stocks (lowest retail ownership) have

an insignificant one, which is consistent with theoretical predictions of Merton (1986) and

classical portfolio theory.
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INTRODUCTION

Pricing Kernel extends concepts from economics and finance to include adjustments for

risk. As long as pricing kernel is given, we can price any security by non-arbitrage theory.

Searching for a proper pricing kernel is the core question for Researchers in the area of asset

pricing. In finance, researchers often apply different models in different financial markets.

Because the pricing kernel heavily depends on the specification of an asset pricing model,

there is no unified pricing kernel that can justify all securities in different financial markets

until today. In this section, we firstly present two widely-used class of asset pricing models

and then discuss the corresponding pricing kernels.

Volatility models are one class of the most important asset pricing models in finance.

Based on the principle that ``risk require rewards'', as a measure of risk, volatility are wide-

ly used to explain realized returns and expected returns of securities in different financial

markets. In general,volatility models are categorized by two groups: stochastic volatility

models (See Heston (1993), Trolle and Schwartz (2009)) and GARCH models (See Heston

and Nandi (2000)). These two models can both well capture the time-varying volatility

process. Even though a GARCH model is a discrete-time model while a stochastic volatil-

ity model is a continuous-time model, a stochastic volatility model can often be translated

into a GARCH model with infinitesimal interval. However these two groups still have sig-

nificant difference in predicting future volatility. In stochastic volatility models, there is

a random component which assumes that future volatility cannot be fully determined by

today's information. In contrast, GARCH models assume that future volatility is already

known based on today's information. To price a security, the pricing kernel needs to be

specified either explicitly or implicitly. In the explicit way, we explicitly specify the func-
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tion of pricing kernel. Given the pricing kernel, we can find the return process of underlying

assets under risk-neutral measure and price a security. In the implicitly way, we directly

specify the return process of underlying assets under risk-neutral measure without giving a

function form for the pricing kernel. However the pricing kernel implicitly affect security

prices by risk premiums.

In the first chapter, we dedicate to find proper pricing kernels for a class of stochastic

volatility models in different scenarios and analyze the effect of parameter uncertainty on

option prices in an incomplete market. In a complete market, the pricing kernel is uniquely

determined by traded assets in a financial market. However, when the market is incomplete,

the pricing kernel is not unique, how to select an optimal pricing kernel is a difficult issue.

In the implicit way, choosing an optimal pricing kernel is equivalent to choosing optimal

risk premiums. As part of the volatility is un-spanned a stochastic volatility model, we

may have concern on the accuracy of parameter calibrations. In this chapter, we propose

two pricing kernels in two scenarios. Firstly, we propose a benchmark approach to deter-

mine an optimal pricing kernel in an incomplete market. The benchmark approach finds an

optimal pricing kernel which maximizes the Sharpe ratio for all securities. Secondly, we

use a robust approach to search for an optimal pricing kernel for the model with parameter

uncertainty (volatility uncertainty) in an incomplete market. By comparing security prices

via the two different pricing kernels, we can find the effect of parameter uncertainty on

option pricing in an incomplete market. We find that the parameter uncertainty attributes a

negative uncertainty risk premium. Moreover, the negative uncertainty risk premium yields

a positive uncertainty volatility component in the implied volatilities in the option market.

The uncertainty volatility component can be even significant under certain circumstances.
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Linear factor models are another strand of asset pricing models in finance. A linear

factor model relates the return on an asset to the values of a limited number of factors, with

the relationship described by a linear equation. Compared with volatility models, linear

factor models are better in capturing cross-sectional variants among stocks in equity market.

Since the Capital asset pricing model can not explain anomalies in the market, researches

on linear factor models mainly focus on searching of new market factors. Fama and French

(1993) find that SML, HML and market excess return can explain over 90 percent of the

time series variation of diversified portfolios. Carhart (1997) finds that momentum factor

is another important market factor which can explain why past winners continue to win in

the near future.

By non-arbitrage pricing theory, the pricing kernels of linear models should be in a linear

form by the principle of one price in stock market. In the bond market, the pricing kernel

is often specified as a linear function of multi-factors. For example, affined term structure

models (ATSMs) assume that the logarithm of pricing kernel is a linear function of latent

factors. For the inter-temporal consumption based model, Harrison and Kreps (1979) and

Hansen and Jagannathan (1991) have showed that the pricing kernel is a representative

investor's intertemporal marginal rate of substitution of consumption. when the growth rate

of consumption is proportional to the growth rate of market return, we can derive the pricing

kernel as linear function of the market return from Taylor expansions. By classic economic

theory, because of the diminishingmarginal utility, the pricing kernel should be a decreasing

function of the market return. However, empirical findings find that the pricing kernel is

a ``non-monotone'' function of underlying asset return and is time varying. For example,

Bakshin, Madan and Panayotov (2010) use four different OTM calls which focus on claims



viii

with payout on the upside and find that the average returns contradict the downward-slope

pricing kernel. To explain the pricing kernel puzzle in option market, we propose a new

pricing kernel which is a quadratic function of factors in the second chapter.

Motivated by these findings, we propose a multi-factor model with a quadratic pricing

kernel to explain several anomalies in equity market. In this model, the market return is

a linear function of multi-factors while the logarithm of pricing kernel is a quadratic func-

tion of multi-factors. By the settings, our model can automatically explain the U-shaped

relationship between pricing kernel and market return. Even though a quadratic pricing k-

ernel has been discussed in primitive equity market and bond market, In stock market and

bond market, A quadratic pricing kernel has been well studied in many literatures. Harvey

and Siddique (2000) and Dittmar (2002) both develop the quadratic pricing kernel in cross

section analysis. In bond market, although affine term structure models (ATSMs) are pre-

vail, Ahn, Dittmar and Gallant (2002) propose quadratic term structure models (QTSMs)

in which the pricing kernel is a quadratic function of factors. They demonstrate that the

QTSMs can overcome several disadvantages of ATSMs and better fit the US data. Howev-

er, a quadratic pricing kernel has never been used to price derivatives in the equity market,

because the pricing kernel needs to both satisfy non-arbitrage theory and price derivatives

easily. In Chapter 2, we propose a multi-factor model with a quadratic pricing kernel and

present an almost closed form solution to option price. By fitting cross-sectional option da-

ta from 2005 to 2008, we find that this model can significantly outperform Christoffersen,

Jacob and Heston (2012) both in sample and out of sample. The presented model not only

can explain the pricing kernel puzzle, but also can explain several other empirical puzzles,

such as implied volatility puzzle and fat tails of risk neutral return density function relative
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to the physical distribution.. The proposed model also builds linkages among the linear

factor model, the pricing kernel literature and the option pricing literature.

By modern economic theory, because only systematic risk is priced, the pricing kernel

only needs to adjust for systematic risk. However, this theory is based on the assumption that

representative investors will holdwell-diversified portfolios. It is well known that investors,

especially retail investors often hold under-diversified portfolios in reality. Merton (1987)

points out that idiosyncratic risk should be positively priced when representative investors

hold under-diversified portfolios. The two theories gave out two different answers based

on different representative investors. However, in regardless of representative investors,

empirical studies often treat all the stocks the same and test whether idiosyncratic risk is

priced using the full sample. In the third chapter, we attempt to fill the gap between theories

and empirical studies on pricing idiosyncratic risk. We attempt to prove that idiosyncratic

volatility risk premium is clientele-based and separately test whether idiosyncratic risk is

priced differently for stocks with different representative investors. Because idiosyncratic

risk premium is the negative correlation between the pricing kernel and idiosyncratic risk,

this is equivalent to test whether stocks with different representative investors have different

pricing kernels. We use stock historical moving average price as a proxy for retail ownership

and examine whether idiosyncratic volatility is correlated with stock price level. Evidence

from cross-sectional regressions and portfolio analysis both suggests that low-priced stocks

(high retail ownership) have a significantly higher idiosyncratic volatility risk premium

than high-priced stocks (low retail ownership). Especially, evidence in subsample tests

suggests that lowest-priced stocks (highest retail ownership) have a significantly positive

idiosyncratic risk premium while highest-priced stocks (lowest retail ownership) have an
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insignificant one, which is consistent with theoretical predictions of Merton (1986) and

classical portfolio theory.
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CHAPTER 1: PARAMETER UNCERTAINTY AND VOLATILITY RISK PREMIUM

1.1 Introduction

This paper is a study into how the market incompleteness interacts with the model pa-

rameter uncertainty in a commodity market. It is well documented recently that, there is

unspanned volatility in the commodity market so the stochastic volatility model is required

to capture the commodity price movement (See, for instance, Trolle and Schwartz (2009,

2010), Hughen (2010).). In this chapter, we consider a class of stochastic volatility mod-

el developed in Trolle and Schwartz (2009) for the crude oil market, we investigate the

following questions. What if the volatility model is not correct? How to characterize the

market price of the parameter uncertainty in a robust approach? and how large the model

uncertainty contributes to the derivative pricing and implied volatility?

For this purpose, we introduce a three-step procedure. In the first step, we develop a ro-

bust approach for the class of stochastic volatility model in the presence of model parameter

uncertainty 1 by following amethodology developed in Boyle, Feng, Tian andWang (2008).

In essence, the robust approach is to find the robust stochastic discount factor which is the

least sensitive stochastic discount factor (SDF) with respect to the perturbation of mod-

el parameters in pricing a given security. This robust approach yields a robust stochastic
1Model uncertainty emerges when there is not accurate estimation of model parameters and can be es-

sential in some situations and ignoring the model uncertainty can lead to a pronounced, negative effect. See,
for instance, Garlappi, Uppal and Wang (2007) for expected return uncertainty, Tian, Wang and Yan (2010)
for correlation uncertainty. Recently, Lo and Mueller (2010) propose a taxonomy of uncertainty and some
uncertainty might be not reducible. In this paper we follow a relatively narrow sense in that it is impossible
to estimate accurately some model parameters on the volatility process.
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discount factor and its corresponding (robust) risk premium when the model parameter un-

certainty interacts with the stochastic volatility. As the robust risk premium estimated in this

step consists of ingredients from both parameter uncertainty and market incompleteness to-

gether, the risk premium attributed by the parameter uncertainty purely is not characterized

yet.

To estimate the parameter uncertainty premium, we take an indirect way in the second

step. We examine a benchmark case in which model parameters are known while only s-

tochastic volatility is persistent. We propose one approach, namely a benchmark approach,

to the stochastic volatility model that leads to a benchmark SDF and a stochastic volatil-

ity risk (benchmark risk) premium. The benchmark approach, in nature, is similar to the

robust approach mentioned above without uncertainty concern and can be applied to any

incomplete financial asset pricing model. In this way, we divide the incompleteness and

uncertainty separately so we are able to estimate the uncertainty risk premium, which is the

difference between the risk premiums in the above two approaches. Precisely, the robust

risk premium is decomposed as a sum of the benchmark risk premium and the uncertainty

risk premium

Robust Risk Premium = Benchmark Risk Premium

+Uncertainty Risk Premium

where the robust risk premium is the solution in the robust approach while the benchmark

risk premium is solved by the benchmark approach.

In the third step, we apply two SDFs, the robust SDF and the benchmark SDF construct-

ed in the first two steps, into the commodity contingent claim pricing. In particular, we
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study the joint effects of market incompleteness and parameter uncertainty on the implied

volatility of the option market. We find out that model parameter uncertainty contributes a

``uncertainty volatility component" in the implied volatility of the commodity option mar-

ket. Similar to the decomposition of the robust risk premium, the implied volatility in the

presence of model parameter uncertainty and stochastic volatility, namely the robust im-

plied volatility, is decomposed as

Robust Implied Volatility = Benchmark Implied Volatility

+ Uncertainty Volatility Component.

Following the above proposed methodology, the empirical results show that, using a

recent sample of data in the commodity market, the volatility risk premiums and the un-

certainty risk premium are negative. Negative volatility risk premiums consistent with

recent empirical literatures such as Doran and Ronn (2008), and Christoffersen, Heston

and Jacobs (2010). Doran and Ronn (2008) document that negative volatility risk premi-

um is closely related to the disparity between risk-neutral and statistical volatility in the

commodity market. Based on arbitrage-free principle, Christoffersen, Heston and Jacobs

(2010) demonstrate that negative volatility risk premium is persistent in a class of stochas-

tic volatility model. In addition to the negative volatility uncertainty premium, we also

show that the uncertainty volatility component is positive. The intuition of a positive un-

certainty volatility component is that a higher price is required to compensate the parameter

uncertainty. Therefore, the implied volatility is increased when the parameter uncertainty

is added. Under certain circumstance, the uncertainty volatility component compared to the

robust implied volatility can be fairly substantial.
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Our approach is related to previous researches in dealingwith the commodity risk. Some

authors follow the partial equilibrium approach by giving stochastic processes on the eco-

nomical factors such as spot and future prices or demand, and follow an arbitrage-free argu-

ment to analyze the commodity risk. See, for instance, Gibson and Schwartz (1990), Mil-

tersen and Schwartz (1997). As recognized in Cassus and Collin-Dufresne (2005), Hughen

(2009) and Trolle and Schwartz (2009), future prices cannot fully span the volatility, hence

the stochastic volatility model needed to be developed. As the commodity market becomes

incomplete, it is a challenging problem to estimate the stochastic discount factor, or equiva-

lently, the market price of risk in the commodity market. In another strand of literature, such

as Routledge, Seppi and Spatt (2000), Hong (2000), and Kogan, Livdan and Yaron (2008),

an equilibrium model for the term structure of future prices is developed. The commodity

derivative can be priced uniquely in this equilibrium approach. The endogenous stochastic

process of price process as well as the market price of risk, however, does not always fit

the commodity market well. The purpose of this paper is to study the robust stochastic dis-

count factor for a given commodity derivative contract and examine the model parameter

uncertainty effect in a precise manner.

This paper also contributes to asset pricing literature. In standard asset pricing litera-

tures on incomplete financial model, the agent wants to determine the stochastic discount

factors (SDF). In an equilibrium approach the stochastic discount factor is uniquely deter-

mined if the agent's risk preference is specifically characterized. In a good-deal approach,

the class of stochastic discount factors can be significantly smaller by imposing economical-

based bounds on the stochastic discount factors than that in the no-arbitrage approach. See

Bernardo and Ledoit (2000), and Cochrane, Saa-Requejo (2000). Other approaches to find a
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narrow class of stochastic discount factors we refer to Bondarenko (2003), Carr and Madan

(2001). Boyle, Feng, Tian andWang (2008) introduce a robust approach to pricing financial

securities, when the model parameters are uncertain in an incomplete financial market. A

remarkable difference between the robust approach with other approaches is that the robust

stochastic discount factor could depend on a derivative itself. In other words, correspond-

ing to different derivative contract, the agent may need to use different robust stochastic

discount factor to deal with both the market incompleteness and parameter uncertainty to-

gether. It makes economical sense since there is no one stochastic discount factor that can be

applied to all securities in an incomplete model containing parameter estimation risk when

risk preference is not imposed en-ante. This paper examines in details how the market in-

completeness and parameter uncertainty jointly affect the asset pricing in the real market

place by extending the robust approach in Boyle, Feng, Tian and Wang (2008).

The methodology developed in this paper has several potential applications and impli-

cations. (a). The approach can be used to analyze the scale of the implied volatility. Carr

and Wu (2009) find that the realized volatility can't be as large as the implied volatility

in the market place. The empirical analysis in this paper might suggest that a significant

component in the implied volatility that is driven from the model parameter uncertainty.

Therefore, our result could be useful to explain the gap between the realized volatility and

the implied volatility. (b). The presented methodology can be used to discuss the risk man-

agement strategy for the price risk and the parameter estimation risk in one uniform setting.

Boyle, Feng, Tian and Wang (2008) develop another robust approach to study the event

of small probability with large price movement. By combing this robust approach and the

method developed in this paper one can examine the risk management strategy that is ro-
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bust to a large loss with small probability. (c). The method developed in this paper can be

applied to other financial markets. For instance, Collin-Dufresne and Goldstein (2002), Li

and Zhao (2006) document the unspanned stochastic volatility in the fixed income market.

Therefore, one can apply our method to the fixed income market as well.

The paper is organized as follows. Section 1.3 presents a benchmark approach in an

incomplete model without volatility model parameter uncertainty. We also show that this

benchmark approach is identical to the optimal-variance approach that is proposed in some

other contexts. Section 1.4 introduces the robust approach for incomplete model with

volatility model uncertainty. We examine the robust approach for the pricing of commodity

contingent claim. In Section 1.5 we calibrate the model in the crude oil market and present

our empirical results. Section 1.6 provides the conclusions and all proofs are presented in

Proof.

1.2 A Benchmark Approach

We present a benchmark approach to obtain the benchmark stochastic discount factor

in an incomplete model. The insight is better illustrated in a single-period setting first.

Consider a derivativewith payoff p andwhose price is unknown. There is a set of admissible

stochastic discount factor {mα : α ∈ A }. In asset pricing theory (see Harrison and Kreps

(1979)), corresponding to each SDF mα , the expectation E[mα p] offers one arbitrage-free

price of p. The price of the derivative is not unique when the derivative p is not attainable.

In addition, the range between the smallest and highest arbitrage-free price of p, that is

minE[mα p] and maxE[mα p], might be too large to be used in applications.

Consider an agent who want to find a unique price to hedge the risk of choosing the

``wrong" stochastic discount factor. To do this, the agent finds an approximate derivative,
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written as zα + p, of the original derivative p for each possible SDF mα . The choice of the

approximate derivative hinges on some hedging considerations that mα might be chosen

inappropriately. The criteria of choosing the derivatives zα + p will be explained shortly.

Assuming these approximate derivatives {zα + p : α ∈ A } have been chosen, the agent

comes up with one quantity A(mα) for each stochastic discount factor mα . The benchmark

approach is to find the robust SDF mα through the quantities A(mα).

Evidently, the approximate derivatives are not unique andwe follow the robust approach

proposed in Boyle, Feng, Tian and Wang (2008),2. To choose the approximate derivative,

zα + p, for a given stochastic discount factor, the construction is build on two following

criteria3. (1). The approximate derivative zα + p has the same value as p under the same

stochastic discount factor mα , that is, EP[mα(zα + p)|F ] = EP[mα p|F ]. It can be written

as

EP[mαzα |F ] = 0 (1.1)

whereF represents the information set and P is the subjective probability. (2). The approx-

imate derivative p+ zα has the highest Sharpe ratio, given a stochastic discount factor mα .

The intuition behind the second criteria is that the agent finds the approximate derivative

with the smallest risk (volatility) given the expected return from the hedging perspective of

the derivative p+ zα .
2For other robust approach we refer to Hansen and Sargent (2001). The ideas in the robust approach are

fairly similar, to deal with the worst case.
3Of course, the choice of those criteria is not unique by the incompleteness market structure. We argue

that this approach is similar to the robust one in which the model parameter estimation risk is a concern. See
Section 2 in Boyle, Feng, Tian and Wang (2008) for the justifications.
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In a precise manner, the excess return of p+ zα under mα is

EP[(p+ zα)]−EP[mα(p+ zα)] = EP[(p+ zα)]−EP[mα p] (1.2)

where the first criteria is used. Hence, the Sharpe ratio of p+ zα , under mα , is

EP[(p+ zα)]−EP[mα(p+ zα)]√
Var[(p+ zα)]

.

Thus the criteria for finding the ``approximate derivative" is to solve the following problem

max
zα ,EP[mα zα ]=0

{EP[(p+ zα)]−EP[mα(p+ zα)]}2

Var[(p+ zα)]
.to

Since the agent is uncertain about which SDF is appropriate for the derivative p, the

benchmark approach in the incomplete market is to find mα∗ by

minmα maxzα ,EP[mα zα ]=0
{EP[(p+zα )]−EP[mα (p+zα )]}2

Var[(p+zα )]
.

The solution of this benchmark approach is presented by the next proposition.

maxEP[mα zα ]=0
{EP[(p+zα )]−EP[mα (p+zα )]}2

Var[(p+zα )]
= EP[m2

α ]−1.

The benchmark approach is to find the robust SDF mα∗ such that

minmα Var[mα ].

See Proof.

This result is intuitive. In the choice of the derivative p+zα , as the criteria is to find the

highest Sharpe ratio with corresponding SDF mα , this criteria is equivalent to the optimal

derivative choice in the mean-variance setting. Indeed, the approximate derivative zα + p,
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given one SDF mα , can be found as follows. Given any a real number c, let

zα(c,ω) = EP[p]− p(ω)+ c

+{EP[mα p]−EP[p]− c}
(

Qα(ω)

P(ω)
−1
)(

EP

[(
dQα

dP

)2
]
−1

)−1

where the probability measure Qα is determined by dQα

dP = mα . As shown in Proof, zα(c)

offers the solution of the maximum Sharpe ratio problem (1.3) for each E[zα(c)] = c. It

corresponds to the efficient frontier in the mean-variance framework. Therefore, from the

perspective of the SDF mα , the approximate derivative of the derivative p is written as a

linear contract as follows:4

EP[p]+ c+{EP[mα p]−EP[p]− c}
(

Qα(ω)

P(ω)
−1
)(

EP

[(
dQα

dP

)2
]
−1

)−1

.

So Proposition 1.4 follows from a direct computation.

Even though the approximate derivatives are not unique, the highest Sharpe ratio of

these approximate derivatives depends only on the SDF mα . It is worth to mention that

the term EP

[(
dQα

dP

)2
]
− 1 in Proposition 1.4 has an important economical meaning. By

Hansen and Jagannathan (1997) and Goetzmann, Ingersoll and Spiegel (2007), the square

root of EP

[(
dQα

dP

)2
]
− 1 is the solution of the following maximum Sharpe ratio problem

for x̃ given the stochastic discount factor mα , as follows: maxE[mα x̃]=0
E[x̃]√
Var[x̃]

where x̃ is

the excess return of the portfolio. Problem (1.3) is a relative version of Problem (1.4) with

respect to a derivative p.

By Proposition 1.4, the solution, m∗
α , of the benchmark approach is the one that min-

4The optimal derivative contract that minimize the variance while the expected return is greater than a
threshold is often a linear derivative contract on mα . See Jankunas (2001).
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imizes the variance of the stochastic discount factors. The benchmark SDF m∗
α does not

depend on any derivative p. It also turns out that this benchmark approach leads to the

same solution of the optimal-variance approach developed in Schweizer (1995, 1996) from

different perspective.

We now move to the stochastic volatility model in the commodity market by using this

benchmark approach.

A. Stochastic Volatility Model in Commodity Market

We consider the crude oil market and examine a three-factor stochastic model in this

paper. We start with a filtered probability space (Ω,F ,P). S(t) denotes the time t spot

price of the commodity, y(t,T ) is the time-t instantaneous forward carrying cost at time

T . Both the volatilities of S(t) and y(t,T ) are controlled by the (unspanned) stochastic

volatility factor v(t), which satisfies a square-root process.5 Precisely,

dS(t)
S(t)

= µs(t)dt +σs
√

v(t)dW1(t)P,

dy(t,T ) = µy(t,T )dt +σy(t,T )
√

v(t)dW2(t)P,

dv(t) = (γ −κv(t))dt +σv
√

v(t)dW3(t)P, (1.5)

where µs(t) is the instantaneous drift of the spot price, µy(t,T ) the instantaneous drift of

the forward carrying cost y(t,T ), σs is a constant. We assume σy(t,T ) is deterministic. The

random noise is generated by correlated Brownian motion (W1(t)P,W2(t)P,W3(t)P) under
5The convenience yield for commodity is justified by the relationship between the storage and investment

opportunity. See Deaton and Laroque (1996). To simplify the notation and focus on stochastic volatility and
parameter uncertainty, we assume constant interest rate. See Schwartz (1997) and Trolle and Schwartz (2009)
for discussions of stochastic interest rate on the commodity market.
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probability measure P. We assume that

corr(Wi(t)P,W j(t)P) = ρi j, ∀i, j = 1,2,3. v(t) is the instantaneous variance, up to a

positive constant, of the spot price, and v(t) revers to a long-term mean of γ
κ with a speed of

κ . We assume that 2γ > σ2
v , so the positivity of the instantaneous variance is guaranteed as

long as the initial value v(0)> 0. This model specification includes the one-factor volatility

model presented in Trolle and Schwartz (2009) as a special case in which all market price

of risks are assumed to be zero.6

As both the forward carrying cost and the spot volatility cannot be observed directly,

the estimation of the market price of risk is crucial to price derivatives. To simplify the

model settings, we assume that the market price of risk in spot price, forward carrying cost

and instantaneous variance are in the form of λi
√

v(t), i = 1,2,3. So we need to estimate

these parameters λ1,λ2 and λ3. In the sequel we examine how to choose those parameters to

address the market incompleteness for this unspanned stochastic volatility model of crude

oil market. 7

We follow the benchmark approach stated above to find the benchmark SDF in this

commoditymodel. With a particular choice of themarket price of risk {λi
√

v(t) : i= 1,2,3}

at any instant time t, there exists a stochastic discount factor8

Zλ1,λ2,λ3
T ≡ exp

{
−

3

∑
i

∫ T

0
λi
√

v(s)dWi(s)−
1
2

∫ T

0

3

∑
i

3

∑
j

ρi jλiλ jv(s)ds

}
. (1.6)

6In fact, Trolle and Schwartz (2009) also introduce a two factor volatility model in the commodity market.
Based on their extensive comparison analysis, the one factor volatility model explains the commodity market
fairly well. Therefore, we only use the one factor volatility model.

7Ourmarket price of risk specifications are standard and can be used to explain some option anomalies. For
instance, Christoffersen, Heston and Jacobs (2010) examine the equity index option market. See also Bikbov
and Chernov (2009), Broadie, Chernov and Johannes (2007), Cheredito, Filipovic and Kimmel (2007) for the
discussion of the market price of risk specification.

8By model assumption, the Novikov condition holds, i.e., E
[
exp
{

1
2
∫ T

0 ∑3
i ∑3

j ρi jλiλ jv(s)ds
}]

< ∞. Then

E[Zλ1,λ2,λ3
T ] = 1.
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Let Q = Qλ1,λ2,λ3 be the corresponding risk-neutral martingale measure of SDF Zλ1,λ2,λ3
T .

Then the movements of {S(t),y(t,T ),v(t)} are represented by the following processes:

dS(t)
S(t)

= δ (t)dt +σs
√

v(t)dW1(t)Q,

dy(t,T ) = (µy(t,T )−λ2σy(t,T )v(t))dt +σy(t,T )
√

v(t)dW2(t)Q,

dv(t) = (γ −κv(t)−λ3σvv(t))dt +σv
√

v(t)dW3(t)Q, (1.7)

where δ (t) = µs(t)−λ1σsv(t), δ (t) denotes the instantaneous carrying cost underQ. More-

over, y(t, t) = δ (t) by its definition. By Girsanov's theorem, the process {W Q
i (t)} defined

byWi(t)Q =W1(t)P +
∫ t

0 λi
√

v(s)ds is a Brownian motion under the measure Q.

Let P(S,y,v, t) be the crude oil contingent claim price under the risk-neutral martingale

measure Q, and assume it is a twice continuously differentiable function of the spot price,

forward carrying cost and the volatility, then

1
2

PSSS2σ2
s v+

1
2

Pyyσ2
y v+

1
2

Pvvσ2
v v+PSySσSσyρ12 +PSvSσSσvvρ13 +Pyvyσyσvvρ23

+PSSδ (t)+Py(µy −λ2σyv)+Pv(γ −κv−λ3σvv)−Pt − rP = 0. (1.8)

Any oil contingent claim satisfies the above equation with some specific boundary con-

dition. For instance, let F(t,T ) be the time t price of a future contract maturing at time T ,

it can be shown that (See Proof. It includes Trolle and Schwartz (2009), Proposition 1, as a

special case.),

dF(t,T )
F(t,T )

=
√

v(t)
[

σsdW1(t)Q +
∫ T

t
σy(t,u)dudW2(t)Q

]
(1.9)
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and

µy(t,T ) =−v(t)σy(t,T )
[

ρ12σs +
∫ T

t
σy(t,u)du−λ2

]
. (1.10)

Under the risk-neutral probability measure Q, the forward carry of cost satisfy

y(t,T ) =
∫ t

0
−v(u)

[
σy(u,T )

(
ρ12σs

∫ T

u
σy(u,T )du−λ2

)
+λ2σy(u,T )

]
du

+y(0,T )+
∫ t

0
σy(u,T )

√
v(t)dW2(u)Q (1.11)

By the above formulas (1.10)-(1.11), the market price of risk λ2
√

v of the forward carry-

ing cost can be estimated by the future prices of the market. However, under most circum-

stances, this parameter λ2 cannot be estimated accurately and it is even more challenging

to estimate the other parameters λ1 and λ3.

As the commodity market is incomplete, the estimated parameters {λ1,λ2,λ3} are not u-

nique. We assume (λ1,λ2,λ3)∈A ⊆R3, a exogenously given bounded closed subset ofR3.

By Proposition 1.4, the benchmark approach as illustrated above solvesmin(λ1,λ2,λ3)∈A E[Z2
T ].

Let (λ ∗
1
√

ν ,λ ∗
2
√

ν ,λ ∗
3
√

ν) be the minimal-variance market price of risk in this model. The

analytical expression of E[Z2
T ] is available and written as follows (see Proof for its deriva-

tion):

E[Z2
T ] = eA(T )−B(T )v0 (1.12)
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where

A(t) =
k1k∗2
σ2

v
t +

k1 ln[1+ tan[1
2

√
2λσ2

v − (k∗2)
2(t +C1)]

2]

σ2
v

+C2 (1.13)

and

B(t) =
−k∗2 + tan[1

2t
√

2λσ 2
v − (k∗2)

2 + 1
2C1
√

2λσ2
v − (k∗2)

2]
√

2λσ2
v − (k∗2)

2

σ2
v

(1.14)

and k1 = γ,k∗2 = k2 + 2λ3σv, λ = ∑3
i ∑3

j ρi jλiλ j, and parameters C1,C2 are given below

(under the condition that 2λσ2
v > (k∗2)

2) :

C1 =
2arctan[ k∗2√

2λσ2
v −(k∗2)

2 ]√
2λσ2

v − (k∗2)
2

(1.15)

C2 =−
k1 ln[1+(

k∗2
2λσ2

v −(k∗2)
2 )

2]

σ2
v

. (1.16)

After discussing the benchmark approach for this stochastic volatility model, we now

move to the robust approach in which the model parameters are not known prior.

1.3 Pricing with Estimation Risk

In this section we assume that the model parameters on the volatility factor v(t) are

unknown. As documented in Trolle and Schwartz (2009), Hughen (2009) for the commod-

ity market, Collin-Dufresne and Goldstein (2002), Li and Zhao (2006) for the fixed income

market, the unspanned volatility feature of v(t)makes it very difficult to estimate the market

price of risk and model parameters. Therefore, we follow the robust approach with modi-
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fication, developed in Boyle, Feng, Tian and Wang (2008), for the pricing of a commodity

contingent claim.

To interpret the estimation risk of the model parameters, we consider a class of model

perturbations, defined by

dS(t)
S(t)

= µs(t)dt +σs
√

vε(t)dW1(t)P,

dy(t,T ) = µy(t,T )dt +σy(t,T )
√

vε(t)dW2(t)P,

dvε(t) = (γ −κvε(t))dt +σv(t,T )ε
√

vε(t)dW3(t)P, (1.17)

where ε moves between the lowest one εlow and the highest one εhigh. Each value of ε

determines a specific volatility model in this class.

The above class of model perturbations describes the possible model parameter uncer-

tainty, index by the parameter ε . In one extreme case ε = 1, the model reduces to the

stochastic volatility model discussed in the last section. In another extreme case ε = 0,

the volatility v(t) becomes deterministic. In general ε ∈ (0,1), and the range (εlow,εhigh)

depends on available information the agent access. The more information about the un-

spanned volatility v(t) and the more accuracy the model specification is, the smaller the

range (εlow,εhigh) of ε .

We discuss the robust approach for this stochastic volatility model via an expectation

method. The main insight of the robust approach is as follows. For each possible market

price of risk specification, characterized by {α ≡ (λ1,λ2,λ3)∈A }, there exists a sequence

of arbitrage-free stochastic volatility model endowed with a risk-neutral probability mea-

sure, indexed by ε . Hence, there exists an arbitrage-free priceC(p;α ,ε) for a given deriva-
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tive p. By contrast to the benchmark approach of the last section, the parameter ε denotes

the parameter uncertainty. If we choose the deterministic volatility model as a benchmark

model in the expectation method, the difference between the arbitrage-free priceC(p;α,ε)

and C(p;α,0) illustrates the effect of parameter uncertainty on the option prices. The ro-

bust SDF is the one to minimize the differences |C(p;α ,ε)−C(p;α,0)| when ε varies to

some extents.

We now take the deterministic volatility model as a benchmark model (in which volatil-

ity is spanned by the future prices), and derive in details the robust approach for a call option

on future contract. In the deterministic volatility model,9

dv(t) = (γ −κv(t)−λ3σvv(t))dt, (1.18)

Let γ = κ1,κ +λ3σv = κ2, so v(t) satisfies (to highlight the dependence to the parameters

κ1,κ2)

dv(t;κ1,κ2) = (κ1 −κ2v(t;κ1,κ2))dt,v(0;κ1,κ2) = σ2
0 (1.19)

where κ1 > 0,κ2 > 0. It is well known that the path integral of the instantaneous variance,

V (κ1,κ2,0) =
∫ T ′

0
v(t;κ1,κ2)dt, (1.20)

plays a key role in pricing the option in the model. As our purpose is to compare the bench-

mark approach and the robust approach, to simplify some technical results and notations,
9See discussions in Boyle, Feng, Tian andWang (2008) as to justification of this kind of benchmark model.
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we further assume that ρ13 = 0,ρ23 = 0.10 The derivative under considered is a call option

with maturity T ′ on a T -year future contract, strike price is K.

By Black's formula (Black (1976)), the price of this call option in the deterministic

volatility model is

C(
√

V (κ1,κ2,0)) = e−rT ′
[FN(d1)−KN(d2)], (1.21)

where

d1 =
ln F

K + 1
2BV (κ1,κ2,0)√

B
√

V (κ1,κ2,0)
,

d2 =
ln F

K − 1
2BV (κ1,κ2,0)√

B
√

V (κ1,κ2,0)
, (1.22)

and

B = σ2
s +

(∫ T

0
σy(t,u)du

)2

+2ρ12σs

∫ T

0
σy(t,u)du. (1.23)

By the same method, we can price the call option in a sequence of perturbation model,

for each possible market price of risk. If fact, given (λ1,λ2,λ3) ∈ A , in the perturbation

model,

dS(t)
S(t)

= δ (t)dt +σs
√

vε(t)dW1(t)Q,

dy(t,T ) = (µy(t,T )−λ2v(t))dt +σy(t,T )
√

vε(t)dW2(t)Q,

dvε(t) = (κ1 −κ2vε(t))dt +σv(t,T )ε
√

vε(t)dW3(t)Q. (1.24)
10The discussion on the general situation is also possible, see Romano and Touzi (1997).
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Therefore, the call option's arbitrage price in this perturbation model under Q is written

as Eκ1,κ2

[
C(
√

V (κ1,κ2,ε))|{vε(t)}
]
, where

V (κ1,κ2,ε) =
∫ T ′

0
v(t;κ1,κ2,ε)dt. (1.25)

Eκ1,κ2[·|{vε(t)}] represents the conditional (risk-neutral) expectation under a specific choice

of the market price of risk parameters {λ1,λ2,λ3} given the path {vε(t)}. The difference

between prices of European call option in the two models is

Di f f ≡ Eκ1,κ2[C(
√

V (κ1,κ2,ε))|{vε(t)}]−C(
√

V (κ1,κ2,0)) (1.26)

By using the second-order Taylor expansion, the difference is written as

Di f f = Eκ1,κ2
[
C′
(√

V (κ1,κ2,0)
)(√

V (κ1,κ2,ε)−
√

V (κ1,κ2,0)
)
|{vε(t)}

]
+

1
2
Eκ1,κ2

[
C′′
(√

V (κ1,κ2,0)
)(√

V (κ1,κ2,ε)−
√

V (κ1,κ2,0)
)2

|{vε(t)}
]

+higher order terms

whereC′ andC′′ denote the first and second-order derivatives of functionC(V ). Naturally,

we use the the rate of convergence at which the call option price in the model with perturba-

tions convergence to that in the benchmark model when εσv → 0 to capture the parameter

uncertainty concern on ε . Let

F(κ1,κ2) = lim
εσv↓0

Eκ1,κ2

[
C
(√

V (κ1,κ2,ε)
)
|{vε(t)}

]
−C

(√
V (κ1,κ2,0)

)
ε2σ2

v
. (1.27)
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The rate of convergence is given by

F(κ1,κ2) =

∣∣∣∣∣∣
C

′′
(√

V (κ1,κ2,0)
)

8V (κ1,κ2,0)
−

C
′
(√

V (κ1,κ2,0)
)

8(V (κ1,κ2,0))3/2

∣∣∣∣∣∣
×
∫ T ′

0

1
(κ2)2

[
1− eκ2(s−T ′)

]2
[(

σ2
0 −

κ1

κ2

)
e−k2s +

κ1

κ2

]
ds.

See Proof.

The function F(κ1,κ2) captures the convergent speed at which the option price from the

model with perturbations converges to the option price from the benchmark model when

ε changes. This function depends on the model parameters κ1 and κ2. In our model, κ1

is known, while κ2 is a function of the volatility risk premium λ3 which is not unique in

an incomplete market. Note that only the variance risk of premium is involved in those

parameters, the robust approach is reduced to be a one-dimensional optimization problem

for λ3. The robust approach is try to find the optimal volatility risk premium λ ∗
3 which

satisfies:

∂F(κ1,κ2)

∂λ3

∣∣∣λ ∗
3
= 0

By intuition, the optimal volatility risk premium λ ∗
3 is the position when the convergent

speed function F(κ1,κ2) most robust with respect to the volatility risk premium. If λ ∗
3

changes a little, F(κ1,κ2) will change smallest accordantly. That means the difference

between the option price and the benchmark price is most robust with respect to the volatility

risk premium.

So far, we have illustrated two approaches to choose the benchmark SDF and robust S-
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DF when the parameter uncertainty is absent or in the presence of the parameter uncertainty

concern, respectively. Therefore, we are able to estimate the parameter uncertainty premi-

um by distracting the risk premium without parameter uncertainty from the risk premium

with parameter uncertainty consideration. Furthermore, the implied volatilities can be cal-

culated using the two optimal SDFs. Hence, we can also estimate the parameter uncertainty

component that contribute to the implied volatility.

We next move to the empirical studies of our approaches.

1.4 Estimation and Empirical Results

In this section we first illustrate the data and the calibration. Then we present our em-

pirical results on the uncertainty premium by comparing the benchmark approach and the

robust approach. At last, we estimate the uncertainty component in the implied volatility.

A. The Sample

We estimate the model specification based on a data set of sweet crude oil future con-

tracts on the NYMEX. The raw data is collected fromBloomberg, from February 13rd, 2006

to July 9th, 2010, on settlement prices, open interests, and daily volume for all available

futures. The options data are used to compare the market implied volatility with the implied

volatility derived from the model. The time to expiration of futures contract ranges from

one month to one year. To minimize the effect of liquidity risk and interest rate on estima-

tion, we use futures contract with one month, two months and three months to expiration to

calibrate the parameters in the model.

The historical volatilities of the front month futures price in the sample are displayed in

Figure 1.The historical volatilities range from 16.7% to 120%. As observed, the historical

volatilities during the 2008 oil crisis time is the most volatile time period.
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B. Parameter Calibration

In calibration we follow the methodology presented in Trolle and Schwartz (2009). We

first express futures price as a linear combination of several states, then we use Kalman filter

in conjunction with EM algorithm to estimate all model parameters. While EM algorithm is

robust to the initial value of the data, this method, however, is sensitive to the initial values

of all parameters. Therefore, we choose different initial values of parameters to obtain

stable model parameters to minimize the calibration risk.

Several assumptions aremade for calibration as in Trolle and Schwartz (2009). We spec-

ify σy(t,T ) as time-homogeneous with respect to time to maturity T − t, and σy(t,T ) =

αe−β (T−t). Intuitively, the long-term volatility of carrying costs should be less than the

short-term volatility. Moreover, the initial forward cost of the carrying curve is flat. There-

fore, y(0, t) = ζ and lnF(0,T )− lnF(0, t) = ζ (T − t).

Under the specification of σy(t,T ), the futures price can be expressed as follows (See

Proof.):

lnF(t,T ) = ζ (T − t)+ s(t)+
α
β

(
1− e−β (T−t)

)
x(t)+

α
2β

(
1− e−2β (T−t)

)
ϕ(t) (1.28)

where the state variables {x(t),ϕ(t),s(t),v(t)} satisfy



dx(t) =
[
−βx(t)− (α

β +ρ12σs −λ2)v(t)
]

dt +
√

v(t)dW2(t)Q

dϕ(t) =
[
−2βϕ(t)+ α

β v(t)
]

dt

ds(t) =
[
ζ +αx(t)+αϕ(t)− 1

2σ2
s v(t)2]dt +σsv(t)dW1(t)Q

dv(t) = (γ − kv(t)−λ3σvv(t))dt +σv
√

v(t)dW3(t)Q,

(1.29)
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The estimations of all the parameters are reported in Table 1. Compared with the esti-

mations in SV1 model of Trolle and Schwartz (2009), our estimations are similar to theirs.

Specially ρ12 is significant negative, which means that the crude oil price is inversely cor-

related with the carrying costs. When carrying costs increase, investors do not want to keep

the crude oil, the demand will decrease.

C. Empirical Findings

We report two types of numerical results in this section. The first type is about the risk

premiums. Firstly, We estimate the volatility risk premium by using a benchmark approach

when there is no parameter uncertainty. We also estimate the robust volatility risk premium

by a robust approach when parameter uncertainty is pervasive. At last, we estimate the

uncertainty risk premium in the unspanned stochastic volatility model.

The second type of numerical results is on the implied volatility. As the implied volatil-

ities are calculated via both approaches, we estimate the uncertainty component in the im-

plied volatility, termed as ``uncertainty volatility component". In what follows we first

summarize the main empirical findings and next present further details for each finding in

this section.

(1) Parameter uncertainty contributes to an uncertainty risk premium (URP), and the un-

certainty risk premium is negative in many situations.

(2) Parameter uncertainty generates a positive uncertainty volatility component (UVC)

in the implied volatility.

(3) The effect of parameter uncertainty on the implied volatility is more significant when

the initial volatility is lower.
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D. Uncertainty Risk Premiums

Table 1.2 reports the volatility risk premium via the benchmark approach and the robust

approach for futures option with different strike price K, different initial volatility v0 and

different set of time to maturity of futures option and futures contract. The option parame-

ters are F = 50 and the option moneyness K
F is chosen between 80% and 120%. The range

of the volatility risk premium is [−2,2] which is large enough for us to get an global opti-

mal estimation of the volatility risk premium. As Trolle and Schwartz (2009) consider two

initial values v0 = 1 and v0 = 5, to be consistent with the parameters in Trolle and Schwartz

(2009), we investigate v0 = 1,2,5 in both benchmark and robust approach. 11 We choose

relative long time to maturity of futures option and futures contract with several considera-

tions. Firstly, when the time to maturity of futures option and futures contract are long, we

are worried about the parameter uncertainty of the model. We all know that futures option

and futures contract with short time to maturity are liquid in the market. Because of the

illiquid trading of futures option and futures contract with long time to maturity, we do not

have enough information to precisely estimate those long-term contracts. Compared with

those contracts with short time to maturity, parameter uncertainty is a important issue when

we price those long-term contract. Secondly, from proposition 2, the robust approach only

can be used when the volatility of v(t), σvε is very small. Intuitively, long-term volatility

of v(t) should be smaller than short-term volatility of v(t). Using the robust approach to

choose an optimal volatility risk premium for a long-term contract is more comfortable.

12 To get a comprehensive understanding of the potential effect of parameter uncertain-
11Other initial values of v0 and contract parameters (T ′,T ) are implemented while not reported here. Those

numerical results are available from authors and they all support the above mentioned empirical findings.
12Although interest rate may have an unnegligiable impact on the long-term contracts, in this paper, we

only focus on the effect of parameter uncertainty on option price. A consideration of a stochastic interest rate
model maybe an extension of this model.
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ty on pricing derivatives, we consider five future options: (T ′,T ) = (1,2),(1.5,2), (1,4),

(1.5,4) and (2,4)where T is the time to maturity of the future contract and T ′ is the option's

maturity.

In Table 1.2, optimal volatility risk premiums via the benchmark approach with different

moneyness, different expirations and different initial volatility are reported in the last three

columns. We denote the optimal volatility risk premiums by the benchmark approach as the

benchmark volatility risk premium. All those benchmark volatility premiums are positive.

We also can find that the benchmark volatility risk premium decreases as the initial volatility

vo increases.13 We define the optimal volatility risk premium via the robust approach as the

robust volatility risk premiumwhich are displayed in the left part of table 2. All those robust

volatility risk premiums are negative. The robust volatility risk premium increases in value

but decreases in absolute value as the initial volatility increases.

Recent literatures have documented that the volatility risk premiums are negative from

both the equity market as well as the commodity market. By checking the performance of

delta-hedged portfolios in equity market, Bakshi and Kapadia (2003) find a negative sign

of volatility risk premium. Doran and Ronn (2008) find that the negative volatility risk

premium can explain the disparity between risk-neutral and statistical volatility in both eq-

uity and commodity-energy markets. Carr and Wu (2009) employ a model-free method by

directly checking the difference between the realized variance and the synthetic variance

swap rate, and find a negative volatility risk premium in equity market. Finally, Christof-

fersen, Heston and Jacobs (2010) derive a theoretical result that the volatility risk premium

is negative when a class of market price of volatility risk is considered. However, there is no

clear explanation on the negative volatility risk in those empirical and theoretical findings.
13((T ′,T ) = (2,4) is a special case, the benchmark volatility risk premiums hit the boundary.
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In our paper, the benchmark volatility risk premium is positive while the robust volatility

risk premium is negative. The difference between the benchmark and robust volatility risk

premium is the effect of parameter uncertainty on the chosen of volatility risk premium. It

is highly possible that the negative sign of volatility risk premium is caused by parameter

uncertainty or is at least partly caused by parameter uncertainty. The intuition is straight

forward. Because of the extra risk of parameter uncertainty in pricing a security, we need to

compensate the extra risk. When the volatility premium decreases, the stochastic volatility

will not converge to the mean very fast. Even when the volatility risk premium is negative

enough in magnitude, the drift of the stochastic volatility will increase. The option price

will increases as the volatility increases. That means we need to pay extra money to buy an

option contract which has already taken account of the model uncertainty.

By comparing the robust volatility risk premium parameter λ3 from the benchmark ap-

proach with that from the robust approach, we also see that the robust volatility risk premi-

um parameter λ3 from robust approach is smaller than that from the benchmark approach.

Therefore, the uncertainty risk premium (URP), which is defined as the difference between

the volatility risk premiums in both approaches, is also negative. Moreover, the magnitude

of the uncertainty risk premium relative to the stochastic volatility risk premium is fairly

large. Because the benchmark volatility risk premium is decreasing and the robust volatility

risk premium is increasing as the initial volatility increases, the URP decreases as the initial

volatility increases.

E. Uncertainty Volatility Component

After obtaining the optimal market risk premiums from the benchmark approach and

the robust approach, we now compute the implied volatilities of the European call option
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with different strike price using these market risk premiums. As the parameters {λ1,λ2} are

not involved in the future option formula (see equation (1.23)), we make use of the market

volatility risk premium parameter λ3 estimated in Table 1.2. Then we compare the implied

volatilities from these two approaches to illustrate the parameter uncertainty component in

the implied volatility.

We report the implied volatilities from both approaches and the difference in both ab-

solute and relative aspects. Figure 1.3, Panel A-B-C display the implied volatilities from

the benchmark approach and the robust approach when T = 2,T ′ = 1, and different ini-

tial volatility value v0. The solid line represents the implied volatilities from the robust

approach, while the dash line represents the implied volatilities from the benchmark ap-

proach. Similarly, in Figure 1.4 to Figure 1.7, Panel A-B-C displays the implied volatilities

when (T ′,T ) = (1.5,2),(1,4),(1.5,4) and (2,4) when v0 = 1,2and5 respectively.

As demonstrated, there are some interesting relationships between the implied volatili-

ties of both approaches. Therefore, the uncertainty component in the implied volatility can

be estimated and investigated numerically. First, the implied volatilities from the robust

approach are higher than those from the benchmark approach. Therefore, the uncertain-

ty volatility component is positive in the implied volatility. This empirical result is intu-

itive appealing. As the agent faces the parameter uncertainty, a higher price is required to

compensate the uncertainty concern. Therefore, the implied volatility is increased at the

presence of parameter uncertainty.

Second, the implied volatilities depend on the initial volatility v0. We find that the higher
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the initial volatility v0 is, the higher the expected implied volatility will be. In fact,

E[vt ] = (v0 −
k1

k2
)e−k2t +

k1

k2
, (1.30)

thus the expected volatility E[vt ] is positively proportional to the initial volatility v0.

We now see the relative difference of implied volatility and how much the uncertainty

contribute in proportion to the implied volatility. We use a proportion to describe how large

the proportion of implied volatilities comes from parameter uncertainty. The proportion

of the uncertainty premium to the implied volatility of the benchmark approach, is defined

as (IVR − IV B)/IV B,whereIVR is the implied volatility from the robust approach and IV R

is the implied volatility from the benchmark approach. These proportions are shown in

Figure 1.3 - Figure 1.7, Panel D-E-F, for (T ′,T ) = (1,2),(1.5,2),(1,4),(1.5,4) and (2,4),

respectively.

As displayed in Figure 1.3-1.7, increase implied volatility is associated with parameter

uncertainty. Actually, the percentage of the uncertainty component moves between 6% and

70%. These uncertainty components are fairly large that the effect of model uncertainty in

pricing derivatives could be substantial. Consequently, the option would be undervalued

significantly without incorporating the uncertainty component. Carr and Wu (2009) docu-

ment empirically that the realized volatilities are lower than the implied volatilities from the

market data and illustrate this phenomenon by the demand of hedging downside risk from

the market. Given the significant effect of parameter uncertainty on the implied volatilities

in the commodity market as we have shown above, the parameter uncertainty might explain

the difference between the realized volatility and the implied volatility from the real market

data.
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Finally, the effect of the model uncertainty is more significant when the initial volatility

lower. Indeed, when the initial volatility v0 = 1, in Figure 1.3-1.7, the proportion reaches

its highest value control for T and T ′. Intuitively, when the initial volatility is low, the

expected volatility of underlying asset should also be low. Because option price is positive

related with the volatility of underlying asset, the option price is relative lower when the

initial volatility is lower. Control for the absolute effect of parameter uncertainty on option

price, the relative effect of parameter uncertainty will be maximized as the option price is

lowest.

1.5 Conclusion

We have examined a robust approach in a general class of stochastic volatility models

with model (parameters) uncertainty in a commodity market. We document that the con-

cern on the model parameters estimation risk adds significant component on the commodity

contingent claim and the implied volatility. We demonstrate the existence of a negative un-

certainty risk premium and this negative model uncertainty premium contributes a positive

component in the implied volatility. In other words, the implied volatility is large when the

parameter uncertainty is strong.

The robust approach developed in this paper can be used in other financial markets, such

as the fixed income market and the equity market. The presented methodology extends the

one developed in Boyle, Feng, Tian and Wang (2008) in which a robust approach is first

proposed for a class of stochastic volatility model. When a large price movements with

small probability event is considered, the robust approach based on large deviation principle

in Boyle, Feng, Tian and Wang (2008), can be used to study the robust risk management

strategy for commodity contingent claim. We leave this topic for further study.



29

Proof of Proposition 1.4.

This problem is reduced to a sequence of optimization problem in the mean-variance

framework as follows:

min
EP[zα |F ]=c,EP[mα zα |F ]=0

Var[(p+ zα)|F ]

where c is one number. We omit the script F in the following if no confusions. Let

L =
1
2 ∑P(ω)(p(ω)+ zα(ω))2 −λ

(
∑P(ω)zα(ω)− c

)
− γ ∑Qα(ω)zα(ω).

Solving the first-order equationswe obtain that λ +γ =EP[p]+c,λ +γ ∑ Qα (ω)2

P(ω) =EP[mα p],

and

zα(ω) = λ + γ
Qα(ω)

P(ω)
− p(ω). (1.31)

Solving λ ,γ , we obtain

zα(c,ω) = EP[p]− p(ω)+ c

+{EP[mα p]−EP[p]− c}
(

Qα(ω)

P(ω)
−1
)(

EP

[(
dQα

dP

)2
]
−1

)−1

.

Then, the approximate derivative under the SDF mα is

zα(c)+ p = EP[p]+ c+
EP[mα p]−EP[p]− c

S2

(
dQα

dP
−1
)
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where S2 = EP[(
dQα

dP )2]−1. Moreover, it is straightforward to see that

(EP[p+ zα ]−EP[mα(p+ zα)])
2

Var[p+ zα ]
= S2. (1.32)

The proof is finished.

Proof of Proposition 1.3.

To simplify notation, we will suppress the arguments, κ1 and κ2, of v(t;κ1,κ2,ε),

v(t,ε) = v(t,0)+σvε
∫ t

0
eκ2(s−t)

√
v(s,ε)dW3(s)Q (1.33)

By stochastic Fubini's theorem, we have

V (ε) =V (0)+ εσvy, (1.34)

where

y =
∫ T ′

0

1
κ2

[1− eκ2(s−T ′)]
√

v(s,ε)dW3(s)Q (1.35)

let h(V ) =C(
√

V ), then

h′(V ) =C′(
√

V )
1

2
√

V
, (1.36)

h′′(V ) =
C′′(

√
V )

4V
−C′(

√
V )

4V
3
2

, (1.37)
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and

h′′′(V ) =C′′′(
√

V )
1

8V
3
2
−C(

√
V )′′(

√
V )

3
8V 2 +C(

√
V )′

3

8V
5
2
. (1.38)

Moreover, we have

C′(
√

V ) =

√
BF√
2π

e−
d2

1
2 ,

C′′(
√

V ) =
1√
2π

Fe−
d2

1
2

[
(ln F

K )
2

√
BV

3
2
− 1

4
B

3
2
√

V

]
, (1.39)

C′′′(
√

V ) =
1√
2π

Fe−
d2

1
2 [

(
ln F

K

)4

B
3
2V 3

− 1
2

√
B

V

(
ln

F
K

)2

+
1

16
B

5
2V −

3
(
ln F

K

)2

√
BV 2

− 1
4

B
3
2 ]. (1.40)

When ln F
K ̸= 014, it is readily seen that

lim
σ→0

C(k)(σ)

σn = lim
σ→∞

C(k)(σ)

σn = 0, (1.41)

for k = 1,2,3 and n ≥ 1. Hence

lim
V→0

h′′′(V ) = lim
σ→∞

h′′′(V ) = 0. (1.42)

Since the function h(V ) ∈C∞((0,∞)), there exists a positive real number K such that

|h′′′(V )| ≤ K, (1.43)
14When ln F

K = 0, the proof is similar to the argument in Boyle, Feng, Tian and Wang (2008).
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for all V > 0, By Taylor expansion, we have

h(V (ε)) = h(V (0))+h′(V (0))(V (ε)−V (0))+
1
2

h′′(V (0))(V (ε)−V (0))2

+
1
6

h′′′(θε)(V (ε)−V (0))3 (1.44)

where |θε −V (0)| ≤ |V (ε)−V (0)|. Taking expectation yields

E[h(V (ε))] = h(V (0))+h′(V (0))E[V (ε)−V (0)]

+
1
2

h′′(V (0))E[(V (ε)−V (0))2]

+
1
6
E[h′′′(θε)(V (ε)−V (0))3]. (1.45)

By Cauchy-Schwartz inequality,

E[h′′′(θε)(V (ε)−V (0))3]2 ≤ E[h′′′(θε)
2]E[(V (ε)−V (0))6]. (1.46)

As h′′′(V ) is bounded, we obtain

E[h′′′(θε)(V (ε)−V (0))3]≤ K
√
E[(V (ε)−V (0))6] (1.47)

It is easy to show that

E[V (ε)−V (0)] = 0,

E[(V (ε)−V (0))2] = (εσv)
2E[y2],

E[(V (ε)−V (0))6] = o((εσv)
6), (1.48)
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then

E
[
C
(√

V (ε)
)∣∣∣F] = C

(√
V (0)

)
+(εσv)

2

C
′′
(√

V (0)
)

8V (0)
−

C
′
(√

V (0)
)

8(V (0))3/2

E[y2]

+o((εσ)2).

Finally,

y =
∫ T ′

0

1
κ2

[1− eκ2(s−T ′)]
√

v(s,ε)dW3(s)Q (1.49)

then

E[y2] =
∫ T ′

0

1
(κ2)2

[
1− eκ2(s−T ′)

]2
[
(σ2

0 −
κ1

κ2
)e−k2s +

k1

k2

]
ds (1.50)

Then we derive the expression of F(κ1,κ2) as stated in the Proposition. �

Derivation of Equations (1.9)-(1.11).

Let Y (t,T ) =
∫ T

t y(t,u)du, then by Ito's lemma,

dY (t,T ) =

[
−δ (t)+

∫ T

t
(µy(t,u)−λ2σy(t)v(t))du

]
dt

+
√

v(t)
∫ T

t
σy(t,u)dudW2(t)Q. (1.51)

The future price is F(t,T ) = S(t)eY (t,T ). By Ito's lemma again,

dF(t,T )
F(t,T )

=
dS(t)
S(t)

+dY (t,T )+
1
2
[dY (t,T ),dY (t,T )]t +

[dS(t),dY (t,T )]t
S(t)

. (1.52)
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By using the spot price process and the forward carry cost process, we obtain

dF(t,T )
F(t,T )

=
∫ T

t
[µy(t,u)−λ2σy(t,u)v(t)]dudt

+v(t)

[
1
2

(∫ T

t
σy(t,u)du

)2

+ρ12σs

∫ T

t
σy(t,u)du

]
dt

+σs
√

v(t)dW1(t)Q +
√

v(t)
∫ T

t
σy(t,u)dudW2(t)Q. (1.53)

Setting the drift term equal to zero under the risk neutral measure Qλ1,λ2,λ3 , (1.9) is proved.

Moreover, by differentiating with respect to T in the drift term of the last equation, we get

µy(t,T ) =−v(t)σy(t,T )[ρ12σs +
∫ T

t
σy(t,T )du−λ2].

For the continence yield, we note that

dy(t,T ) = [µy(t,T )−λ2σy(t,T )]v(t)dt +σy(t,T )
√

v(t)dW2(t)Q. (1.54)

Take the integration from 0 to t on both side, we get

∫ t

0
dy(u,T ) =

∫ t

0
(µy(u,T )−λ2σy(u,T )v(u)du+

∫ t

0
σy(u,T )

√
v(u)dW2(u)Q. (1.55)

Therefore the equation (1.11) is proved.

Derivation of Equations (1.12)-(1.16).
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Write

E[Z2
T ] = E

[
exp

(
−2

3

∑
i

∫ T

0
λi
√

v(s)dWi(s)−
∫ T

0

3

∑
i

3

∑
j

ρi jλiλ jv(s)ds

)]

= EQ∗

[
exp

(∫ T

0

3

∑
i

3

∑
j

ρi jλiλ jv(s)ds

)]
.

where Q∗ is the measure under which Wi(t)Q∗
= Wi(t)P +

∫ t
0 2λi

√
v(s)ds is the Brownian

motion. Under Q∗ measure, dv(s) = (κ1 − (κ2 +2λ3)v(s))ds+σv
√

v(s)dW ∗
3 (s), Let κ1 =

γ ,κ∗
2 = κ2 +2λ3. By the Feynman-Kac theorem,E

[
Z2

t
]
satisfies the following PDE given

that v(0) = x,

u(t,x)t +(κ1 −κ∗
2 x)u(t,x)x +

1
2

σ2
v xu(t,x)xx +λxu(t,x) = 0,u(0,x) = 1. (1.56)

It is standard from affine model (see Duffie, Singleton and Pan (2000)) that the solution

is in the form of u(t,x) = eA(t)−xB(t), and A(t),B(t) are determined by the following two

ordinary differential equations:

∂A(t)
∂ t

−B(t)κ1 = 0,
∂B(t)

∂ t
= B(t)κ∗

2 +
1
2

σ2
v B(t)2 +λ . (1.57)

In our numerical examples 2λσ2
v > κ∗2

2 . It is straightforward to derive A(t) and B(t) as

expressed in the text under the condition that 2λσ2
v > κ∗2

2 .

Derivation of Equations (1.28)-(1.29)
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With the specification σy(t,T ) = αe−β (T−t) and using the equation (1.11), we have

y(t,T ) = y(0,T )+
∫ t

0
v(u)[

α2

β
e−2β (T−u)+(λ2 −

α
β
−ρ12σs)

αe−β (T−u)−λ2e−β (T−u)]du+
∫ t

0
αe−β (T−u)

√
v(u)dW2(u)Q.

Alternatively,

y(t,T ) = y(0,T )+αe−β (T−t)x(t)+αe−2β (T−t)ϕ(t) (1.58)

where the state variables {x(t),ϕ(t)} satisfy

dx(t) =
[
−κx(t)− (

α
β
+ρ12σs −λ2)v(t)

]
dt +

√
v(t)dW2(t)Q (1.59)

dϕ(t) =
[
−2βϕ(t)+

α
β

v(t)
]

dt (1.60)

subject to x(0) = ϕ(0) = 0,

Moreover, denote s(t) = lnS(t), we have

ds(t) = [y(0, t)+αx(t)+αϕ(t)− 1
2

σ2
s v(t)2]dt +σsv(t)dW1(t)Q (1.61)
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Moreover,

lnF(t,T ) = lnF(0,T )− lnF(0, t)+ s(t)+
α
β
(1− e−β (T−t)x(t)

+
α
2β

(1− e−2β (T−t))ϕ(t).

Wenow assume that the initial forward cost of carry curve is flat, y(0, t)= ζ and lnF(0,T )−

lnF(0, t) = ζ (T − t). Then we have

lnF(t,T ) = ζ (T − t)+ s(t)+
α
β
(1− e−β (T−t))x(t)+

α
2β

(1− e−2β (T−t))ϕ(t). (1.62)

The proof is finished.
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Table 1.1: Parameters calibration

This table reports the estimated model parameters in the model. σy(t,T ) = αe−β (T−t). The
estimation procedure is similar to Trolle and Schwartz (2009).

α 0.6388
σs 0.5367
ρ12 -0.4712
β 0.7704
ζ -0.0036
σv 2.8931
κ 1.1376
γ 0.5401
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Figure 1.1: Historical future price volatility
This figure displays the historical future price volatility by using the historical front month futures
contract data from Feb 2006 to July 2010. We use the front month futures contract in the database
to calculate historical volatilities which actually are 30-day historical volatilities.
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Figure 1.2: Region of risk premiums
This figure displays the region of {λ1,λ2} which is bounded by λ 2

1 + 2ρ12λ1λ2 + λ 2
2 ≤ 4. ρ12 =

−0.4712 which is estimated from Table 1.1. The range of λ3 is −2 ≤ λ3 ≤ 2.
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Table 1.2: Volatility and uncertainty risk premium

This table reports the optimal volatility risk premiums {λ3} chosen by the robust approach and
the benchmark approach for future options with different strikes and different expiration of futures
and future options. In this table (T,T ′) = (2,1),(2,1.5),(4,1)(4,1.5)(4,2), respectively, and the
moneyness, defined as K

F , runs from 0.8 to 1.2. The initial value v0 = 1,2,5, including the situations
studied in Trolle and Schwartz (2009). URP represents the uncertainty risk premium. URP are
positive numbers as shown in this table.

(T,T ′) = (2,1) Benchmark
K/F v0 = 1 URP v0 = 2 URP v0 = 5 URP v0 = 1 v0 = 2 v0 = 5
0.80 -1.97 2.73 -1.63 2.04 -1.2 1.38 0.76 0.41 0.18
0.85 -1.97 2.78 -1.62 2.04 -1.2 1.38 0.81 0.42 0.18
0.90 -1.96 2.80 -1.62 2.05 -1.2 1.39 0.84 0.43 0.19
0.95 -1.96 2.82 -1.62 2.05 -1.2 1.39 0.86 0.43 0.19
1.00 -1.96 2.83 -1.62 2.06 -1.2 1.39 0.87 0.44 0.19
1.05 -1.96 2.83 -1.62 2.06 -1.2 1.39 0.86 0.44 0.19
1.10 -1.96 2.81 -1.62 2.05 -1.2 1.39 0.85 0.43 0.19
1.15 -1.96 2.79 -1.62 2.05 -1.2 1.39 0.83 0.43 0.19
1.20 -1.97 2.77 -1.62 2.04 -1.2 1.38 0.80 0.42 0.18

(T,T ′) = (2,1.5) Benchmark
K/F v0 = 1 URP v0 = 2 URP v0 = 5 URP v0 = 1 v0 = 2 v0 = 5
0.80 -1.28 3.28 -1.08 2.95 -0.8 1.95 2 1.87 1.15
0.85 -1.28 3.28 -1.08 2.98 -0.8 1.95 2 1.90 1.15
0.90 -1.28 3.28 -1.08 3 -0.8 1.95 2 1.92 1.15
0.95 -1.28 3.28 -1.08 3.01 -0.8 1.95 2 1.93 1.15
1.00 -1.28 3.28 -1.08 3.01 -0.8 1.95 2 1.93 1.15
1.05 -1.28 3.28 -1.08 3.01 -0.8 1.95 2 1.93 1.15
1.10 -1.28 3.28 -1.08 3 -0.8 1.95 2 1.92 1.15
1.15 -1.28 3.28 -1.08 2.99 -0.8 1.95 2 1.91 1.15
1.20 -1.28 3.28 -1.08 2.97 -0.8 1.95 2 1.89 1.15

(T,T ′) = (4,1) Benchmark
K/F v0 = 1 URP v0 = 2 URP v0 = 5 URP v0 = 1 v0 = 2 v0 = 5
0.80 -1.79 2.44 -1.49 1.88 -1.06 1.25 0.65 0.39 0.19
0.85 -1.79 2.49 -1.49 1.89 -1.06 1.25 0.70 0.40 0.19
0.90 -1.79 2.52 -1.49 1.90 -1.06 1.25 0.73 0.41 0.19
0.95 -1.79 2.54 -1.49 1.91 -1.06 1.25 0.75 0.42 0.19
1.00 -1.79 2.55 -1.49 1.91 -1.06 1.25 0.76 0.42 0.19
1.05 -1.79 2.55 -1.49 1.91 -1.06 1.25 0.76 0.42 0.19
1.10 -1.79 2.53 -1.49 1.90 -1.06 1.25 0.74 0.41 0.19
1.15 -1.79 2.51 -1.49 1.90 -1.06 1.25 0.72 0.41 0.19
1.20 -1.79 2.48 -1.49 1.89 -1.06 1.25 0.69 0.40 0.19

(T,T ′) = (4,1.5) Benchmark
K/F v0 = 1 URP v0 = 2 URP v0 = 5 URP v0 = 1 v0 = 2 v0 = 5
0.80 -1.19 3.19 -0.99 2.60 -0.7 1.25 2 1.61 0.19
0.85 -1.19 3.19 -0.99 2.63 -0.7 1.80 2 1.64 1.10
0.90 -1.19 3.19 -0.99 2.65 -0.7 1.80 2 1.66 1.10
0.95 -1.19 3.19 -0.99 2.66 -0.7 1.81 2 1.67 1.11
1.00 -1.19 3.19 -0.99 2.66 -0.7 1.81 2 1.67 1.11
1.05 -1.19 3.19 -0.99 2.66 -0.7 1.81 2 1.67 1.11
1.10 -1.19 3.19 -0.99 2.65 -0.7 1.81 2 1.66 1.11
1.15 -1.19 3.19 -0.99 2.64 -0.7 1.80 2 1.65 1.10
1.20 -1.19 3.19 -0.99 2.62 -0.7 1.80 2 1.63 1.10

(T,T ′) = (4,2) Benchmark
K/F v0 = 1 URP v0 = 2 URP v0 = 5 URP v0 = 1 v0 = 2 v0 = 5

[0.8,1.20] -0.89 2.89 -0.76 2.76 -0.55 2.55 2 2 2
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Figure 1.3: Implied volatilities via robust and benchmark approach
The graph displays the implied volatilities from the robust approach and benchmark approach, with
different initial volatility v0. The solid line represents the implied volatilities from the robust ap-
proach while the dash line describes the implied volatilities from the benchmark approach. The
input parameters are T = 2, T ′ = 1 and F = 50. The option is computed where the variance is
expressed via (1.25). Panel A-B-C display the implied volatilities for v0 = 1,v0 = 2,v0 = 5, re-
spectively. Panel D-E-F display the percentage, defined as (IV R − IV B)/IV B, of the uncertainty
component with respect to the implied volatility from the benchmark approach. IV R is the implied
volatility from the robust approach and IV R is the implied volatility from the benchmark approach.
The initial volatility v0 = 1,2 and v0 = 5 in Panel D-E-F, respectively.
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Figure 1.4: Implied volatilities via robust and benchmark approach
The graph displays the implied volatilities from the robust approach and benchmark approach, with
different initial volatility v0. The solid line represents the implied volatilities from the robust ap-
proach while the dash line describes the implied volatilities from the benchmark approach. The
input parameters are T = 2, T ′ = 1.5 and F = 50. The option is computed where the variance is
expressed via (1.25). Panel A-B-C display the implied volatilities for v0 = 1,v0 = 2,v0 = 5, re-
spectively. Panel D-E-F display the percentage, defined as (IV R − IV B)/IV B, of the uncertainty
component with respect to the implied volatility from the benchmark approach. IV R is the implied
volatility from the robust approach and IV R is the implied volatility from the benchmark approach.
The initial volatility v0 = 1,2 and v0 = 5 in Panel D-E-F, respectively.
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Figure 1.5: Implied volatilities via robust and benchmark approach
The graph displays the implied volatilities from the robust approach and benchmark approach, with
different initial volatility v0. The solid line represents the implied volatilities from the robust ap-
proach while the dash line describes the implied volatilities from the benchmark approach. The
input parameters are T = 4, T ′ = 1 and F = 50. The option is computed where the variance is ex-
pressed via (1.25). Panel A-B-C display the implied volatilities for v0 = 1,2,5, respectively. Panel
D-E-F display the percentage, defined as (IV R − IV B)/IV B, of the uncertainty component with re-
spect to the implied volatility from the benchmark approach. IV R is the implied volatility from the
robust approach and IV R is the implied volatility from the benchmark approach. The initial volatility
v0 = 1,2 and v0 = 5 in Panel D-E-F, respectively.
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Figure 1.6: Implied volatilities via robust and benchmark approach
The graph displays the implied volatilities from the robust approach and benchmark approach, with
different initial volatility v0. The solid line represents the implied volatilities from the robust ap-
proach while the dash line describes the implied volatilities from the benchmark approach. The
input parameters are T = 4, T ′ = 1.5 and F = 50. The option is computed where the variance is
expressed via (1.25). Panel A-B-C display the implied volatilities for v0 = 1,2,5, respectively. Pan-
el D-E-F display the percentage, defined as (IV R − IV B)/IV B, of the uncertainty component with
respect to the implied volatility from the benchmark approach. IV R is the implied volatility from the
robust approach and IV R is the implied volatility from the benchmark approach. The initial volatility
v0 = 1,2 and v0 = 5 in Panel D-E-F, respectively.
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Figure 1.7: Implied volatilities via robust and benchmark approach
The graph displays the implied volatilities from the robust approach and benchmark approach, with
different initial volatility v0. The solid line represents the implied volatilities from the robust ap-
proach while the dash line describes the implied volatilities from the benchmark approach. The
input parameters are T = 4, T ′ = 2 and F = 50. The option is computed where the variance is ex-
pressed via (1.25). Panel A-B-C display the implied volatilities for v0 = 1,2,5, respectively. Panel
D-E-F display the percentage, defined as (IV R − IV B)/IV B, of the uncertainty component with re-
spect to the implied volatility from the benchmark approach. IV R is the implied volatility from the
robust approach and IV R is the implied volatility from the benchmark approach. The initial volatility
v0 = 1,2 and v0 = 5 in Panel D-E-F, respectively.



CHAPTER 2: A FACTOR MODEL WITH QUADRATIC PRICING KERNEL

2.1 Introduction

Pricing equity and its financial derivative is a core question in finance. Researches on

this topic are broad and extensive. We all know that the price of a derivative depends on its

underlying asset, but researches on equity return and its derivative usually follow different

model or framework. There are two main frame works in literatures. Firstly, factor mod-

els are widely accepted in cross sectional literature, where researches focus on explaining

the cross sectional dispersion across individual stocks. By setting a time series process of

risk factors, factor models are also showed up in time series literatures, where researches

focus on the variation of market return across time. Secondly, stochastic volatility model

and GARCH volatility model to some degree dominate literatures in derivative market. In

volatility model, the time series variation of return is explained by the time varying volatili-

ty. However, factor models are rarely used to price option price because it is hard to specify

a reasonable pricing kernel. For volatility model, on the other hand, the one factor (volatil-

ity) is not good enough to explain the cross sectional anomalies in equity market.

To price a primitive security, we concentrate our attention on its first order information

only and neglect its higher order information in a discrete time model . Accurately estimate

the return of a primitive security enables us to focus on its first order information as com-

pletely as possible, while higher order information is often neglect by literatures. A usual

way in literature to check the viability of a model of estimating the return of a primitive se-
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curity is by examining the cross section return, Et(Btrt+1−Bt pt) = 0, where Bt denotes the

weights of different primitive securities in a portfolio and pt is the price vector of different

primitive securities. The higher order information of Et(rt+1) is not examined or required

to know in this case. To check the time series return of a primitive security in a specific

model, discrete time models dominate this area because of its simplicity to implement and

estimate period by period1.

To price a primitive security's derivative, we need to know a suitable pricing kernel or

the specification of a model under risk neutral probability measure and higher order infor-

mation of its underlying asset's return, while the mean of an underlying asset can not tested

by derivative data. By transfer the underlying asset return in a real probability measure to

the return under risk neutral probability measure, we do not need to worry about how to

find the correct discount rate of its payoff in each time period. Under risk neutral prob-

ability measure, the drift of a primitive security's return is always equal to risk free rate.

Thus derivative can not tell us the first order information of its underlying asset under real

probability measure. Because the payoff of a derivative is a nonlinear function of the re-

turn, we need to know detailed higher order information of its primitive underlying asset

to better price a derivative. Thus higher order information of underlying asset under risk

neutral measure can significantly effect derivative pricing. For instance, volatility model

which captures the time varying volatility are better price options than Black Scholes model

in equity market.

To sum up, derivative pricing models focus on capturing higher order information of a

primitive security return under risk neutral measure, while primitive security pricing mod-
1The return of a primitive security depends on macro economic factors, all these information can only be

acquired monthly, quarterly or yearly. a discrete timemodel is much easier to incorporate all these information



48

els mainly focus on estimating the mean of a primitive security return under real probabil-

ity measure. To build up a unified model to explain both primitive equity market and its

derivative market, a suitable model is required to capture the first order information of equi-

ty return under physical measure and higher order information of underlying asset's return

under risk neutral measure.

Linear factor model is the most influential model in pricing a primitive security. Liter-

atures on this topic are prolific. A general specification is Ert+1− r f = θ(ut) ft+1. ft+1 are

the risk factors, θ(ut) are the factor loadings and ut are instruments. Factors are generally

specified as observed macro factors or mimicking market risk factors. For example, Fama-

French three factors (Fama and French (1992)), momentum factor (Jegadeesh and Titman

(1993)) and coskewness factor (Harvey and Siddique (2000)) are all important factors in

pricing a primitive security. Although these models can explain the price of a primitive

security well, there are several limitations restrict its appeal to derivative pricing.

Firstly, there is no consensus on the number of factors or the type of factors in literature.

From arbitrage pricing theory (APT) or Merton's ICAPM, factors represent systematic risk

or future investment opportunities, all idiosyncratic risk is diversified. Many researches use

macro economic factors to directly represent the systematic risk. For example, Petkova and

Zhang (2005) use the dividend yield, the default premium, the term yield premium and the

one-month Treasury bill rate as the risk factors. We can also follow the principle of ``one

price'' to construct the risk factors. Systematic risk can be proxied by market mimicking

portfolios such as Fama-French 3 factors and Momentum factors. Besides that, several

recent papers provide evidence to show that idiosyncratic risk is also priced (Fu (2010)).

Thus it is not clear what type of risk factors and how many risk factors should be included.



49

Correctly defining the factors are crucial in explaining a primitive security for a linear factor

model.

Secondly, these factors are only related with a primitive security but they can not predict

its price (See Brenna,Wang andXia (2005)). Without specifying a complete process of each

factor, we can only do in sample test. These may arise the possibility of factor dredging and

overfitting the data ( See Famma (1991) and Lo and Mackinlay (1995)).

Thirdly, such linear factor models fail to fit the volatility of primitive security well. It

is commonly know that the volatility of a primitive security is time varying. Based on the

linear factor model, the volatility is a constant. This restricts its application to derivative

pricing. Even for a linear factor model with time varying beta, without correctly specifying

the factors, Ghysels (1998) shows that pricing errors with constant beta models are smaller

than with conditional CAPMs.

Fourthly, the specification of a linear factor model is independent of a pricing kernel.

Pricing securities in primitive market does not depend on the pricing kernel. However, if

we want to price any derivative by a linear factor model, a suitable pricing kernel need

to be specified. Many literatures often assume that the pricing kernel is a linear function

of risk factors for simplicity. Given other standard assumptions, the linear pricing kernel

implies that an asset has a constant volatility, which can not fit the cross sectional option

data well. Specifying the pricing kernel is also not voluntary. A correct pricing kernel with

the specification of an asset's return should always follow the standard asset pricing theory

to prevent any arbitrage opportunity. In other words, the specification of an asset's return in

a linear factor model itself restricts the specification of the pricing kernel. Thus searching

for a good pricing kernel for a linear factor model is difficult.
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In option pricing literatures, there are two important strands, stochastic volatility mod-

els and GARCH option pricing models. Both stochastic volatility models and GARCH op-

tion pricing models can capture the time varying volatility of an underlying asset's return.

Compared with stochastic volatility model, the volatility in GARCH option pricing model

is determined and spanned, while in a stochastic volatility model, the volatility includes an

unpredictable part and is also unspanned. So GARCH option pricing models is easier to im-

plement and requires no filtration in estimation. In this paper, we only focus on discussing

GARCH option pricing models. To price a derivative, the price process of an underlying

asset under physical measure is not important as long as the drift term of its underlying asset

price process is the risk free rate under the risk neutral probability measure. Most GARCH

models do not directly specify a pricing kernel, instead they specify the model under the

risk neutral probability measure directly ( Glosten, Jagannathan and Runkle (GJR),Duan

(1995), Heston and Nandi (2000) and Adesi, Engle and Mancini (2008) ). This approach

may appear to be a pure fitting exercise, concerns of economic constrains may arise. Mainly

focus on explaining cross sectional option data, GARCH option pricing model often gives

a much simpler specification of an asset's return under physical measure and contains less

economic intuitions than the linear factor model. The drift term in GARCH option pricing

moels are often assumed to be a linear function of volatility. This specification makes the

GARCH option pricing model less attractive than a linear factor model in cross sectional

literatures or time series literatures in primitive market.

In this paper, we build up a multi-factor model with a quadratic pricing kernel. This

model links cross sectional literatures, time series literatures, option pricing literatures and

term structure literatures. Following standard setting of factor models, the return of under-
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lying asset is a linear function of multi-risk factors. The coefficients of risk factors are time

varying and are proxied by past risk factors. This specification makes ICAPM model and

conditional CAPMmodel nested within our framework. This lends our model capability in

explaining the cross sectional variation across individual stock.

To describe the time varying dispersion of an underlying asset's return, we assume that

risk factors follow OU processes. This leads our model to an intertemperal model setting.

The OU process is a standard setting extending factor models to time series literatures.

Unlike other linear factor models in time series literature, the volatility in our model is

time varying and its dynamic process is similar to that in standard GARCH option pricing

models. In this paper, we also show that our model can capture the asymmetric effect of

innovation on volatility.

In this paper, we explicitly specify the logarithm of pricing kernel as a quadratic function

of risk factors. Given the quadratic pricing kernel, we can easily make a linear transforma-

tion of the process of risk factors from physical measure to risk neutral measure. Thus the

moment generating function of an underlying asset's return in our model is an exponential

function of risk factors. We can easily price an option based on the almost closed form

solution of GARCH option pricing models in Heston and Nandi (2000). Because the pric-

ing kernel is new, in this paper we focus on the ability of our model fitting cross sectional

option data. Compared with two benchmark models, new Heston and Nandi model and

ad-hoc Black Scholes model, we find that our model gets lower RMSE than the other two

models both in sample and out of sample.

There are four main contributions in this paper.

1. This is the first one to explicitly present a quadratic multi-factor pricing kernel. This



52

quadratic multi-factor pricing kernel can make a linear transformation for risk factors

from physical measure to risk neutral measure if the risk factors followOU processes.

When the market index return is a standardized linear function of risk factors with

time varying coefficients, the moment generating function of market index return in

our model can be written as an exponential function of risk factors. Heston and Nandi

(2000) gives our an almost closed form solution to GARCH option pricing models

when the moment generating function is known. In our model, the volatility at time

t+1 is known at time t. Thus in nature, our model is still a GARCH type option pricing

model. We can easily find cross sectional option price by Fast Fourier Transform

technique or numerical integration approach. This quadratic pricing kernel extends

the linear factor model to option pricing literatures.

2. The simple one factor model with quadratic pricing kernel outperforms the new He-

ston and Nandi model (Christoffersen, Heston and Nandi (2011)) and ad-hoc Black

Scholes model both in sample and out of sample in fitting cross sectional option data.

In this paper, we estimate three models, the new Heston and Nandi model, the ad-hoc

Black Scholes model and one factor model from option data on SP 500 index from

2005 to 2007. In Christoffersen, Heston and Jacob (2011), the new Heston and Nandi

model is proved to be better fitting than Heston and Nandi (2000) by incorporating

a new variance risk premium. This new Heston and Nandi model is considered as

a more challenging benchmark model. The RMSE of our one factor model is much

lower than the RMSE of new Heston and Nandi model or ad-hoc Black Scholes mod-

el overall. Especially in 2007, the RMSE is 50 cents lower than the RMSE of new

Heston and Nandi model. We also perform out of sample test to check whether our
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model is overfitting the data. Our one factor model still gets lower RMSE than other

models in forecasting the option data 52 weeks ahead.

3. The model provides a possible solution to several stylized facts simultaneously. Em-

pirical studies find the following stylized facts, (a) implied volatility is higher than

physical volatility, (b) the density function of market index return under risk neutral

measure has fatter tails than that under physical measure and (c) there exists a U shape

relationship between the pricing kernel and the market index return.

4. Thismodel provides a potential unified framework, which can connects cross-sectional

literatures, time series literatures, option pricing literatures and term-structure litera-

tures together. In our model, individual stock return is a linear function of risk factors

while the coefficients of risk factors are time varying and proxied by past risk factors.

This specification is consistent with the standard ICAPM model and the conditional

CAPM models. It enables our model can explain the cross sectional variation across

individual stock. By assuming the risk factors follow OU process, the volatility of in-

dividual stock return or market index return is time varying and is similar to GARCH

models. This enables our model capture the time varying variation of an asset's return.

A quadratic pricing kernel joint with the specification of underlying asset's return and

risk factor implies that the moment generating function of underlying asset is an ex-

ponential function of risk factors. We can easily price option using the almost closed

form solution of GARCH option pricing models in Heston and Nandi (2000). Besides

that, our model links to the term-structure literatures. The quadratic term structure

model (QTSM) is one of the most important strand in term structure literatures. The

risk free rate is assumed as a quadratic function of risk factors while the risk fac-
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tors follow OU processes. The specification of risk free rate is consistent with our

specification and can be easily incorporated in our model.

The paper is organized as follows. Section 2 presents the multi-factor model with a

quadratic pricing kernel and give out a detailed option price formula. In section 3, we

compare our model with standard GARCHmodel from the perspective of volatility process.

In section 4, we calibrate our one factor model and other two benchmark models, new

Heston and Nandi model and ad-hoc Black Scholes model. We also compare these three

models by in-sample and our of sample tests. Section 5 gives our possible solution to several

stylized facts by our model. Section 6 discusses the link of our model to cross sectional

literatures, time-series literatures, and term structure literatures. Section 7 provides the

conclusions and all proofs are presented in Appendix.

2.2 Model

In this section, we firstly present a general linear multi-factor model with a quadratic

pricing kernel. The logarithm of conditional market return is a general linear function of risk

factors, while the coefficients and the intercept are a linear function and a quadratic function

of past risk factors respectively. This specification make many return specifications in cross

sectional literatures are nested within our model. We assume that the logarithm pricing

kernel is a quadratic function of risk factors. This specification automatically leads the

pricing kernel to be time-varying and has non-monotonic relationship with return. Given

the assumption that the risk factors follow OU processes, European option price can be

easily derived and estimated. Secondly, we compare our model with other GARCH option

pricing models. Unlike standard GARCH option pricing models, we separate the effect of

past innovation on volatility from the residual. We present the conditional variance in our
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model can capture more information than that in classical GARCH models or Heston and

Nandi (2000). Besides that, our model can also capture the asymmetric effect of innovations

on volatility.

2.2.1 Model Specifications

Researches in equity market mainly try to answer the following three questions, the

dispersion across stocks (Cross sectional analysis, referred as CS), variation across time

(Time series analysis, we refer it as TS) and derivative pricing.

However, researches in these areas follow different strands, there is no unified model

can be applied in all of these three areas or link literatures in these areas together. In this

paper, we propose a multi-factor model with a quadratic pricing kernel. Many models, such

as CAPM, conditional CAPM and conditional ICAPM are nested within the specification

of the in cross sectional analysis. More importantly, given that the risk factors following

OU processes and a quadratic pricing kernel, this model can explain the time variation

of index return and options on index cross sectionally. We are the first one to directly

extend the linear factor model to option pricing in derivative market. In this section, we

will first discuss the specification of return, and then the quadratic pricing kernel. Given

model specifications, we present an explicit transformation of an innovation from physical

measure to risk neutral measure. Moment generating function of the underlying asset's

return is also presented.

Return Across Stocks

Explaining the dispersions of cross sectional returns in equity market is one of the most

important topics. Unconditional CAPM may be the simplest and most influential model

in cross sectional literatures. CAPM implies that cross sectional stock returns can be ex-
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plained by one factor, the return of market portfolio. However, CAPM can not explain

several anomalies, such as small firms earn more than big firms on average, value firm-

s perform better than growth firm etc (See Fama and French 1989, 1992 and 1993). To

explain these anomalies, more systematic factors (states) are added to explain the cross

sectional anomalies. There are two theories issue the fishing license to researchers who

dedicate to find new risk factors. One of the two is the Arbitrage pricing theory (APT)

in Ross (1976). Based on the principle of ``one price'', APT provides a theoretical back-

ground for a group of linear factor models for one time period. risk factors in these models

are often represented as the excess returns of market mimicking portfolios, such as Fama-

French factors, momentum factor, etc. However, the APT does not preclude arbitrage over

dynamic portfolios. The intertemporal CAPM (ICAPM) model (Merton, 1973) issues an-

other ``fishing license'' to authors who are in search of risk factors for a dynamic linear

factor model, factors2 in which are not necessary to be excess returns of market mimick-

ing portfolios. In general, these risk factors can be divided into three groups, excess return

of mimicking market portfolios, macroeconomic factors and firm-specific factors. Popular

risk factors formed by mimicking market portfolios are size factor, book to market ratio fac-

tor, momentum factor, liquidity factor, etc. Many macroeconomic factors can also explain

the cross sectional return in equity market, such as one month Treasury bill rate (Fama and

Schwert, 1977; Campbell, 1991; Hodrick, 1992), Yield spread, default spread, dividend

yield (see, e.g., Hahn and Lee 2006, Campbell and Cochrane, 1999, Constantinides and

Duffie, 1996, Petkova and Zhang, 2005) etc. Many firm specific risk factors such as firm

size, book to market ratio (Fama and French 1992, 1993), liquidity factor (Pastor and Stam-
2In ICAPMmodel, it defines those risk factors which can predict future return of individual stock as states,

to conform with the terminology with APT, in this paper, we do not distinguish them.
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baugh, 2003), aggregate pricing-earnings ratio ( Campbell and Shiller, 1988b; Campbell

and Vuolteenaho, 2004), etc, also determine individual stock return. Literatures in cross

sectional analysis do not clearly distinguish APT from ICAPM (See Cochrane, 2005). Be-

cause ICAPM provides much more straight interpretation of risk factors than APT, we will

interpret risk factors from ICAPM.

Merton (1973) ICAPM is to solve an optimal portfolio choice problem of a representa-

tive investor in continuous time. In equilibrium, the relationship between expected return

and risk is given in a simplified case:

µi − r = γσim + γzσiz (2.1)

where γ denotes the parameter of relative risk aversion; σim and σiz denote the covariances

between the return on asset i and the market return and state variable, respectively. γz de-

notes the risk priced associate with state variable. The approximate discrete time version

of equation (1) is in Cochrane (2005, Chapter 9).

EtRi,t+1 −R f ,t+1 = γCovt(Ri,t+1,Rm,t+1)+ γzCovt(Ri,t+1,∆Zt+1) (2.2)

where Ri,t+1 is the return on asset i between t and t + 1; R f ,t+1 denotes the risk-free rate

at time t; Rm,t+1 is the market return; and ∆Zt+1 denotes the innovation or change in the

state variable. Unfortunately, the innovation or change in the state variable are latent and

unobservable. Literatures often projectCovt(Ri,t+1,∆Zt+1) linearly to risk factors. Any risk

factors based on the ICAPMmodel are proxies of innovations in state variable or the change

of state variable. For example, Campbell (1996) implies that factors in ICAPM should be
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related to innovations in the state variables that forecast future investment opportunities;

Liew and Vassalou (2000) relates FF factors to future rates of economic growth; both Lettau

and Ludvigson (2001) and Bassalou (2003) show that FF factors include the information

of GDP growth. However, it is not free to add risk factors based on the theory of ICAPM

model. Risk factors in ICAPM model should satisfy other constraints3. Paulo Maio and

Pedro Santa-Clara (2012) find that only Fama-French three factors and Carhart momentum

factor meet ICAPM restrictions when checked with 25 portfolios sorted by size and book

to the market ratio. Even though researches in these risk factors are extensive, there has not

been any consensus on the number of risk factors or what risk factors should be included in

ICAPM4.

Because the state variables are not clear and we also do not know what risk factors are

best proxy for those state variables. In this paper, we do not identify risk factors and only

assume that the return of individual stock is driven by N latent risk factors Xt which are

proxy of innovations or change in the state variable. Identifying risk factors are left for

future works.

Classic ICAPM assumes that whenCovt(Ri,t+1,Rm,t+1) andCovt(Ri,t+1,∆Zt+1) are lin-

early projected on risk factors, all the betas are constant. In ICAPM, the return of individual

stock can be written as a linear function of multi-risk factors5.

log(Ri,t+1) = β0,i +β1,iXt+1 + εi,t+1 (2.3)
3First of all, if a state variable forecasts positive (negative) changes in investment opportunities in time

series regressions, its innovation should earn a positive (negative) risk price in the cross-sectional test of the
respective multi-factor model. Second, the market price of risk must be economically plausible as an estimate
of the coefficient of relative risk aversion (RRA).

4Merton (1973) does not identify any state variables.
5From here, we refer it as multi-factor model
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However, It is important to specify a time varying coefficient in a linear factor model.

Bollerslev, Engle andWooldridge (1988), Lettau and Ludvigson (2001) both find that time-

varying drift and factor loadings in a linear factor model can significantly improve its power

in explaining both the cross-sectional dispersion and the time series dispersion in primitive

equity market.

Individual stock return in a general setting for multi-factor model can be expressed as:

ln(Ri,t+1) = β0,i(ut , t)+β1,i(ut , t)Xt+1 + εi,t+1 (2.4)

Ri,t+1 is the return of individual stock i, β0,i(ut , t) is the intercept, and β1,i(ut , t) is the factor

loadings for individual stock i. Xt+1 is a vector of j risk factors X1,X2, ...,X j. εi,t+1 is the

idiosyncratic risk. ut is the instruments which help to identify the beta of risk factors. The

drift β0,i(ut , t) and the coefficient of risk factors,β1,i(ut , t) can both be time varying. For a

well diversified portfolio, idiosyncratic risk can be diversified away. The return of a well

diversified portfolio I (e.g., size portfolios, book to the market ratio portfolios and SP500

index) can be written as:

ln(RI,t+1) = β0,I(ut , t)+β1,I(ut , t)Xt+1 (2.5)

Following the standard linearmulti-factormodel, we assume that the return of individual

stock in our model follows:

ln(Ri,t+1) = X ′
t biXt + c′iXt+1 +d′

iXt +X ′
t giXt+1 + rt,t+1 + fi (2.6)
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Many model specifications of return in literature are nested within equation (6), such as

conditional CAPM model, ICAPM model and conditional ICAPM model.

The aggregate return in the market follows:

ln(Rt,t+1) = X ′
t bXt + c′Xt+1 +d′Xt +X ′

t gXt+1 + rt,t+1 + f (2.7)

The dimension of c,d and g is N by 1, N by 1, N by N respectively. rt,t+1 denotes the risk

free rate from time t to t +1. f is a constant. It is straight forward to rewrite the return of a

well diversified portfolio into a linear function of multi risk factors Xt+1 at time t.

ln(Rt,t+1) = X ′
t bXt ++d′Xt + rt,t+1 + f +(X ′

t g+ c′)Xt+1 (2.8)

We can directly match the return function in equation (7) with the general setting of linear

factor model in equation (5),

β0,I(ut , t) = β0,I(Xt , t) = X ′
t bXt ++d′Xt + rt,t+1 + f

β1,I(ut , t) = β1,I(Xt , t) = X ′
t g+ c′

in which past risk factors are identified as instruments ut . We use a quadratic function of Xt

to approximate β0,I(ut , t) and also use a linear function of Xt to approximate β1,I(ut , t). Us-

ing linear function of past risk factors as instruments is widely accepted in literatures of con-

ditional CAPM model (See Petkova and Zhang (2005)). Because β0,I(ut , t) and β1,I(ut , t)

depend on past risk factor Xt , they are time varying and path dependent.
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Quadratic Pricing Kernel

To capture the time series variation of return, we need to specify the process of risk

factors across time In the multi-factor model.

In continuous time version of ICAPM model, many papers assume that state variables

follow Ornstein-Uhlenbeck processes (OU). For example, Kim and Omeberg (1996) as-

sume an OU process for Sharpe ratio. Brennan, Wang and Xia (2004) also assume OU

processes the maximum Sharpe ratio and the real interest rate.

dXi(t) = k(µXi −Xi(t))dt +σXidZXi(t) (2.9)

For state variable Xi, µXi is a parameter controlling for the mean, k is a parameter controlling

for the reversion speed. σX is a parameter controlling for volatility.

The discrete time version of OU process is AR(1) process. In order to construct a

tractable valuation model, we assume that a well diversified portfolio return and its deriva-

tives are both effected by N common risk factors Xi,t , i = 1,2, ...N at time t in an equilibrium

economy. All these common risk factors follow AR(1) processes.

Xi,t+1 = ωi +ϕiXi,t +Σεi,t+1, (2.10)

where εi,t+1 N(0,1) and εt1 is independent of εt2 if t1 ̸= t2.

This setting can be easily extended if proper state variables are identified. However,

in literature, studies on linear factor models are often constrained in the primitive security

market. It is difficult to extend the linear factor model to derivativemarkets without a proper
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pricing kernel (Stochastic discount factor).

In literature, there are two approaches to capture the pricing kernel. Firstly, we can

directly specific the pricing kernel as a function of risk factors (See Harvey and Siddigue

(2000) and Dittmar (2000)). Also we can use non-parametric approach or semi-parametric

approach to estimate it (See Jackwerth (2000) andRonsenberg and Engle (2002)). Secondly,

we can indirectly specify the pricing kernel by specify the form of models in risk neutral

probabilitymeasure (SeeHeston (1993), Heston andNandi (2000)). In this paper, we follow

the first way to examine the relationship between the return and pricing kernel.

Researches on the form of pricing kernel in literatures are extensive. Many classical lin-

ear factor models propose that the pricing kernel is a linear function of risk factors. In the

unconditional CAPM, the representative agent's derived utility function may be restricted

to forms such as quadratic or logarithmic which guarantee that the pricing kernel is linear

in the value weighted portfolio of wealth. Independent of any representative agent's utility

function, APT (Ross, 1976) indirectly assumes that the pricing kernel is a linear function of

risk factors, proxied by the excess return of market mimicking portfolios. However, recent-

ly there are two main important findings about the pricing kernel in equity market. Firstly,

the pricing kernel is time varying. Ronsenberg and Engle (2002) find that a time varying

pricing kernel significantly improved the hedging performance compared with that by a

time-invariant pricing kernel. Jackwerth (2000) also finds that the risk aversion function is

positive and decreasing precrash, while it is partially negative and increasing postcrash. In

option market, Bliss and Panigirtzoglou (2004) finds that the estimated coefficient of risk

aversion decline with the forecast horizon and is higher during periods of low volatility.

Secondly, the pricing kernel is an non-monotonic function of market return. Harvey and
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Siddigue (2000) and Dittman (2000) proxy the pricing kernel as a quadratic function and a

cubic function of market return respectively. They both find that models based on nonlinear

pricing kernel can significantly improve the linear pricing kernel in explaining cross sec-

tional stock returns. In option market, Bakshin, Madan and Panayotov (2010) use a model

free approach to detect the shape of pricing kernel. They find that the average returns of

claims with payout on the upside contradict the implications of downward-sloping pricing

kernel, but can be consistent with a U-shaped pricing kernels.

For the inter-temporal consumption basedmodel, Harrison andKreps (1979) andHansen

and Jagannathan (1991) have showed that the pricing kernel mt+1 is the investor's intertem-

poral marginal rate of substitution of consumption, δ U ′(Ct+1)
U ′(Ct)

, where δ is the subjective rate

of time preference. More importantly, mt+1 is nonnegative under the condition of non-

arbitrage. Without specifying the utility function, many literatures assume that the pricing

kernel can be approximated as a linear function of consumption growth by Taylor expan-

sion, mt+1 = at + bt∆ct+1 (See Lettau and Ludvigson (2001)). at and bt are parameters

(potentially time-varying) and ∆ct+1 is consumption growth, which is equal to ln(Ct+1/Ct).

Literatures often assume that the growth rate of consumption is proportional to the growth

rate of market return (See e.g. Lettau and Ludvigson (2001), Harvey and Siddigue (2000)

and Dittman (2000)). The pricing kernel can be written as mt+1 = a∗t + b∗t lnRt,t+1, where

lnRt,t+1 is the natural logarithm of market return from time t to time t+1. The form of pric-

ing kernel directly relates the representative's utility function. For example, a logarithmic or

quadratic utility function can lead the pricing kernel to a linear function of value weighted

portfolio of wealth. This specification can not guarantee that the pricing kernel follows the

non-arbitrage constraint (nonnegative). Besides that, as discussed above, recent evidence
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shows that the pricing kernel is a non-monotone function of market return. Thus a logarith-

mic or quadratic utility function may not be suitable. In our paper, we also do not directly

specify any utility function. To capture the two facts, pricing kernel is nonnegative and the

monotone relationship between pricing kernel and return, we assume that the logarithm of

pricing kernel is a quadratic function of log return of market index. This specification not

only guarantees that the pricing kernel is nonnegative, but also can capture the monotone

relationship between the pricing kernel and the market return.

ln(m(t, t +1)) = A∗
t +B∗

t lnRt,t+1 +C∗
t (lnRt,t+1)

2 (2.11)

where A∗
t , B∗

t andC∗
t can be time varying. This pricing kernel is similar to the one discussed

in Harvey and Siddique (2000) and Dittmar (2002). Harvey and Siddique (2000) propose

that the pricing kernel is a quadratic function of market return.

m(t, t +1) = at +btRt,t+1 + ctR2
t,t+1 (2.12)

while in Dittmar (2002), the pricing kernel is a cubic function of market return.

m(t, t +1) = at +btRt,t+1 + ctR2
t,t+1 +dtR3

t,t+1 (2.13)

Our specification is just transform theirs from discrete interest version into a compounding

interest version.

Put equation (7) back to equation (11), after simplification, the logarithm of pricing
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kernel can be expressed as6:

ln(m(t, t +1)) = X ′
t+1AtXt+1 +X ′

t BtXt +C′
tXt+1 +D′

tXt +X ′
t GtXt+1 − rt,t+1 +Ft (2.14)

For simplicity, in this paper, we only focus on a special case of the pricing kernel, in

which At , Bt ,Ct , Gt and Ft are all constant. The logarithm of the pricing kernel logM(t+1)
M(t)

7

is a time varying quadratic function of risk factors Xt+1.

ln(m(t, t +1)) = X ′
t+1AXt+1 +X ′

t BXt +C′Xt+1 +D′Xt +X ′
t GXt+1 − rt,t+1 +F (2.15)

where the dimensions of A,B,C, G and F are N by N, N by N, N by 1, N by 1, N

by N and 1 respectively. Without loss any generality, we assume that G is a symmetric

matrix. This specification links literatures in term structure. the quadratic term structure

model (QTSM) (See Ahn, Dittmar and Gallant (2002)) is one of the most important models

in term structure literatures. In QTSM, the interest is a quadratic function of risk factors,

rt,t+1 = α +β ′X(t)+X(t)ϕX(t). The quadratic specification not only makes the risk free

rate be positive all the time, but also captures several puzzles not explained by the affine term

structure models (ATSM) (See Ahn, Dittmar and Gallant (2002), Leippold andWu (2002)).

A discrete time version of the pricing kernel in this group is just a special case of our pricing

kernel, in which B and G are both zero matrix. Leippold and Wu (2002) also proves that, in

QTSMs, specifying a OU process for states is a necessary condition, which conforms with

our setting for the risk factors. We can easily justificator our model by incorporating the

risk free rate as a quadratic function of risk factors. If α ,β ,ϕ is identified in term structure
6higher order term of X2

t X2
t+1 and X4

t is neglect for simplicity
7From now on, we use m(t, t +1) as M(t+1)

M(t)
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model, we can simply insert rt,t+1 = α +β ′X(t)+X(t)ϕX(t) back to equation (16).

ln(m(t, t +1)) = X ′
t+1AXt+1 +X ′

t (B+ϕ)Xt +C′Xt+1 +(D′+β ′)Xt +X ′
t GXt+1 +F

+α (2.16)

This new pricing kernel can be used in equity market and bond market simultaneously.

In this paper, we focus on equity market, for simplicity, interest rate rt,t+1 is given at time t.

Model Identification

Given the pricing kernel in equation (14), we can easily change the real probability

measure into risk neutral probability measure with an explicit form.

Given that

ln(m(t, t +1)) = X ′
t+1AXt+1 +X ′

t BXt +C′Xt+1 +D′Xt +X ′
t GXt+1 − r+F

There is a linear transformation between the disturbance εP
t+1 under real probability measure

P and the disturbance εQ
t+1 under real probability measure Q

εP
t+1 = µt+1 +W

1
2 εQ

t+1 (2.17)

where

µt+1 =W ′Σ[2Aω +C+(2Aϕ +G)Xt ] andW = (I −2Σ′AΣ)−1

Under real probability, the disturbance εP
t+1 from risk factors Xt+1 belongs to standard

multi-normal distribution. It is equivalent to a linear function of disturbance εQ
t+1 under risk
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neutral probability. Even though both εP
t+1 and εQ

t+1 belongs to multi-normal distribution,

when we convert εP
t+1 to risk neutral probability measure, not only its drift changes, but

also its volatility will change. However, when A is a zero matrix, the logarithm of pricing

kernel becomes a linear function of risk factors. The volatility of εP
t+1 under risk neutral

probability measure,W
1
2 becomes an identical matrix and is the same as its volatility under

real probability measure.

Accordingly, under risk neutral probability measure, risk factors become

Xt+1 = ω +ΣWΣ′(2Aω +C)+(ϕ +ΣWΣ′(2Aϕ +G))Xt +ΣW
1
2 εQ

t+1

= ω∗+ϕ∗Xt +∆∗εQ
t+1

Without loss any generality, we can always make an affine change such that Σ= I,ω = 0

and ϕ is a symmetric matrix. This transformation implies that A = 0.5(I −Ω∗−1), C =

Ω∗−1ω∗, and G = Ω∗−1ϕ∗−ϕ .

To ensure no arbitrage in this setting, m(t, t + 1) and Rt,t+1 is required to satisfy two

Euler equations.

Et [m(t, t +1)] = e−rt,t+1 (2.18)

Et [eRt,t+1m(t, t +1)] = 1 (2.19)

Equation (15) meet the requirement that the return a risk free asset is 1 under risk neutral

probabilitymeasure. Equation (16) ensures that the return of any risk asset should be 1 under
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risk neutral probability measure. the logarithm of Et [eRt,t+1m(t, t +1)] and Et [eRt,t+1m(t, t +

1)] are all quadratic functions of X(t). To validate the two Euler equations all the time, the

coefficients of Xt , X ′
t Xt and the constant term should all be zero matrix or zero. Thus we

will have three constraints for each Euler equation. Et [m(t, t +1)] = e−rt,t+1 implies that

B+ϕ ′Aϕ +Gϕ +
1
2
(2ϕ ′A+G)Ω∗(2Aϕ +G) = 0 (2.20)

ϕ ′C+D+(2ϕ ′A+G)Ω∗C = 0 (2.21)

F − 1
2

ln|Ω∗−1|+ 1
2

C′Ω∗C = 0 (2.22)

Et [Rt,t+1m(t, t +1)] = 1 implies that

b+gϕ∗+
1
2

gΩ∗g = 0 (2.23)

d +ϕ∗′c+gω +gΩ∗c = 0 (2.24)

f + c′ω∗+
1
2

c′Ω∗c = 0 (2.25)

From these six equations in both propositions, all the parameters in our model can be
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expressed in terms of 6 parameters, θ = {ω∗,ϕ∗,Ω∗,c,g,ϕ}. The expression of all the

parameters are in appendix.

By putting all the parameters in term of θ back to equation (6) and (16), we get

ln(Rt,t+1) = rt,t+1 − (c′ω∗+0.5c′Ω∗c)− [c′(ϕ∗−ϕ)+ω∗g+ c′Ω∗g]Xt

+X ′
t [g(ϕ −ϕ∗−0.5Ω∗g)]Xt +(c′+X ′

t g)εt+1

ln(m(t, t +1)) = −0.5ω∗′Ω∗−1ω∗+0.5log|Ω∗−1|− rt,t+1 +(ϕ∗′ −ϕ ′)Ω∗−1ω∗Xt

+X ′
t (ϕ ′Ω∗−1ϕ∗−0.5ϕ ′Ω∗−1ϕ −0.5ϕ∗′Ω∗−1ϕ∗)Xt

+[X ′
t (ϕ∗−ϕ)Ω∗′ −ω∗′Ω∗]εt+1 +0.5ε ′t+1(I −Ω∗−1)εt+1

To get some insights of pricing kernel and market return under risk neutral probability

measure, we focus on four parameters ϕ ,ω∗,ϕ∗,∆∗, which determine the process of risk

factors under physical measure and risk neutral measure.

X(t +1) = ϕX(t)+ εP
t+1

X(t +1) = ω∗+ϕ∗X(t)+∆∗εQ
t+1

These two equations describe the processes of risk factors under real probability measure

P and risk neutral probability measure Q respectively. when A is a zero matrix, Ω∗, the
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variance of disturbance under risk neutral probability measure P, will become an identical

matrix (Ω∗ = I). ε ′t+1(I −Ω∗−1)εt+1 will disappear. This means higher order of distur-

bances will not be priced when the logarithm of pricing kernel is a linear function of risk

factors. This is equivalent to say that, when the logarithm of pricing kernel is a linear

function of risk factors, investors will only care about the uncertainty of risk factors (the

disturbance), however they do not care about how uncertainty the uncertainty of risk factors

(higher order information of disturbances) is.

However, If A is not a zero matrix, the logarithm of pricing kernel is a quadratic function

of risk factors, investors will not only care about the uncertainty (disturbance), but also

how uncertainty the uncertainty of risk factors is, higher order information of disturbance

is priced by investors.

If ϕ and ϕ∗, auto correlations under P and Q, are the same, all the terms having Xt will

disappear, then the pricing kernel does not depend on past state Xt . This is equivalent to say

that the pricing kernel at time t is independent of past information when auto correlations

of risk factors are the same under P and Q.

g is critical in determining the conditional volatility of return. When g is a zero matrix,

the conditional variance of return is equivalent to c′c, which is a constant. However, in

reality, the conditional volatility of market return should be time varying. Thus it is impor-

tant to specify g as a non-zero matrix to account for time varying conditional volatility of

market return.

Conditional on time t, the logarithm return lnRt,t+1 is a linear function of disturbance

εt+1. By the help of ε ′t+1(I−Ω∗−1εt+1), the logarithm of pricing kernel becomes a quadratic

function of lnRt,t+1. In a simplified one factor model, in which dim(Xt) = 1, g = 0 and
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ϕ = ϕ∗, we can easily express the logarithm of pricing kernel as a quadratic function of

return.

ln(Rt,t+1) =−0.5c2 + rt,t+1 + cεt+1

ln(m(t, t +1)) =−rt,t+1 −ωεt+1 +(1−Ω)ε2
t+1

It is straight forward to express the logarithm of pricing kernel as a quadratic function of

return,

ln(m(t, t +1)) = −0.5ω2 − rt,t+1 −ω(
lnRt,t+1 − rt,t+1

c
−ω +0.5c)

+(1−Ω∗)(
lnRt,t+1 − rt,t+1

c
−ω +0.5c)2

Characteristic Function and Derivative Price

Because the payoff of derivatives are usually nonlinear function of underlying asset's

return, we need to know the moment generating function of the underlying asset's return to

exactly price its derivatives. The moment generating function (in the risk neutral measure)

is exponential quadratic in the factors:

EQ
t [(

ST

St
)φ ] = exp(αt +β ′

t Xt +X ′
t γtXt),

where
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αt = rt,t+1 +φ f +αt+1 −
1
2

log|I −2∆∗′γt+1∆∗|+ω∗′γt+1ω∗+ω∗(φc+βt+1)

+
1
2
(φc′+β ′

t+1 +2ω∗′γt+1)(I −2∆∗′γt+1∆∗)−1(φc+βt+1 +2γt+1ω∗)

βt = φ(ϕ∗′c+d +gω∗)+ϕ∗′βt+1 +2ϕ∗′γt+1ω∗

+(2ϕ∗′γt+1 +φg)(I −2∆∗′γt+1∆∗)−1(φc+βt+1 +2γt+1ω∗)

γt = φb+φgϕ∗+ϕ∗′γt+1ϕ∗+
1
2
(2ϕ∗γt+1 +φg)(I −2∆∗′γt+1∆∗)−1(2ϕ∗γt+1 +φg)′

αt ,βt and γt can be computed iteratively from the initial conditions that αT = 0,βT = 0 and

γT = 0.

The European put option can be calculated from call-put parity. Even though we have 6

free parameters, {ϕ∗,c,g,ϕ ,ω∗,Ω∗}, European style options only depend on five parame-

ters, {ϕ∗,c,g,ω∗,Ω∗}. Since now, we call {ϕ∗,c,g,ω∗,Ω∗} are ``risk neutral parameters''

and ϕ is ``real parameter''.

In literatures,there are many different GARCH models to price options on market in-

dex, such as GJR model (See Glosten, Jagannathan, and Runkle (1993)), HN model (See

Heston and Nandi (2000)), Inverse GARCHmodel (See Christoffersen, Heston, and Jacobs

(2006)), etc. In Heston and Nandi (2000), they provide a general closed form solution of

GARCH models given moment generating function of underlying assets return. The mo-
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ment generating function in this group8 can be written as Ψ = Sϕ
t exp(At +Btσ2

t+1), where

σ2
t+1, known at time t, is the variance of market index return at time t+1. Our model also

belongs to GARCH type model, in which the variance of market index return at time t+1 is

(c+gX(t)′(c+gX(t)). Thus the moment generating function in our model can always be

written as Ψ = Sϕ
t exp(At +Btσ2

t+1)+Ctσt+1. Option price in our model not only depends

on the variance but also the volatility, which allows our model providing more flexibility

in option pricing than the other GARCH models.

Besides that our model can capture more information in the market.

For those GARCH type models, option price at time t+1 depends only on one variable

σ2
t+1 known at time t. Option price at time t+1 does not depends on the path of market index

from time t to t+1. This seems counter intuition. For example, there are two cases from time

t to t+1. In the first case, the market index does not change at all. In the second case, the

market index will increase at first and then drop back to the original level. These popular

GARCH models say that option price is the same in these two cases at the end of time t+1,

because the one to one relationship between the return and the variance. However even

though our model is a GARCH type model, the variance of market index return is a function

of multi-factors. One market return can not determine a unique set of risk factor value. This

means that our model can use different set of risk factor value to represent the two cases

even though the market return is the same. It is equivalent to say that our model can ``price''

more information at time t+1 in option price than those popular GARCH models.

Because our model prices ``more information'' and are more flexible than those popular

GARCHmodels, we expect that our model can calibrate option price in equity market more

accurately and more stable.
8Here we only consider GARCH(1,1) type forms of these models.
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2.2.2 Comparison with GARCH Option Pricing Models

There is overwhelming empirical evidence supporting thatmodeling time varying volatil-

ity is critical in modeling the market index return and pricing market index option. The

success of stochastic volatility model and GARCH option pricing model in pricing option

in equity attribute their abilities to capture the time varying volatility.

In stochastic volatility model, the time varying volatility needs to be filtered by some

econometric approach. However, the time varying volatility in GARCH option pricing

model can be clearly and directly filtered from physical return.

In general, return process and volatility process under physical measure for a standard

GARCH option pricing model can be written as:

lnRt,t+1 = µ − 1
2

σ2
t+1 +σt+1εt+1 (2.26)

σ2
t+1 = f (σt ,Zt ,σtεt) (2.27)

Where logRt,t+1 is the natural logarithm of the underlying asset's return, σ2
t+1 is the variance

of return conditional on time t, Zt+1 is a random noise at time t+1, the process of conditional

return variance, f (σt ,εt ,σtεt) is a function of conditional variance at time t, σt−1, random

noise at time t, εt , and the return residual, σtεt . For example, in the GARCH(1,1) model,

σ2
t+1 = α0 +α1σ2

t +α2(σtεt)
2
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To accommodate the asymmetrical effect of shocks on volatility, Engle and Ng(1993)

starts a group of nonlinear asymmetric GARCH models ((See Heston and Nandi(2000),

Christoffersen, Heston, and Jacobs (2006), and Glosten, Jagannathan, and Runkle (1993)).

In Engle and Ng(1993),

σ2
t+1 = ω +α(εt −θσt)

2 +βσ 2
t

Besides that, there are several other GARCH option pricing models close to classical

GARCH option pricing models. In Heston and Nandi(2000),

σ2
t+1 = ω +α(εt −θσt)

2 +βσ 2
t

Thus it is important for a model to capture the two features of underlying asset's volatil-

ity, time varying and asymmetric effect of innovations on volatility.

Time Varying Volatility

Even though our model is a discrete time risk factor model, the volatility at time t+1 is

known at time t, thus it is still a GARCH option pricing model. Compared with standard

option pricing models, our model has some difference in specifying the volatility process.

To easily compare with other GARCH models, we use our one factor model as an example.

Taylor(1986) and Schwert (1989) proves that GARCH model can be equivalent to a

group of absolute GARCH models, in which the process of standard deviation instead of
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variance is proposed. A GARCH(1,1) model for the standard deviation σt can be written as

σt+1 = ω +ασt |Zt |+βσt (2.28)

By constraining that ω > 0,α > 0 and β > 0, the volatility σt+1 is guaranteed to be non-

negative.

The conditional variance of market index return in our model at time t+1 is σ2
t+1,

σ2
t+1 = (c+gXt)

2 = (c+gϕXt−1 +gεt)
2

In our one factor model, the conditional volatility is

σt+1 = |c+gϕXt−1 +gεt |= |(1−ϕ)c+ϕσt +gεt |

GARCH(1,1) model assumes that past volatility and return residual have constant effect

on the volatility. However, in our model, we also assume that past volatility has constant

effect on the volatility. Further more, we separate random noise from the return residual

and assumes that it has a constant effect on the volatility.

g is a key parameter in our model. If g = 0, σ2
t+1 = c2 which is a constant. g is the

link connects conditional volatility with past information (risk factor Xt−1), which makes

the conditional volatility time varying.

Asymmetric Effect of Innovation on Volatility

Engle an Ng (1991) finds that negative return increase future volatility by a larger

amount than positive returns of same magnitude on average. By controlling for the asym-
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metric effect of innovation on volatility, Heston and Nandi (2000) is very successful in

capturing cross sectional option prices.

The asymmetric version of the standard deviation of GARCH model is given by,

σt+1 = ω +ασt f (Zt)+βσt (2.29)

where

f (Zt) = |Zt −b|− c(Zt −b) (2.30)

This indicates that when Zt ≥ b, σt+1 = ω +α(1− c)σtZ(t)+ (β −α(1− c)b)σt ; while

when Zt < b, σt+1 = ω +α(c− 1)σtZ(t)+ (β −α(c− 1)b)σt . When Zt increases from

negative to positive, the volatility process will change, which leads Zt with different sign

have different effect on volatility. Empirically, α ,c and b are all positive, which indicates

that negative innovation at time t will have larger effect on the volatility at time t+1.

In our model, we also separate the region of εt into two parts, in which the volatility

process will change. If 0 < ϕ < 1, c > 0 and g < 0, negative innovation will have larger

effect on volatility than positive innovation. All the signs or magnitude of the three param-

eters are consistent with our calibrations from 2005 to 2007. The only difference between

our model and asymmetric GARCHmodel is still that we separate the noise from the return

residual and directly research into its effect on volatility.

The asymmetric effect of innovation on volatility can also be explained by a negative

correlation between volatility and return in our model. When there is a large negative in-

novation, the return will be negative. If the correlation between volatility and return is
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negative, the large negative innovation will drive the volatility in the next time period in-

crease on average. When there is a large positive innovation, the return will be positive.

When the correlation between volatility and return is negative, the large positive innovation

will drive the volatility in the next time period decrease on average.

In our model, the daily conditional correlation between return and variance is

Covt−1[σ2
t+1,Rt−1,t ] = 2g(c+gϕXt−1)(c+gXt−1)

= 2gσ2
t +2g2(ϕ −1)Xt−1(c+gXt−1) (2.31)

For our model, the sign ofCovt−1[σ2
t+1,Rt−1,t ] depends on risk factor Xt−1 and is not clear.

However, we can calculate the unconditional expectation of Covt−1[σ2
t+1,Rt−1,t ] to see the

relationship between return and future variance on average,

E[covt−1(σ2
t+1,Rt−1,t)] = 2g(c2 +g2 ϕ

1−ϕ 2 ) (2.32)

When 0 < ϕ < 1 and g < 0, The conditional covarianceCovt−1[σ2
t+1,Rt,t+1] is negative.

This is consistent with the leverage effect documented in literatures (See Black (1976),

Christie (1982)).

Expectation of Conditional Variance

The expectation of conditional variance of underlying asset's return in GARCH option

pricing models can be represented as a weighted average between unconditional variance

and past conditional variance. For example, in Heston and Nandi (2000),

Et−1σ2
t+1 = (β +αγ2)σ2

t +(1−β −αγ2)Eσ2
t (2.33)
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The expectation of conditional variance in GARCH (1,1) is a special case in equation

(34) when γ = 0. This makes the relationships among expectation of conditional variance,

past conditional variance, unconditional variance constant.

However, in our one factor model, the expectation of conditional variance can be ex-

pressed as the weighted average between unconditional variance and past conditional vari-

ance plus an extra term, which makes the expectation of conditional variance in a GARCH

option pricing model be a special case of ours. For example, the expectation of conditional

variance in Heston and Nandi (2000) is a special case of ours when c = 0.

Et−1σ2
t+1 = (c+gϕXt−1)

2 +g2

= ϕ 2σ2
t +(1−ϕ 2)Eσ2

t +2gcϕ(1−ϕ)Xt−1

The extra term 2gcϕ(1−ϕ)Xt−1 can adjust the relationships among expectation of condi-

tional variance, past conditional variance, unconditional variance based on risk factors.

From above, we show that the volatility process in our model is similar to that in s-

tandard GARCH option pricing model. Our model not only can capture the time varying

volatility of underlying asset's return, but also can capture the asymmetric effect of inno-

vation on volatility. In standard GARCH option pricing models, conditional expectation of

conditional variance is a linear function of past conditional variance and unconditional vari-

ance. In our model, the conditional expectation of conditional variance not only depends

on past conditional variance and unconditional variance, but also depends on past volatility.

We expect that our model can better fit the option price by incorporating more information

to capture the conditional expectation of conditional variance.
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2.3 Model Calibration

There are three parts in this section. First of all, we will discuss the methodology of

estimating three models, our single factor model, new Heston and Nandi model in Christof-

fersen, Heston and Jacob (2011)9, and ad-hoc Black Scholes model. Secondly, we discuss

the data. Thirdly, we will make an in-sample and out of sample comparison of these models

for option data and underlying market index return.

2.3.1 Methodology of Calibrating Option Pricing Models

The conditional volatility at time t +1 of market return in our model is known at t, thus

our model is still belong to GARCH type option pricing model. In literature, calibrating

GARCH option pricing model usually follows three ways. The first way is to use maxi-

mum likelihood estimation on return data. See for instance Engle (1982), Bollerslev (1986),

Christoffersen and Jacob (2004) and Chirstoffersen, Heston and Jacobs (2006). However,

Christoffersen, Heston and Jacob (2011) note that when valuing options using GARCH

models, an additional price of volatility risk can not be estimated from physical return data.

Thus effectively this additional risk premium is often set to zero in GARCH option pricing

models. Intuitively, in standard GARCH option pricing models, conditional volatility is

set as the same under both physical measure and risk neutral measure, while the distribu-

tion of conditional volatility under the two measures are different. Christoffersen, Heston

and Jacob (2011) propose a new pricing kernel, the conditional volatility under risk neu-

tral probability measure may differ from that under physical measure. The volatility risk

premium is an additional parameter to control the difference between conditional volatility

under the two measures.
9Because Heston and Nandi (2000) is a special case of Christoffersen, Heston and Jacob (2011), we refer

it as new Heston and Nandi model from here.
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The second way is to estimate GARCH option pricing models using option data only.

See for instance Aesi, Engle and Mancini (2008). Following this approach, the conditional

volatility is filtered from its process under risk neutral measure. When the process under

risk neutral probability measure significantly differ from that under physical measure, esti-

mation from option data may not be consistent with physical return.

To find the estimation consistent with both option data and physical return, a third ap-

proach is widely used in literatures. See for instance, Heston andNandi (2000) and Christof-

fersen and Jacob (2004). This approach firstly filter the volatility from physical return and

then estimate the model using option data by minimizing the loss function of option data

only. However, as discussed by Christoffersen, Heston and Jacob (2004), this approach

still does not directly specify a loss function of return.

In this paper, we follow the approach proposed by Christoffersen, Heston and Jacob

(2011). This approach is similar to the third one. In the first step, we still filter the value of

risk factors from physical return. In the second step, we do not only focus on fitting option

data, instead we try to estimate our model to fit both physical return and option data. Thus

in the second step, we will minimize the sum of the loss function of physical return and the

loss function of option data.

Similar to standard approach, we use the log likelihood of the physical return of market

index as its loss function. In our model, the conditional daily density of daily return is

normal, so that

lnRt,t+1 =
1√

2π(c+gXt)2
exp
(
−
(lnRt,t+1 − (b+gϕ)X2

t − (cϕ +d)Xt − f )2

2(c+gXt)2

)
(2.34)
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The return log likelihood is:

LnLR ∝ −1
2

T

∑
t=1

ln(c+gX(t))2 +[lnRt,t+1 − (b+gϕ)X2
t − (cϕ +d)Xt − f ]2/(c+gXt)

2

(2.35)

For the option data, we assume that the estimation error ec
i,t = ci,t − ĉi,t follows normal

distribution with mean zero and variance σ2
c . ci,t is the individual option price i at time t

and ĉi,t is the estimated individual option price i at time t.

The conditional daily density of estimation error of option data is:

ec
t =

1√
2πσc

exp
(
−(ec

t )
2

2σ2
c

)
(2.36)

where ec
t is a vector which represents the estimation error of option data at time t. σ̂2

c is the

least square estimator from FOC. The log likelihood of options is

LnLC ∝ −N
2
− 1

2N
log

SSEc

N
(2.37)

where SSEc = ∑T
t=1 ∑nt

i=1 ec
i,t

2 is the sum square error of the option contracts, N is the total

number of option contracts from time t to T and nt is the number of option contracts at time

t.

In our model, we have 6 free parameters, Θ = {ϕ ,ϕ∗,ω∗,∆∗,c,g}. However, the option

price in our model only depends on five parameters ΘR = {ϕ∗,ω∗,∆∗,c,g}. Intuitively,

option price in our model depends on the current risk factors and distribution of innovation
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under risk neutral probability measure. In our model, current risk factors are the same under

physical measure and risk neutral measure. However, the future processes of risk factors

under physical measure and risk neutral measure are different. Thus ϕ , which describes

the distribution of innovation under physical measure is irrelevant to option price. When

we measure the loss function of physical return, a function depends on the distribution of

innovations under physical measure, ϕ is relevant.

To fit the option data and physical return simultaneously, we follow a two step proce-

dure. In the first step, given a set value of ΘR, we get the value of risk factors from physical

return. To get a reasonable initial value of risk factor, we set the initial value as the un-

conditional mean at first and filter the value of initial risk factor from physical return 250

trading days ahead. In the second step, given the set value of Θ and risk factors, we search

for an optimal set of Θ to maximize the sum of the two loss function, one from physical

return and the other one from option data.

To compare with our model, we calibrate two benchmark models, Christoffersen, Jacob

and Heston (2011) and ad-hoc Black Scholes model. Christoffersen, Jacob and Heston

(2011) provide a more general more than Heston and Nandi (2000). Compared with Heston

and Nandi (2000), their model is proved to better fitting option data by providing a new

parameter, volatility risk premium. Their model is a more challenging benchmark model.

The processes of return and volatility under risk neutral measure in Christoffersen, Jacob

and Heston (2011) is described as:
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ln(S(t)) = ln(S(t −1))+ r− 1
2

h∗(t)+
√

h∗(t)+
√

h∗(t)z∗(t)

h∗(t) = ω∗+βh(t −1)+α∗(z∗(t −1)− γ∗
√

h∗(t))2 (2.38)

where z∗(t) has a standard normal distribution and we can easily match the parameters

under risk neutral measure to the parameters under physical measure.

z(t) = z∗(t)−λ

h(t) = h∗(t)(1−2αζ )

ω = ω∗(1−2αζ )

α = α∗(1−2αζ )2

γ = γ∗+ϕ (2.39)

For Heston and Nandi (2000), it is a special case when (1− 2αζ ) = 1. To estimate

Christoffersen, Jacob and Heston (2011), we get the conditional volatility from physical

return and estimate the physical return and option data simultaneously. To get a reasonable

initial value of conditional volatility, the initial value of conditional volatility is also filtered

from physical return 250 trading days ahead.

The loss function of physical return in Christoffersen, Jacob and Heston (2011) is also
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its log likelihood.

LnLR ∝ −1
2

T

∑
t=1

{
ln(h(t))+(R(t)− r−λh(t))2/h(t)

}
(2.40)

We also use the same loss function of options for their model for comparison, the loss

function of option is equation (51). Heston and Nandi (2000) derive an almost closed-

form expression of European option prices by the inversion of the characteristic function

technique. If we known the moment generation function of underlying asset price under

risk neutral probability measure, European call option price can always be expressed as:

Ct =
1
2
+

e−rτ

π

∫ ∞

0
ℜ
[

K−iϕ f ∗(iϕ +1)
iϕ

]
dϕ

−Ke−rτ
(

1
2
+

1
π

∫ ∞

0
ℜ
[

K−iϕ f ∗(iϕ)
iϕ

]
dϕ
)

(2.41)

where

f ∗(ϕ) = EQ
t Sϕ

T = Sϕ
t exp(αt +β ′

t Xt +X ′
t γtXt)

In our model, the moment generating function of underlying asset price under risk neu-

tral probability measure is listed in proposition 4. For the new Heston and Nandi model,

detailed information about the moment generating function of underlying asset price are

listed in Christoffersen, Heston and Jacob (2011).

We use both Fast Fourier Transform theory (FFT) and numerical integration (NI) to

computer the integral in equation (60) for our model and new Heston and Nandi model. To
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calculate the integrals by numerical approach, we evaluate the integrand function on 5,000

equally spaced mid-pints from the interval (0,100). It turns our that option prices calculated

by the FFT and NI are very close.

The second benchmark approach is the ad-hoc Black Scholes model. It is well docu-

mented that the ad-hoc Black Scholes model outperforms the deterministic volatility option

pricing model (See Dumas, Fleming, and Whaley (1998)), because it allow cross sectional

options have different implied volatility. The ad-hoc Black Scholes model assumes that the

volatilities of the cross sectional options is a second order linear function of the strike price

and time to maturity:

σbs = a0 +a1K +a2k2 +a3τ +a4τ2 +a5Kτ

We first estimate the σbs for an option with strike K and time to maturity τ by OLS

regression. Then we use the estimation of σbs as the implied volatility for each option

and put it back to Black Scholes formula to get the estimation of cross sectional option

prices. By minimizing the sum squared error (SSE) of option data, we can find the optimal

parameters in ad-hoc Black Scholes model, a0,a1,a2,a3,a4,a5. The ad-hoc Black Scholes

model is a purely fitting approach, it does not provide much intuition. Here we only used

it as a benchmark model to test the capability of our model to fit option data.

2.3.2 Data

Our data is from Jan 5, 2005 to Dec 31, 2008 from Option metrics. To eliminate the

potential weekend effect, we only use call options on each Wednesday. All the options in

the data are filtered by two criterions,
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Table 2.1: Summary statistics of data

Note: This table reports summary statistics of options on SP 500 index. The second column to the
sixth column reports the year, number of option contracts, minimum price, maximum price, average
price and standard deviation of option prices in each year respectively.

Year Number Min Max Mean Std
2005 3587 1 130.8 38.5 34.1
2006 4750 1 146.1 48 39.3
2007 6340 1 183.1 59.4 46.1

2005-2007 14677 1 183.1 52.7 41.6

1) The call price has to be greater than or equal to the spot price minus the present

value of the remaining dividends minus the discounted strike price. This is the no-arbitrage

relationship in Merton (1973).

2) Option of a particular moneyness and maturity will be represented once in the sample

on any particular day.

Detailed information of options are described in Table 1.

2.3.3 In Sample and Out of Sample Model Comparison

We estimate the three models in sample by year. In each year, we estimate the option

data and physical return simultaneously for one factor model and new Heston and Nandi

model. For ad-hoc Black Scholesmodel, we estimate themodel by option data. In literature,

someGARCHoption pricingmodels are estimated byweekly option data. In eachweek, the

number of option contracts are less than 100 on average, given that each of the three models

has 6 parameters, this may arise the concern of overfitting the data. All the calibrations of

new Heston and Nandi model, one factor model and ad-hoc Black Scholes model are listed

in Table 2, Table 3 and Table 4 respectively.

To compare the in sample fitting of option data of the three models, root mean squared
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error (RMSE) is an important measure. RMSE measures how much the difference between

the estimated option price and real option price on average for a model. RMSEs of each

model are listed in the upper part of Table 5. RMSEs of one factor model and new Heston

and Nandi model are much smaller than those of ad-hoc Black Scholes Model for all the

three years. In 2005, the RMSE of one factor model is very close to that of New Heston and

Nandi model. However, in 2006 and 2007, the RMSE of one factor model is much lower.

Especially in 2007, the RMSE of one factor is over 50 cents lower than that of new Heston

and Nandi model. Thus on average, the one-factor model provides a much better in sample

estimation of option data.

Out of sample test is an important way to check whether a model is overfitting or not.

Here we make a 52 week ahead forecasting. Given the estimation of parameters in the

prior year for a model, we estimate option price and physical return in the current year. For

new Heston and Nandi model and one factor model, conditional volatility and current risk

factor are filtered from physical return. Detailed information of our of sample test is listed

in the lower part of Table 5. The RMSE of option data is very large in 2007 for all the

three models. Because the 2007-2008 financial crisis starts from the second half of 2007,

we project that there is a systematic change in 2007. However, RMSE of one factor model

in the out of sample test is still much lower than that of new Heston and Nandi model.

Because risk factor and conditional volatility is filtered directly from physical return

in one factor model and new Heston and Nandi model respectively, the physical return is

``perfectly fitted'' by the model. To differentiate their way in fitting physical return, we

compare the expected returns in the two model.

Figure 1 displays the model implied expected return of one factor model and new Hes-
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ton and Nandi model from 2005 to 2007. The expected return of one factor model is more

volatile than the expected return of new Heston and Nandi model. We also compare the

sum of absolute difference between physical return and expected return of the two models,

the result is similar. Thus these two models can both capture the physical return. In liter-

ature, the time series relationship between market return and its volatility is mixed. Many

empirical studies on the time series return and risk relationship based on ICAPM model

find that more risk factors should be included to predict the market return. We expect that

our multi-factor model can be better predicting market return than new Heston and Nandi

model. Detailed discussion of the risk and return relationship by comparing the two models

is in section 5.

In this section, we compared the capability of the three models in fitting option data.

In the in sample fitting, the RMSE of one factor is close to the RMSE of new Heston and

Nandi model in 2005, but its RMSE is much lower (50 cents lower in 2007) than the RMSE

of new Heston and Nandi model in 2006 and 2007. In the out of sample test, the RMSE of

one factor model is much lower than the RMSE of New Heston and Nandi model for both

2006 and 2007. To sum up, our one factor model can fit option data better than New Heston

and Nandi model both in sample and our of sample in our data.

2.4 Possible Solution to Several Stylized Facts

In this section, we show that our model can explain the following stylized facts:

1. The U shape relationship between the pricing kernel and the return.

2. The implied volatility is higher than physical volatility on average.

3. density function of return under risk neutral measure has fatter tails than that under
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Figure 2.1: Physical return and expected return
This figure describes the physical return and model specified expected return from 2005 to 2007. '-'
stands for the physical return, '- -' stands for the expected return from one factor model. '...' stands
for the expected return new HN model.
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Table 2.2: In sample calibration of Christoffersen, Heston and Nandi (2011)

Parameters estimates are obtained by optimizing an joint likelihood on return and options. All phys-
ical parameters can be directly match from risk neutral parameters. The initial volatility is filtered
from physical return 250 trading days ahead. Detailed information of data is described in table 1.
To make the volatility always be positive, we follow Christoffersen, Heston and Jacob (2011) to
constrain ω∗ = 0.

Year Risk Neutral Parameters
λ 1-2αζ ω∗ β ∗ γ∗ α∗

2005 1.96 0.85 0 0.81 213.83 3.16E-06
2006 10.59 0.75 0 0.74 300.22 2.47E-06
2007 12.39 1.10 0 0.38 1041.95 0.57E-06

Table 2.3: In sample calibration of one factor model

In the one factor model, option price depends on 5 free parameters ω,ϕ ∗,c,g and ∆∗, while the
process of physical return depends on all the six parameters. Parameter estimation are obtained by
optimizing an joint likelihood on return and options. Detailed information of data is described in
table 1.

Year Risk Neutral Parameters
ϕ ω ϕ∗ c g ∆∗

2005 0.98 -0.076 0.98 1.17 5.16E-03 -2.83E-04
2006 0.96 -0.091 0.97 1.21 5.58E-03 -3.88E-04
2007 0.91 -0.027 0.99 1.05 4.82E-03 -9.42E-04

Table 2.4: In sample calibration of Ad-hoc Black Scholes model

In the one factor model, option price depends on 5 free parameters ω,ϕ ∗,c,g and ∆∗, while the
process of physical return depends on all the six parameters. Parameter estimation are obtained by
optimizing an joint likelihood on return and options. Detailed information of data is described in
table 1.

Year Risk Neutral Parameters
a0 a1 a2 a3 a4 a5

2005 2.35 -3.11E-03 1.04E-06 -1.54 0.11 1.27E-03
2006 2.83 -3.64E-03 1.20E-06 -1.46 0.43 9.95E-04
2007 0.95 -6.66E-04 9.58E-07 -1.12 0.60 6.21E-04
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Table 2.5: In sample and out of sample pricing errors of different models

This table reports the root mean square error (RMSE) of options in 2005, 2006, 2007 for one factor
model, new Heston and Nandi model and ad-hoc black Scholes model. Given one set of optimal
parameters, sum squared error (SSE) of option prices are calculated for eachmodel. RMSE is defined
as the square root of SSE divided by the number of options. We estimate the out of sample RMSE by
forecasting option price 52 weeks ahead. Risk factors in one factor model and conditional volatility
in new Heston and Nandi model are filtered by physical market return to calculate the out of sample
RMSE for each model.

In Sample RMSE
Model 2005 2006 2007

One factor Model 1.48 1.84 3.29
New Heston and Nandi 1.47 2.04 3.85
Ad-hoc Black Scholes 1.74 2.50 9.70

Out of Sample RMSE
Model 2006 2007

One factor Model 2.14 9.13
New Heston and Nandi 2.42 9.31
Ad-hoc Black Scholes 4.28 14.68

physical measure.

2.4.1 The U Shape Relationship Between the Pricing Kernel and the Return

In consumption based model, Harrison and Kreps (1979) and Hansen and Jagannathan

(1991) show that the pricing kernel mt+1 is the investor's intertemporal marginal rate of

substitution of consumption, U ′(Ct+1)
U ′(Ct)

. In intertemporal models, the growth rate of market

consumption is often proxied by the market return in literature. If when the utility is the

familiar power utility in Rubinstein's (1976), the pricing kernel will be a linear function of

market return. When market return increases, the pricing kernel will decrease. This mono-

tonic inverse relationship between the pricing kernel andmarket return is intuitive, when the

market return increases, the required rate of return will increase, and then the pricing kernel

will decrease. The monotonic inverse relationship between the pricing kernel and the mar-

ket return is widely accepted in literature. The pricing kernel explicitly or inexplicit from
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many models are all based on the widely accepted monotonic inverse relationship between

the pricing kernel and market return. Recently A lot of researches find that there exists a

monotone relationship between the market return and the pricing kernel. Harvey and Sid-

digue (2000) and Dittman (2000) specify the pricing kernel as a quadratic function and a

cubic function of the market return in the cross section of returns. Bansal and Viswanathan

(1993) and Ronsenberg and Engle (2002) using semi-parametric and parametric approach

to test the function form of pricing kernel. They both find that a linear pricing kernel of

market return is rejected. Recently, in the option market, Bakshin, Madan and Panayotov

(2010) use a model free approach to test the function of pricing kernel in option market.

They find that the pricing kernel in option market is a U shape function of the market return

by testing different type of options in equity market. Christoffersen, Heston and Jacob-

s (2011) also present new semi-parametric evidence to confirm the U shape relationship

between the risk-neutral and physical probability densities.

In our model, we explicitly specified the market index return and the pricing kernel.

ln(Rt,t+1) = X ′
t bXt + c′Xt+1 +d′Xt +X ′

t gXt+1 + f (2.42)

ln(m(t, t +1)) = X ′
t+1AXt+1 +X ′

t BXt +C′Xt+1 +D′Xt +X ′
t GXt+1 +F (2.43)

In our model, the logarithm of daily market index return is a linear function of current

risk factor Xt+1, while the logarithm of the daily pricing kernel is a quadratic function of

current risk factorXt+1 conditional at time t. The specifications of pricing kernel andmarket

index return in our model explicitly provides a solution to the non-monotone relationship
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between the pricing kernel and market index return.

The conditional relationship between the pricing kernel and the market index return

in our one factor model depends on the value of risk factor Xt , A and c. Thus the time

varying relationship between the pricing kernel and the market index return10 documented

in literature can be explained by the time varying risk facto Xt . Because the unconditional

expectation of Xt is 0, the unconditional relationship between the daily pricing kernel and

the market index return depends on A and c. When A > 0 and c > 0, there exists a U shape

relationship between the daily pricing kernel and the daily market index return on average.

A > 0 requires that the variance under risk neutral measure of risk factor Ω∗ > 1 in our

model. If c > 0 and Ω∗ > 1, our model can explicitly describes the unconditional U shape

relationship between the pricing kernel and market index return on a daily base.

In literature, the U shape relationship between the pricing kernel and the market index

return is mainly from option data. Most of them test their unconditional relationship. This

is equivalent to say that the pricing kernel M(t+1)
M(0) is a monotone function of R0,t+1. Even

though Christofferen, Heston and Jacob (2011) tests their conditional relationship, but their

relationship is based on one month horizon, which is equivalent to test the conditional re-

lationship between M(t+30)
M(0) and R0,t+1. Here we only give insights on that our model can

explain the unconditional monotone relationship between the daily pricing kernel and daily

market index return. Because the process of pricing kernel and market index return for a

long horizon is very complicated, theoretically proved the unconditional U shape relation-

ship between the pricing kernel and the market index return is very difficult. But we still

can simulate their unconditional relationships on a longer horizon based on the calibrations

of our model.
10equivalent to conditional relationship between the pricing kernel and the market index return



95

Figure 2.2: Relationship between pricing kernel and return
This figure describes the model implied relationship between the logarithm of pricing kernel and log
return in different time to maturity in 2005. The pricing kernel is estimated by polynomial fitting
of simulated data. For different time to maturity, we simulate 5,000 to get a robust estimation of
pricing kernel. The initial value of conditional volatility is set as the unconditional expectation of
volatility.

We simulate the pricing kernel and the market index return for different horizon (one

day, one week and one month) based on the calibrations in different year. We then use a

polynomial function to fit the natural logarithm of pricing kernel and the natural logarithm

of the market return. Figure 3 to 5 describes the model implied U relationship between the

logarithm of pricing kernel and the logarithm of the market index from 2005 to 2007.

2.4.2 Implied Volatility Larger than Realized Volatility

Empirical studies usually find that implied volatility from option market is larger than

physical volatility on average. Figure 5 displays the annualized physical volatility filtered

from GARCH (1,1) model and the annualized option implied volatility from VIX index
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Figure 2.3: Relationship between pricing kernel and return
This figure describes the model implied relationship between the logarithm of pricing kernel and log
return in different time to maturity in 2006. The pricing kernel is estimated by polynomial fitting
of simulated data. For different time to maturity, we simulate 5,000 to get a robust estimation of
pricing kernel. The initial value of conditional volatility is set as the unconditional expectation of
volatility.
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Figure 2.4: Relationship between pricing kernel and return
This figure describes the model implied relationship between the logarithm of pricing kernel and log
return in different time to maturity in 2007. The pricing kernel is estimated by polynomial fitting
of simulated data. For different time to maturity, we simulate 5,000 to get a robust estimation of
pricing kernel. The initial value of conditional volatility is set as the unconditional expectation of
volatility.
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Figure 2.5: Physical volatility and option implied volatility
We plot the physical volatility and option implied volatility from 2005 to 2007. The annualized
physical volatility is filtered from GARCH (1,1) model and the annualized option implied volatility
from VIX index.

from 2005 to 2007. On average, implied volatility is higher than physical volatility.

In stochastic volatility model, a negative volatility risk premium is often used to ex-

plain the difference between implied volatility and physical volatility. However in discrete

GARCH option pricing models, the volatility risk premium is often assumed to be zero

which leads the physical volatility consistent with implied volatility. Christoffersen, Heston

and Jacob (2011) propose a newHeston andNandi model, in which a volatility risk premium

is used to explain the difference between the physical volatility and implied volatility. Our

model can also capture the dispersion between physical volatility and implied volatility.

Our model is a GARCH type model, at time t, the volatility of return at time t+1 is

known. Conditional at time t, the variance of return at time t+1 under physical measure and
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risk neutral measure (VarP
t (logRt,t+1) = σ2

t+1 and VarQ
t (logRt,t+1) = σ∗2

t+1) are

σ2
t+1 = (c+gXt)

2 (2.44)

σ∗2
t+1 = (c+gXt)

2Ω∗ (2.45)

When Ω∗ > 1, the instantaneous volatility of return under risk neutral measure is higher

than that under physical measure. This is equivalent to say that the instantaneous physical

volatility is lower than the instantaneous implied volatility when the logarithm of pricing

kernel is a quadratic function of risk factors (A > 0).

By comparing the expectation of instantaneous volatility of return under physical mea-

sure and risk neutral measure, we can understand their relationship on average. The variance

of return at time t +1 under real probability measure and risk neutral probability measure

can also be expressed as,

σ2
t+1 = (c+gϕXt−1 +gεP

t )
2 (2.46)

σ∗2
t+1 = (c+ω∗g+gϕ∗Xt−1 +gΣ∗εQ

t )2Ω∗ (2.47)

Conditional on time t-1, the variance of return under P and Q is,

EP
t−1σ2

t+1 = (c+gϕXt−1)
2 +g2 (2.48)
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EQ
t−1σ2

t+1 = (c+ω∗g+gϕ∗Xt−1)
2Ω∗+g2Ω∗2 (2.49)

The conditional volatilities under the two different measure depend on risk factorXt−1 in

our model, which implies that implied volatility is not always higher than physical volatility.

To explain that the physical volatility is lower than implied volatility on average, we

need to calculate the unconditional expectation of conditional volatility under the two mea-

sures. The unconditional expectation of conditional volatility describes the conditional

volatility of market index on average. By comparing the unconditional expectation of con-

ditional volatility under the two different measure, we can get insights on the relationship

between the physical volatility and implied volatility.

EPσ2
t+1 = c2 +

g2

1−ϕ 2 (2.50)

EQσ2
t+1 = (c+

gω∗

1−ϕ∗ )
2Ω∗+

g2Ω∗2

1−ϕ∗2 (2.51)

When c > 0, g and ω∗ has the same sign, 0 < ϕ∗ < 1, Ω∗ > 1 and ϕ is close to ϕ∗, the

unconditional expectation of conditional variance of return under risk neutral measure is

larger than that under physical measure. In our calibrations, c > 0,g < 0,ω∗ < 0,Ω∗ > 1,

ϕ and ϕ∗ are very close, this leads that the physical volatility is lower than the implied

volatility on average.

To better illustrate the relationship between physical volatility and implied volatility in

our model, we filtered the instantaneous physical volatility and implied volatility based on
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Figure 2.6: Implied volatility under physical measure and risk neutral measure
This figure describes the model implied volatility under physical measure and risk neutral measure
from 2005 to 2007. '-' stands for the volatility under physical measure , '- -' stands for the volatility
under risk neutral measure. All the volatility is calculated from the parameters in table 3.

the calibrations of our model from 2005 to 2007.

2.4.3 Positive Equity Risk Premium and Fatter Tails

In GARCH option pricing models, the equity risk premium is often assumed to be pro-

portion to conditional variance. Empirical studies find that the equity risk premium is posi-

tive on average. Intuitively, investors need to be compensated by taking the risk (variance),

thus the average return under risk neutral measure should be less than that under physical

measure.

In our one single risk factor model, the return processes under physical measure and
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risk neutral measure are:

ln(Rt,t+1) = (b+gϕ)X2
t +(d + cϕ)Xt + f +(c+gXt)εP

t

ln(Rt,t+1) = (b+gϕ∗)X2
t +(d + cϕ∗+gω∗)Xt + f + cω∗+(c+gXt)∆∗εQ

t (2.52)

and

The equity risk premium (ERP) in our model can be represented as:

ERP =−(c+gXt)[(ϕ∗−ϕ)Xt +ω∗] (2.53)

When the unconditional expectation of EPR is positive, the indicates that the EPR is

positive on average. The unconditional expectation of EPR in our model is:

E[EPR] =−g(ϕ∗−ϕ)
(1−ϕ)2 (2.54)

If g < 0 and ϕ < ϕ∗ < 1, on average, the ERP will be positive. If ϕ = ϕ∗, there is no

equity risk premium in our model. Jackwerth(1999) gives a literature review on option-

implied risk neutral distributions. Even though there are different approaches to estimate

option-implied risk neutral distributions, they are based on the same theory. In theory, in an

complete market, Breeden and Litzenberger(1978) gives an exact formula for calibrating

the option-implied risk neutral distributions. The second derivative of a European call price

C taken with respect to its strike price K is the state-contingent price π on the future asset
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price ending up at exactly the strike price of the option.

∂ 2C
∂K2 = πS=K (2.55)

It is documented that the option-implied risk neutral return distribution has relative fat

tails than the physical distribution (See Jackwerth (1999, 2000), Ronsenberg and Engle

(2002) and others). This leads us to check the higher order information of market index

return.

The conditional variance and kurtosis of return under P and Q are,

VarP
t−1ln(Rt,t+1) = (c+gXt)

2VarQ
t−1ln(Rt,t+1) = Ω(c+gXt)

2 (2.56)

KurtosisP
t−1ln(Rt,t+1) = 3(c+gXt)

4 (2.57)

KurtosisQ
t−1ln(Rt,t+1) = 3Ω∗2(c+gXt)

4 (2.58)

and

When Ω∗ > 1, the conditional Kurtosis of return under risk neutral measure is always

larger than that under physical measure. This implies that the probability density function

of return under risk neutral measure may have fatter tails than that under physical measure.

From above, Ω∗ adjusts the difference between higher order moment expectation of

return under risk neutral measure and physical measure. When Ω∗ > 1, the conditional
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variance and kurtosis of return under risk neutral measure is larger than that under physical

measure, which implies that the distribution of log return under risk neutral measure has

fatter tails than that under physical measure.

In Heston and Nandi (2000), the variance of conditional variance is a linear function

of past conditional variance under physical measure and risk neutral measure can be both

written as:

Vart−1σ2
t+1 = 2α2 +4α2γ2σ2

t (2.59)

Thus the variance of conditional variance under physical measure and risk neutral mea-

sure are the same in Heston and Nandi (2000). However, Christoffersen, Heston and Jacob

(2011) proposes a new Heston and Nandi model, in which the variance risk premium can

differentiate the variance of conditional variance under physical measure and risk neutral

measure. In our model, we have similar features.

In our model, the conditional variance of σ2
t+1 under physical measure can be represent-

ed as a linear function of σ2
t and X(t −1).

Vart−1σ2
t+1 = 3g4 +4g2ϕ 2σ2

t +4g2[c2(1−ϕ 2)+2gcϕ(1−ϕ)Xt−1] (2.60)

However, under risk neutral measure,

VarQ
t−1σ2

t+1 = 3g4Ω∗2 +4g2ϕ∗2σ2Q
t +4g2Ω∗(c−ϕ∗c+ω∗g)(c+ϕ∗c+ω∗g+2ϕ∗Xt−1)(2.61)
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When c = 0, the conditional variance of conditional variance in our model is similar

to Christoffersen, Heston and Jacob (2011), when ω < 0,g > 0 and Ω∗ > 1, the variance

of conditional variance under risk neutral measure is always larger than that under physical

measure. When c ̸= 0, ourmodel provides amore general setting to describe the relationship

between the variances of conditional variance under physical and risk neutral measure.

2.5 Discussion

2.5.1 Relationship Between Return and Risk

The Merton (1973) seminar paper implies the following equilibrium relationship be-

tween risk and return:

µi − r = γσim + γzσiz (2.62)

where σim and σiz are the covariance of individual stock with market return and with

future investment opportunity. Many time series literatures and cross sectional literatures

are based on the ICAPM model. However, researches in this two areas are often separate.

In this section, we will discuss the linkage of our model with time series literature and cross

sectional literatures on asset return in equity market.

Time Series Relationship

Empirical studies usually focus on the time series implication ofMerton's ICAPMmodel

in equilibrium and narrowly apply it to the market portfolio. When the hedging component

σiz = 0, this leads to the following risk-return relation for the market portfolio:
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µm − r = Aσ2
m (2.63)

If the investment opportunity is stochastic, literatures often project σiz linearly to state

variables X (risk factors). The risk-return relationship for the market portfolio becomes:

µi − r = Aσim + γX (2.64)

Popular GARCH option pricing models usually neglect the risk factor X and simply

assume that expected excess return of market portfolio only depends on its variance. Inmost

cases, the equity premium is identified as plosive in many empirical studies of GARCH

option pricing models. While in our model, the return and conditional variance are both

quadratic functions of risk factors. Two things make our model differ from GARCH pricing

model in the implication of the time series relationship between return and risk.

Firstly, GARCH option pricing model assumes that return are only compensated by its

conditional variance, while the risk and return relationship may be mixed in our model.

Although the linear relationship between expected excess return and variance is sim-

ple and intuitive, their relationship in literatures are mixed. For example, French, Schwert

and Stambaugh (1987), Campbell and Hentchel (1992), Harrison and Zhang (1993), Goyal

and Santa-Clara (2003) and Bollerslev and Zhou (2006) all find an insignificant relation-

ship between return and variance by using different data and different measure of variance.

Other studies even find that the intertemporal relationship between variance and return is
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negative (See Campbell (1987), Breen, Glosten and Jjagannathan (1989), Whitelaw (2000)

and Brandt and Kang (2004)). Also there are some studies support the positive relationship

between the return and risk (See Chou (1988), Bollerslev, Engle and Wooldridge (1988),

Scruggs (1998) and Ghysels, Santa-Clara, and Valkanov (2005)).

In our model, given that risk factors follow OU processes, the conditional variance of

market excess return is a quadratic function of risk factors (c+gXt)
′(c+gXt), while the ex-

pected excess return is also a quadratic function of risk factors, X ′
t (b+gϕ)Xt +(d+cϕ)Xt +

f . Because both the excess return of market return and its variance are quadratic function

of risk factors, their relationship can be mixed. Here we use a simple one-factor model as

an example. When b+gϕ > 0 and c
g = d+cϕ

2(b+gϕ) , the return and variance is positively relat-

ed. When b+gϕ < 0 and c
g = d+cϕ

2(b+gϕ) , the return and variance is negatively related. When

c
g ̸= d+cϕ

2(b+gϕ) , there is no monotone relationship between the return and the risk.

Secondly, GARCH option pricing model neglect the changes in investment opportuni-

ties, while changes in investment opportunities can be proxied by risk factors in our multi-

factor model. If the changes in investment opportunities are not significant, there is no need

to justify that. However, Guo and Whitelaw (2006) identifies two components of expected

returns-the risk component and the component due to the desire to hedge changes in vest-

ment opportunities. They find that expected returns are driven primarily by the hedging

component. Also many empirical studies show that risk factors proxy for the hedging need

of stochastic investment opportunities are significant in explaining return. For example,

Bali and Engle (2010) explores the time series relationship between expected returns and

risk for a large cross section of industry and size/book-to-market portfolios. They find that

the HML is a priced risk factor and can be viewed as a proxy for investment opportunities;
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Allen, Bali and Tang (2012) find a bank-specific systemic risk priced for financial firms. A

usual way to proxy the innovations of future investment opportunities is to project them to

several risk factors. In a time series analysis, these risk factors are assumed to be followed

by OU processes. For example, in Guo and Whitelaw (2006), they use a linear function

of risk factors to proxy the condition variance of market variance, these risk factors follow

OU processes. Besides that the hedging component in their paper is also proxied by a lin-

ear function of risk factors which follow OU processes. In our model, we also assume that

risk factors follow OU processes. We can easily justify both variance of market return and

hedging component.

Cross Sectional Relationship

Besides the time series relationship between risk and return, cross sectional relationship

between risk and return is one of the most important topics in finance. Many literatures

often study these two topics separately. For example, GARCH option pricing models only

describe the time series process of market return, there is no further information about its

implication on the cross sectional relationship between risk and return. For our model, we

not only link time series literatures but also the cross sectional literatures.

In cross sectional literatures, researchers mainly focus on several strands to explain

cross sectional anomalies in equity market. The first strand is the linear multi-factor model.

This strand in literatures focus on adding more systematic risk factors or innovations from

future investments based on constant ICAPM (Merton 1973) or APT. Examples are Fama-

French's 3 factor model, Cahort's 4 factor model, etc. The second strand is conditional

CAPM model, which assumes that the beta of individual stock or well diversified portfolio

is time varying and depends on several instruments (See Campebell and Cochrane (1999),
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Table 2.6: CCAPM and ICAPM

Model Example Risk factors
CCAPM Petkova and Zhang (2005) [DIVt ,DEFt ,T ERMt ,T Bt ]

Return and Risk Etri,t+1 = (αi +βiXt)
′(αi +βiXt)

EtrM,t+1 = αM +βMXt

ICAPM Petkova (2006) [RM,t ,DIVt ,DEFt ,T ERMt ,RFt ,RHML,t ,RSMB,t ]

Return and Risk Etri,t+1 = αi +βiXt

Petkova and Zhang (2005)). Similar to Conditional CAPM model, Bali and Engle (2009)

assume that the beta of risk factors in ICAPMmodels are also time varying and depends on

several instruments.

These three models can be nested within our model. Table 6 gives out the examples

how our model can accommodate these three different settings.

We can easily express our model in the form of CCAPM or ICAPM models. For in-

stance, in Petkova and Zhang (2005), the expected excess return of individual stock or

portfolio is a quadratic function of risk factors which is the same as our setting. We can

also justify expected market return as a linear function of risk factors by setting A,B and G

as zero matrix. In Petkova (2006), the market excess return is not specified. In our model,

the excess return of market portfolio is a quadratic function of risk factors. Given that the

expected return of individual stock or portfolio is also a quadratic function, we can always

express the expected return of individual stock or portfolio as a linear function of market

return and other risk factors.

Given the good performance of these two models in explaining cross sectional variation

of stocks in equity market, we expect that our model can also have good explaining power

in this topic. However, in literatures, What optimal risk factors should be included is still

debatable. In this paper, we do not focus on analyzing the cross sectional variation across
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stocks in equity market. We only provide a framework for future studies.

2.5.2 Links to Bond Market

In term structure literatures, there twomain stands, affine term structuremodels (ATSM-

s) and quadratic term structure models (QTSMs). However, ATSMs generates negative in-

terest rates with positive probability. This raise concerns about arbitrage possibilities and

their real-time applicability. In contrast, QTSMs guarantees a positive interest by structure.

The quadratic relationship between interest and risk factors make the model flexible in cap-

turing bond derivatives. Ahn, Dittmar and Gallant (2001) and Leippold and Wu (2000)

suggest that QTSMs can potentially outperform ATSMs. Leippold an Wu (2002) provides

a theoretic framework for QTSMs. They prove that the necessary and sufficient conditions

for the QTSMs are:

1. interest rate r(Xt) = X ′
t ArXt +b′rXt + cr with Ar ∈ Rn×n,br ∈ Rn and cr ∈ Rn

2. Xt+1 = a∗+b∗Xt +Σ, a∗ ∈ Rn, b∗ ∈ Rn and Σ is a constant matrix.

If equity market and bond market are driven by the same risk factors, we can easily

adjust the QTSMs in our frame work. By incorporating the interest as a quadratic function

of risk factors, we can estimate the model by combining data in equity and bond market

together.

2.6 Conclusion

In this paper, we propose a general multi-factor model with quadratic pricing kernel.

Following the standard multi-factor models, the return of an underlying asset is a linear

function of multi-risk factors, while the coefficients are time varying and proxied by past

risk factors. It turns out that many standard ICAPMs and CCPMs are nested within our
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setting. By assuming all the risk factors follow OU processes, our model can capture the

time series variation of an asset's return. We also show that the volatility process in our

model are similar to standard GARCH option pricing models. By examining option data

from 2005 to 2007, our simple one factor model can outperform both Christoffersen, Heston

and Nandi (2011) and ad-hoc Black Scholes model in sample and our of sample.

This model also provides possible explanations for the U shape relationship between

the pricing kernel and market index return, the implied volatility puzzle and fat tails of risk

neutral return density function relative to the physical distribution. Most importantly, this

is the first model which provides a unified setting to link cross sectional literatures, time

series literatures, option pricing literatures and term structure literatures.

Our model provides a potential framework to research into several interesting question-

s. Whether bond market and equity market are driven by the same common risk factors?

what risk factors are important in equity derivative market? Whether our model can fit the

derivatives in equity and bond market simultaneously? All these are left for future works.

Proof of proposition 1

From non-arbitrage theory, the expected return of risky assets under risk neutral measure

is risk free rate, we can get

EQ
t [exp(λ ′εt+1)] = Et [exp(rt,t+1 +λ ′εt+1)mt,t+1]

Wealso know thatE[exp(rt,t+1)m(t, t+1)]= 1. By expandingEt [exp(rt,t+1+λ ′εt+1)mt,t+1]

and substitute the expression of E[exp(rt,t+1)m(t, t +1)] in it, we can get

Et [exp(rt,t+1 +λ ′εt+1)mt,t+1] = exp(
1
2

λ ′Wλ +(((2ω +2ϕXt)
′A+C′+X ′

t G))′ΣWλ )
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whereW = (I −2Σ′AΣ)−1.

This implies that there is a linear transformation for the innovation εt+1 from physical

measure to risk neutral measure.

εt+1 = µt +W
1
2 εQ

t+1

where W
1
2 (W

1
2 )′ = W µt = W ′Σ(2Aω +C+(2Aϕ +G)Xt) and εQ

t+1 is a standard normal

distribution under risk neutral probability measure.

Proof of proposition 2

We assume that the logarithm of pricing kernel is a quadratic function risk factors:

ln[m(t, t +1)] = X ′
t+1AXt+1 +X ′

t BXt +C′Xt+1 +D′Xt +X ′
t GXt+1 +F

Because (I − 2A)−1 = Ω∗, ω = 0 and Ω = I, by using the formula E[exp(ε ′βε + γε)] =

exp(−1
2 log|I−2β |+ 1

2γ(I−2β )−1γ ′), we can expand the expectation of pricing kernel as:

Et [m(t, t +1)] = exp[X ′
t (ϕ ′Aϕ +B+ϕ ′G+

1
2
(2ϕ ′A+G)Ω∗(2ϕ ′A+G)′)Xt

+(C′ϕ +D′+C′Ω∗(2A′ϕ +G))Xt +F − 1
2

log|Ω∗−1|+ 1
2

C′Ω∗C]

To make Et [m(t, t +1)] always equal to exp(−rt,t+1), Et [m(t, t +1)] should not depend on

Xt . thus the coefficients of Xt and X ′
t Xt must be zero and the constant term is equal to

−rt,t+1.Thus we have three constraints:

ϕ ′Aϕ +B+ϕ ′G+
1
2
(2ϕ ′A+G)Ω∗(2ϕ ′A+G)′ = 0
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C′ϕ +D′+C′Ω∗(2A′ϕ +G) = 0

rt,t+1 +F − 1
2

log|Ω∗−1|+ 1
2

C′Ω∗C = 0

Proof of proposition 3

Because the return of risky asset should be risk free rate under risk neutral measure, we

have

Et [Rt,t+1m(t)] = Etexp(X ′
t+1AXt+1 +X ′

t BXt +(c′+C′)Xt+1

+(D′+d′)Xt +X ′
t+1(G+g)Xt +F + f )

By subtractingEt [m(t, t+1)] fromEt [Rt,t+1m(t)], we can haveEt [Rt,t+1m(t)]−Et [m(t, t+

1)] = 0 independent of Xt . Expanding it and let the coefficients of Xt and X ′
t Xt and the con-

stant term equal to 0, we have other three constraints:

b+gϕ∗+
1
2

gΩ∗g = 0 (2.65)

d +ϕ∗′c+gω +gΩ∗c = 0 (2.66)

f + c′ω∗+
1
2

c′Ω∗c = 0 (2.67)
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From proposition 2 and 3, all the parameters in our model can be expressed by 6 free

parameters Θ = {ϕ ,ω∗,ϕ∗,Ω∗,c,g}.

A =
1
2
(I −Ω∗−1) (2.68)

B =
1
2

ϕ ′ϕ − 1
2

ϕ∗′Ω∗−1ϕ∗ (2.69)

C = Ω∗−1ω∗ (2.70)

D =−ϕ∗Ω−1ω∗ (2.71)

G = Ω∗−1ϕ∗−ϕ (2.72)

F = 0.5ln(|Ω∗−1|)−0.5ω∗′Ω∗−1ω∗ (2.73)

b =−0.5g′Ω∗g−gϕ∗ (2.74)

d =−ϕ∗c−gω∗−gΩ∗c (2.75)
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f =−0.5c′Ω∗c− c′ω∗ (2.76)

Proof of proposition 4

Assume that EQ
t [(ST

St
)φ ] = exp(αt +β ′

t +X ′
t γtXt), We know that Under risk neutral prob-

ability measure, Xt+1 = ω∗+ϕ∗Xt +∆∗εQ
t+1.

EQ
t [(

ST

St
)φ ] = EQ

t

{
(
St+1

St
)φEQ

t+1[(
ST

St+1
)φ ]

}
= EQ

t [φ(X ′
t bXt + c′Xt+1 +d′Xt +X ′

t gXt+1 + f )+αt+1 +β ′
t+1Xt+1

+X ′
t+1γt+1Xt+1]

= EQ
t [(φ(c′ϕ∗+d′)+β ′

t+1ϕ∗)Xt +φ( f + c′ω∗+βω∗)+ω∗′γω∗+αt+1

+(φc′+φX ′
t g+β ′

t+1 +2X ′
t (ϕ∗)′γt+1)∆∗εQ +(εQ)′∆∗′γt+1∆∗εQ]

+X ′
t (φgϕ∗+φb+(ϕ∗)′γt+1ϕ∗)Xt

= φ f +αt+1 +
1
2

log|I −2∆∗′γt+1∆∗|

+
1
2
(φc′+β ′

t+1)(I −2∆∗′γt+1∆∗)−1(φc+βt+1)

+[φ(c′ϕ∗+d′)

+β ′
t+1ϕ∗+(φc′+β ′

t+1)(I −2∆∗′γt+1∆∗)−1(φg′+2γ ′t+1ϕ∗)]Xt

+X ′
t (φb+φgϕ∗+(ϕ∗)′γt+1ϕ∗+(φg

+2γt+1)(I −2∆∗′γt+1∆∗)−1(φg+2γt+1)
′)Xt
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Thus by definition

αt = rt,t+1 +φ f +αt+1 −
1
2

log|I −2∆∗′γt+1∆∗|+ω∗′γt+1ω∗+ω∗(φc+βt+1)

+
1
2
(φc′+β ′

t+1 +2ω∗′γt+1)(I −2∆∗′γt+1∆∗)−1(φc+βt+1 +2γt+1ω∗)

βt = φ(ϕ∗′c+d +gω∗)+ϕ∗′βt+1 +2ϕ∗′γt+1ω∗

+(2ϕ∗′γt+1 +φg)(I −2∆∗′γt+1∆∗)−1(φc+βt+1 +2γt+1ω∗)

γt = φb+φgϕ∗+ϕ∗′γt+1ϕ∗+
1
2
(2ϕ∗γt+1 +φg)(I −2∆∗′γt+1∆∗)−1(2ϕ∗γt+1 +φg)′

Because EQ
T [(

ST
St
)φ ] = 1, we can always get αT = 0, βT = 0 and γT = 0. By recursive

substitution, given the initial value of αT = 0, βT = 0 and γT = 0, we can get αt , βt and γt .



CHAPTER 3: CATEGORIZED IDIOSYNCRATIC RISK PREMIUM

3.1 Introduction

In finance literature, whether idiosyncratic risk is priced has received considerable atten-

tion. Classic portfolio theory suggests that representative investors will holdwell-diversified

portfolios, in which idiosyncratic risk will be diversified away, thus there is no compensa-

tion for holding idiosyncratic risk. However, in reality not all investors hold well diversified

portfolios. Especially for retail investors, their portfolios are extremely less diversified on

average. Statman (1987) finds that a portfolio need to contain at least 30 stocks to well

diversify idiosyncratic volatility. By studying a sample of more than 62,000 household in-

vestors from 1991 to 1996, Goetzmann and Kumar (2004) find that more than 25 percent

of the investor portfolios contain only one stock; over half of the investor portfolios contain

no more than three stocks; and only ten percent of the investor portfolios contain more than

ten stocks. When investors hold

Some other theories imply that idiosyncratic risk should be positively priced when in-

vestors hold under-diversified portfolios. Merton (1987) suggests that in an information-

segmented world, firms with larger idiosyncratic volatility require higher average return to

compensate investors for holding under-diversified portfolios.

Based on different representative investors, these two theories have different answers

to the question that whether idiosyncratic risk is priced. In reality, different investors are

not evenly distributed in the market and are concentrated in different groups of stocks. In
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behavioral finance, investors are sorted into two groups, retail investors and institutional

investors. These two groups often trade stocks in different ways and have different ap-

petite for stocks. Kumar and Lee (2006) find that retail investors are highly concentrated in

small-cap, low-priced and value stocks. Brandt, Brav, Graham and Kumar (2010) find that

retail investors have a strong preference for low-priced stocks. Kumar (2009) and Han and

Kumar (2010) find that retail investors prefer stocks with lottery features such as positive

skewness, low price and high idiosyncratic volatility. In contrast, Gompers and metrick

(2001) document that institutional investors increases demand for large firms and decrease

demand for small firms from 1980 to 1996. Brandt, Brav, Graham and Kumar (2010) also

find that institutional investors are concentrated in large, growth, high-priced stocks. As

these two groups are heavily concentrated in different stocks, we expect that representative

investors of these stocks are different.

However, in regardless of the representative investors, empirical studies often treat s-

tocks with different representative investors the same and test the question for all stocks

simultaneously. The empirical results so far are mixed. Malkiel and Xu (2002); Spiegel

and Wang (2006); Chua, Goh, and Zhang (2010) and Fu (2009) all find that idiosyncratic

volatility risk premium is positive and significant. Ang, Hodrick, Xing and Zhang (2006,

2009) find a negative relationship between low realized idiosyncratic volatility in the pre-

vious month and the portfolio return in the subsequent month. When the short-term return

reverse is controlled, Huang, Liu, Rhee and Zhang (2009) and Fu (2009) both find that

the negative relationship in Ang, Hodrick, Xing and Zhang (2006) disappears. Bali and

Cakici (2008) find that idiosyncratic volatility risk premium is sensitive to the frequency

of data and the approach to estimate conditional expected idiosyncratic volatility. Using
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equal weighted portfolio return instead of value weighted portfolio return, they find an in-

significant relationship between equal-weighted portfolio return and realized idiosyncratic

volatility in the previous month.

If the two theories are both correct, we expect that stocks with different representative

investors may have different idiosyncratic volatility risk premium. It is highly possible that

we will be misguided by tests based on the full sample. For example, there are two different

groups of stocks in the market. One group has a positive risk premiumwhile the other group

has a negative risk premium. Tests based on the full sample may support an insignificant

risk premium, which is far beyond the truth.

In this chapter, we attempt to fill the gap between theories and empirical studies on

idiosyncratic risk by answering the following questions: (1) whether idiosyncratic volatility

risk premium is different for stocks with different representative investors; (2) What is the

relationship between idiosyncratic volatility risk premium and representative investors?

Many literatures show that stock price is an accurate proxy for retail ownership, we use

stock historical moving average price as a proxy for retail ownership in this chapter. In

Brandt, Brav and Graham and Kumar (2010), they find that low-priced stocks have less

than 5.25 percent institution ownership on average while the average institution ownership

of high-priced stocks is 56.44 percent in their sample. Green and Hwang (2009) show that

stocks undergo splits experience an increase in co-movements with low-priced stocks and

a decrease in their co-movements with high-priced stocks. They imply that investors cate-

gorize stocks based on price. Several reasons may explain why retail investors prefer low-

priced stocks and institutional investors dislike low-priced stocks. For example, the return

of low-priced stocks has lottery features, such as high idiosyncratic volatility and positive
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skewness (See Kumar(2009a), Kumar(2009b) and Bali, Cakici andWhitelaw (2011)); retail

investors may overweight the low probability of extreme return (Barberis and Huang 2008);

institutional investors avoid trading low-priced stocks due to illiquidity, high transaction or

prudence reasons (See Lakonishok, shleifer, and Vishny (1992), Del Guercio (1996) and

Brave and Heaton (1997)).

For each individual stock, we calculate its historical moving average price between

month t −n to t −1 as its persistent price level. All stocks are sorted into 5 groups by stock

historical moving average price. We use a price dummy Dprice to represent the five price

groups. Dprice is from 1 to 5, representing the lowest-priced group to the highest-priced

group respectively.

For robustness, we use three different measures to estimate conditional expected id-

iosyncratic volatility. For the first measure, we assume that the idiosyncratic volatility is a

martingale and use realized monthly idiosyncratic volatility in month t to predict idiosyn-

cratic volatility in month t + 1. For the second measure, we do exponential smoothing

for idiosyncratic volatility and estimate conditional expected idiosyncratic volatility using

Riskmetric variance model. For the third measure, following Fu (2009), we use EGARCH

(1,1) to predict conditional expected idiosyncratic volatility for each individual stock based

on monthly return in previous months.

To test the relationship between idiosyncratic volatility risk premium and price level,

we reply on three different approaches.

Firstly, we add an interaction term between price dummy and conditional expected id-

iosyncratic volatility to the cross-sectional regressions and test the significance of the coef-

ficient estimate for the full sample. It turns out that the coefficient estimate of the interaction
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term is negative and significant at 5% level for all three measures. This indicates that low-

priced stocks have higher idiosyncratic volatility risk premium than high-priced stocks. In

other words, the more retail investors are concentrated in a stock, the higher idiosyncratic

volatility the stock will have. However, the sign and scale of idiosyncratic volatility risk

premium is sensitive to the measure of conditional expected idiosyncratic volatility. For

the first two measures, only the lowest-price quintile has a positive idiosyncratic volatility

risk premium while the other quintiles have negative idiosyncratic volatility risk premiums.

When idiosyncratic volatility is measured by EGARCH (1,1) model, all the price quintiles

have positive risk premiums.

Secondly, we run cross-sectional regressions for subsamples. In the first test, we run

cross-sectional regressions for the full sample. However, this test mechanically adds two

constraints: (1) other risk premiums are cross-sectional invariant (2) and the difference

in idiosyncratic volatility risk premium between adjacent groups is the same. To reduce

the concern on the two constraints, We can run cross-sectional regressions for each price

group. Subsample tests still show that low-priced stocks have higher idiosyncratic volatility

risk premium than high-priced stocks, which is robust to all the three measures. Besides

that, for all three measures, lowest-priced stocks have significantly positive risk premiums

while highest-priced stocks have insignificant risk premium. Because lowest-priced stocks

and highest-priced stocks are extremely held by retail investors and institutional investors

respectively, this finding is consistent with classical portfolio theory and Merton (1987).

Thirdly, we seek evidence from time-series regressions to support that low-priced stocks

have significantly higher idiosyncratic volatility risk premium than high-priced stocks. By

comparing the returns between low-priced stocks and high-priced stocks, we uncover that
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a simple trading strategy, long lowest-priced stocks and short highest-priced stocks, can

bring abnormal return which is unexplained by popular systematic factors. If high return of

low-priced stocks can be explained by high idiosyncratic volatility and high idiosyncratic

risk premium, we expect that the abnormal return will be largest in highest idiosyncratic

volatility quintile. By comparing the returns between low-priced stocks and high-priced

stocks within each idiosyncratic volatility quintile, we find that the abnormal return is still

persistent and is largest in the highest idiosyncratic volatility quintile. All these findings

suggest that low-priced stocks have higher idiosyncratic volatility risk premium than high-

priced stocks.

In summary, we show that idiosyncratic volatility risk premium is cross-sectional vari-

ant, especially low-priced stocks have higher idiosyncratic volatility risk premium than

high-priced stocks. Evidence from subsample suggests that lowest-priced stocks have a pos-

itive idiosyncratic volatility risk premium while highest-priced stocks have an insignificant

idiosyncratic volatility. As retail investors and institutional investors are heavily concen-

trated in lowest-priced stocks and highest-priced stocks, this finding supports the theoretic

predictions in Merton (1987) and classical portfolio theory simultaneously. It also implies

that the mixture findings in literatures are driven by stocks with different representative

investors.

The remainder of the chapter is organized as follows. In Section 2, we discuss the con-

cept of idiosyncratic volatility and propose three different approaches to estimate condition-

al expected idiosyncratic volatility. In section 3, we discuss the cross-sectional relationship

among expected return, conditional expected idiosyncratic volatility and historical moving

average price which is a proxy for retail ownership. In section 4, we use three different
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approaches to empirically examine whether idiosyncratic volatility risk premium is cross-

sectional variant. Section 5 concludes.

3.2 Idiosyncratic Volatility

In finance, idiosyncratic risk is defined as firm-specific risk. In contrast with systematic

risk, idiosyncratic risk can be diversified away in a well-diversified portfolio. In this chap-

ter, we assume that Fama-French three factors can capture all the systematic risk and the

risk unexplained by Fama-French three factor model is idiosyncratic risk. Following stan-

dard literature, we use idiosyncratic volatility as a proxy for idiosyncratic risk. Idiosyncratic

volatility is defined as the standard deviation of residuals from the Fama-French three factor

model. To estimate realized idiosyncratic volatility of an individual stock, we regress its

daily excess returns on daily Fama-French three factors every month by equation (1).

Ri,d,t = αi,t +βi,t,MKT MKTd,t +βi,t,SMBSMBd,t +βi,t,HMLHMLd,t + ε i
d,t , (3.1)

where Ri
i,d,t is stock i's excess return. MKTd,t represents market excess return on day d

in month t. SMBd,t denotes the size factor, which is the difference between the return on

the portfolio of small stocks and the return on the portfolio of large stocks (SMB). HMLd,t

represents the book to market factor, which is the difference between the return on the

portfolio of high book-to-market stocks and the return on the portfolio of low book-to-

market stocks.

Daily stock returns are obtained from the Center for Research in Security Prices (CRSP).

Our data include all common stocks traded in NYSE, NASDAQ and AMEX from January

1965 to Dec 2011. The daily information of Fama-French three factors is collected from
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Kenneth R. French's Website.

Time-series regressions for each individual stock are implementedwith amonthly rolling

window. To avoid noisy estimations or over-fitting the data, we require that each individual

firm in a month has a minimum of 15 trading days. Daily idiosyncratic volatility of indi-

vidual stock i in month t is the standard deviation of ε i
d,t . Monthly idiosyncratic volatility

is adjusted as the square root of the number of trading days multiplied by the daily idiosyn-

cratic volatility in that month.

The core principle in finance is risk required reward. Investors require higher expected

return for bearing risk. In theory, the risk and return tradeoff should be contemporaneous.

However neither expected return or expected risk can be observed directly in reality. In

practice, a conventional way is to use realized return as expected return and use different

model to estimate expected risk. In this chapter, we need to estimate conditional expected

idiosyncratic volatility to test whether idiosyncratic volatility risk premium is sensitive to

representative investors. We construct three different estimates based on realized idiosyn-

cratic volatility in the previous months.

3.2.1 Estimating Idiosyncratic Volatility under Martingale Assumption

We assume that idiosyncratic volatility series follows a martingale. This assumption

implies that stock i′s realized idiosyncratic volatility in month t is its conditional expected

idiosyncratic volatility in month t +1 based on the information in month t. From now on,

we denote this measure as IV1.

3.2.2 Estimating Idiosyncratic Volatility by Riskmetrics

Riskmetrics variance model, also known as an exponential smoother, is widely used to

predict volatility in industry. This approach assigns different weights to past variances and
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predicts future variance as a weighted average of past variances by equation (2) and (3).

σ2
i,t =

n

∑
j=1

wt− jσ2
i,t− j, (3.2)

where

wt− j =
λ j

i

∑n
j=1 λ j

i

, (3.3)

where σ2
i,t is stock i′s variance in month t; wt− j is the weight of stock i′s variance in

month t − i and λ j
i is the smoothing parameter for individual stock i. This approach is very

simple to be implemented. For each individual stocks, only one smoothing parameter λ j
i

is required. For simplicity and also to reduce the concern of over-fitting, we use a com-

mon smoothing parameter for all stocks. It is well known that the first order correlation of

variance is around 0.9. We set the smoothing parameter λ as 0.9 and use realized idiosyn-

cratic variances in the past 12 months (n=12) to estimate conditional expected idiosyncratic

volatility. The results are robust to different value of smoothing parameter and different

length (n) of historical variance. 1

Estimating Idiosyncratic Volatility by EGARCH (1,1) Model

In the first two measures, we predict monthly idiosyncratic volatility from daily data.

For the third measure, we use EGARCH models to estimate the conditional expected id-

iosyncratic volatilities based on monthly returns. Compared with classic GARCH models,

EGARCHmodel can capture the leverage effect that negative residual will have larger effect
1We use different λ (0.8, 0.85, 0.95) and n (n=3, 6 and 24) to estimate conditional idiosyncratic volatility.

The results are similar for different estimations of conditional idiosyncratic volatility.
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on the volatility than positive residual. Pagan and Schwert (1990) fit a number of different

models to monthly U.S. stock returns and find that the EGARCHmodel is the best over-all.

Fu (2009) uses EGARCH(p,q) model to estimate the conditional idiosyncratic volatility for

individual stock i, where p ≤ 3 and q ≤ 3.

ri
t = α i +β i

MKT MKTt +β i
SMBSMBt +β i

HMLHMLt + ε i
i,t ,

εit ∈ N(0,σ2
it ),

lnσ2
it = αi +

p

∑
l=1

bi,llnσ2
i,t−1 +

q

∑
k=1

ci,k

{
θ(

εi,t−k

σi,t−k
)+ γ [|

εi,t−k

σi,t−k
|− (

2
π
)

1
2 ]

}
(3.4)

where ri
t is stock i′s monthly excess return, MKTt ,SMBt ,HMLt are the monthly Fama-

French three factors. For simplicity, we use EGARCH(1,1) model for all stocks. Condi-

tional expected idiosyncratic volatility for each individual stock is estimated by a monthly

expanding window, which requires a minimum of 30 observations. All conditional expect-

ed idiosyncratic volatility is estimated by past information. In other words, conditional

idiosyncratic volatility in month t is forecasted by monthly returns up to month t − 1 for

each individual stock.

3.3 Idiosyncratic Volatility and Expected Returns: Cross-Sectional Regressions

3.3.1 Idiosyncratic Volatility Risk Premium is Cross-sectional Invariant

Following Fama andMacBeth (1973), we attempt to test whether time-series average of

the coefficient estimates of idiosyncratic volatility is significantly different from zero on a

monthly basis. We run the following cross-sectional regressions each month for all stocks:

Ri,t+1 = β0,t +βtXi,t + γtEtσt+1 + εi,t+1, (3.5)
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where Ri,t+1 is stock i′s realized excess return in month t +1; Xi,t is stock i′s firm-specific

characteristics (etc., beta, size, book to market ratio) in month t. Etσt+1 is stock i′s condi-

tional expected idiosyncratic volatility in month t +1, εi,t+1 is the residual unexplained by

firm-specific characteristics. γt is the idiosyncratic volatility risk premium in month t.

3.3.2 Idiosyncratic Volatility Risk Premium is Cross-sectional Variant

Modern financial economic theory assumes that representative investors are rational in

two aspects, (1) they make optimal decisions based on the same axioms in expected utility

theory (2) and they have the same expectation of future return. However, these two assump-

tions are too optimal and invalid in reality. In contrast, based on the irrefutable assumptions-

investor sentiment and limitation of arbitrage, behavioral finance investigates whether ir-

rational investors affect stock price. Literatures in this area find that retail investors prefer

certain group of stocks, trade stocks together and affect stock price by creating a system-

atic risk. For example, Kumar and Lee (2006), Kumar (2009), Brandt, Brav, Graham and

Kumar (2010) all find that retail investors are concentrated in certain group of stocks (i.e.,

small-cap, low-priced, value, positively skewed stocks). Feng and Seasholes (2004), Jack-

son (2003) and Barber, Odean, and Zhu (2003) find that trades of retail investors are positive

correlated in different stock markets and in different country; Kumar and Lee (2006) find

that systematic retail trading explains return co-movements for stocks with high retail con-

centration; Barber, Odean and Zhu (2008) and Han and Kumar (2010) both document that

retail trading importantly affect stock prices using different data.

Shed lights by all these findings, in this chapter we conjecture that idiosyncratic volatil-

ity risk premium is clientele-based. The intuition is very simple. As retail investors and

institutional investors concentrated in different group of stocks, these stocks will have dif-
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ferent representative investors. By theory, retail investors require a positive idiosyncratic

risk premium to compensate for holding under-diversified portfolios while institutional in-

vestors require nothing. When stocks have different representative investors and different

representative investors require different compensation for holding idiosyncratic risk, it is

naturally to guess that idiosyncratic volatility risk premium should be clientele-based. In

this chapter, we try to test whether stocks with different representative investors have dif-

ferent idiosyncratic volatility risk premium.

To answer this question, we assume that representative investors of stocks with high-

est retail ownership are retail investors and representative investors of stocks with lowest

retail ownership are institutional investors. 13(f) institutional holding data from Thomson

Reuters is widely used as a measure of institutional ownership. However, we do not use this

data in this chapter for several reasons. Firstly, the data only starts from 1980. To compare

with other chapters, we need to an extensive data starting from 1960s. Secondly, the data

is only quarterly updated. Volatility models are extensively explored for daily volatility

or monthly volatility. It is not clear for us whether these models still work for quarterly

volatility. Thirdly, only large institutions are required to report their holdings to SEC. A

1978 amendment to the Securities and Exchange Act of 1934 required all institutions with

greater than 100 million of securities under discretionary management to report their hold-

ings to the SEC, while mid-size institutions or wealthy individuals are exempt from this

act. However, in U.S., a large proportion of stocks are owned by wealthy individuals. It

is not clear whether the 13(f) institution holding data is an accurate proxy for institution

ownership.

Instead of using 13(f) data, we use stock's price level (historical moving average price)
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as a proxy for stock's retail ownership. Green and Huang (2009) suggest investors catego-

rize stocks based on price by studying the co-movements between stocks undergo splits and

low-priced stocks. Especially, retail investors are concentrated in low-priced stocks and in-

stitutional investors prefer high-priced stocks. Brandt, Brav, Graham and Kumar (2009)

find that low-priced stocks have less than 5.25 percent institution ownership on average,

while institution ownership of high-priced stocks is 56.44 percent on average in their sam-

ple. The significantly negative relationship between retail ownership and price level are

also documented in other literatures (i.e., Kumar and Lee (2006), Kumar (2009), Han and

Kumar (2010) and Fu (2009)). In the other hand, institutional investors often avoid trading

Low-priced stocks for prudence reason and high transaction cost (See Lakonishok, shleifer

and Vishny (1992), Del Guercio (1996) and Brave and Heaton (1997)).

For an individual stock, we calculate its moving average price as a proxy for its price

level.

Pi,t =
1
n

n

∑
1

Pi,t−n (3.6)

where Pi,t is the moving average price for individual stock i in month t and n is the length of

prices we used to compute the moving average price. All the results reported in this chapter

is based on n = 3 (we test our results with different n (n=1, 6, and 12), we get similar results

as we set n = 3).

To test whether idiosyncratic volatility is cross-sectional variant, we add an interaction

term between stock's price level and conditional expected idiosyncratic volatility to the

cross-sectional regressions.



130

Ri,t+1 = βtXi,t + γtEtσt+1 +ϕtDpriceEtσt+1 + εi,t+1, (3.7)

Dprice is a price dummy, a proxy to capture the price level of an individual stock. In every

month, we sort all stocks into 5 groups by their historical moving average prices and assign

1 to 5 to Dprice from lowest price level to highest price level. ϕt . the coefficient of the

intersection term describes the difference in idiosyncratic volatility risk premium between

stocks with different price level. For example, the idiosyncratic volatility risk premium of

lowest-priced stocks is γt + ϕt , while the idiosyncratic volatility risk premium of highest-

priced stocks is γt +5ϕt . We test whether the time-series average coefficient estimate of the

interaction term is significantly different from zero.

3.4 Empirical Results

3.4.1 Data and Variables

Our data include daily and monthly returns of all common stocks traded in NYSE, NAS-

DAQ andAMEX from Jan 1964 to Dec 2011. Trading data are from the Center for Research

in Security Prices (CRSP) and the book value of individual stocks are from Compustat. We

use SP 500 index return as the market return and the one-month Treasury bill rate as the

risk-free rate.

Following standard literature, we use firm's beta, size, book to market ratio and return

in previous month to describe firm's characteristics. Firm's size and book to market ratio

are adjusted by logarithm (Xi,t=[Betai,t , Ln(Size)i,t , ln(BE/ME)i,t , Reti,t−1]).

Ln(Size)i,t denotes the logarithm of firm i's capital capitalization in month t, which is

calculated as the end-price in month t −1 multiplied by the number of stocks outstanding.
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Because book value of a stock is updated yearly, Book to market ratio is calculated as

the ratio between fiscal year-end book value of common equity and the calendar year-end

market value. Reti,t−1 is stock i's return in month t −1 and is used to control for short-term

return reversal.

For each individual stock, Betai,t captures its systematic risk in month t. To reduce the

possible effect of correlation between size and beta, we follow Fama-French (1992) and

assign portfolio beta to individual stocks. In each month, stocks are sorted into ten groups

by market capitalization. The cutoff is only determined by NYSE-listed stocks. Within

each size group, we sort stocks into 10 portfolios by pre-ranking betas. The beta of each

individual stock is estimated from market model using the previous 24 to 60 months of

returns, as available. We then regress the value-weighted return of each beta-size portfolio

on the market return and the market return in previous month. The beta of each portfolio

is the sum of the coefficient estimates of current market return and prior market return. At

last, we assign the portfolio beta to each individual stock based on its size and beta rankings

in each month.

To make sure all the information are available before they are used to explain the cross-

section of stock returns. Following Fama-French (1992), we use size in month t-1 to explain

the return in month t and use book to market ratio of fiscal year t to explain the returns for

the months from Jul y in year t+1 to June in year t+2.
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3.4.2 Main Results from Cross-Sectional Regressions

In this chapter, we run two different cross-sectional regressions for all stocks by equation

(7) and (9), which can both be written as:

Ri,t = γ0,t +
K

∑
k=1

γk,tXk,i,t + εi,t , i = 1,2, ...,Nt , t = 1,2, ...,T, (3.8)

where Ri,t is the realized excess return of stock i in month t. Xk,i,t are the explanatory

variables of cross-sectional expected returns. Nt denotes the number of stocks in month t,

which may vary in each month. T is the total number of months in our data. We test whether

the time-series average coefficients of conditional expected idiosyncratic volatility and the

interaction term between price dummy and idiosyncratic volatility are significant different

from zero. The final estimates of γ̂k and its variance are:

γ̂k =
1
T

T

∑
t=1

ˆγkt (3.9)

var(γ̂k) =
∑T

t=1(γ̂k − ˆγkt)
2

T (T −1)
(3.10)

The t-statistic is the time-series mean of coefficient, γ̂k divided by its standard deviation.

Cross-Sectional Regressions on the Full Sample

In this chapter, we use three different approaches to estimate conditional expected id-

iosyncratic volatility. Results based on the IV1, IV2 and IV3 are displayed in Panel A, B and

C of Table 1 respectively. Model 1 is the typical model used to test whether idiosyncratic

volatility risk premium is significantly different from zero on average. Using different mea-
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sure of conditional expected idiosyncratic volatility risk premium, we find similar results

as documented in literature.

Ang et all (2006) imply a significantly negative idiosyncratic volatility risk premium

when it is estimated by IV1. This implies that lower idiosyncratic volatility in previous

month predicts a higher return in the subsequent month. We also find that the idiosyncratic

volatility risk premium is negative, -0.032 and is significant at 5 % level. When conditional

expected idiosyncratic volatility is estimated by IV2, idiosyncratic risk premium is nega-

tive but not significant at 5% level. Using ARIMA(1,1) to estimate conditional expected

idiosyncratic volatility, Huang, Liu, Rhee and Zhang (2009) also find similar result. Fu

(2009) uses EGARCH (p,q) model to estimate conditional expected idiosyncratic volatility

for each individual stock. He finds a significantly positive idiosyncratic volatility risk pre-

mium. Using a similar model to estimate idiosyncratic volatility, we find that idiosyncratic

volatility risk premium is equal to 0.118 and is significant at 5% level.

Model (2) and Model (3) in Table 1 test whether idiosyncratic volatility risk premium is

the same for stocks with different price levels. For all three measures, the coefficient esti-

mates on idiosyncratic volatility are all become significantly positive, while the coefficient

estimates on the interaction term are all negative and significant at 5% level. A negative

coefficient estimate of the interaction term implies that low-priced stocks have a higher id-

iosyncratic volatility risk premium than high-priced stocks. If price level is a good proxy

for retail ownership, this indicates the more retail investors are concentrated in a stock, the

higher idiosyncratic volatility risk premium the stock has. The difference in idiosyncratic

volatility risk premium for stocks with different price levels is large. When conditional

expected idiosyncratic volatility is measured by IV1, the risk premium of lowest-priced s-
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Table 3.1: Fama-Macbeth regressions on the full sample

This table reports the average coefficients in the Fama-MacBeth cross-sectional regressions for all common stocks inNYSE/AMEX/NASDAQ

over the period from Jan 1964 to December 2011. IV1 is the realized idiosyncratic volatility in the previous month. IV2 is estimated

by Riskmetrics based on realized idiosyncratic volatility in the previous 12 months. IV3 is estimated by EGARCH(1,1) model based

on monthly return over the previous 24 to 60 months. Beta is estimated using the 10× 10 size/beta double sorted portfolios following

Fama and French (1992). Size and B/M are estimated as in Fama and French (1992) and adjusted by logarithm. Rett−1 is stock return in

previous month. DPrice is the price dummy, ranging from 1 (lowest-priced) to 5(highest-priced) based on stock historical moving average

price in previous 3 months. R̄2 is the average cross-sectional adjusted R2.

Models Intercept Beta Size B/M Rett−1 IV IV×DPrice R̄2

Panel A: IV1: Realized Expected Idiosyncratic Volatility

1 0.017 0.001 -0.001 0.002 -0.032 0.069

(6.539) (0.265) (-3.897) (3.695) (-5.622)

2 0.016 0.001 -0.001 0.001 0.014 -0.025 0.072

(6.345) (0.331) (-2.116) (2.886) (2.058) (-17.056)

3 0.014 0.002 -0.000 0.001 -0.063 0.028 -0.025 0.079

(5.415) (0.069) (-1.078) (3.706) (-16.947) (4.028) (-17.161)

Panel B: IV2: Expected Idiosyncratic Volatility by Riskmetrics

1 0.03 -0.000 -0.001 0.002 -0.007 0.071

(5.086) (-0.086) (-3.006) (4.329) (-0.590)

2 0.013 0.000 -0.000 0.001 0.040 -0.029 0.074

(5.211) (0.074) (-0.764) (3.263) (3.234) (-16.088)

3 0.013 0.000 -0.000 0.002 -0.065 0.041 -0.029 0.082

(5.164) (0.008) (-0.512) (3.804) (-18.548) (3.318) (-16.540)

Panel B: IV3: Expected Idiosyncratic Volatility by EGARCH(1,1) Model

1 -0.005 -0.004 0.001 0.004 0.116 0.074

(-1.989) (-1.768) (2.668) (8.313) (11.498)

2 -0.009 -0.004 0.002 0.003 0.189 -0.032 0.077

(-3.358) (-1.868) (6.156) (7.524) (15.158) (-16.700)

3 -0.008 -0.004 -0.002 0.004 -0.064 0.188 -0.033 0.086

(-3.076) (-1.801) (6.232) (7.816) (-18.923) (15.488) (-17.392)
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Table 3.2: Time-series average weight of stocks with different price level

Price Portfolio 1(lowest) 2 3 4 5(highest)

1 2 3 4 5
mean 0.07 0.09 0.13 0.23 0.48
min 0.00 0.01 0.03 0.09 0.21
max 0.24 0.19 0.24 0.34 0.86

tocks is 0.03 while the risk premium of highest-priced stocks is -0.097; when conditional

expected idiosyncratic volatility is measured by IV2, the risk premium of lowest-priced s-

tocks is 0.012 while the risk premium of highest-priced stocks is -0.096. When conditional

expected idiosyncratic volatility is measured by EGARCH(1,1) model, the risk premium of

lowest-priced stocks is 0.155 while the risk premium of highest-priced stocks is 0.023.

In this section, we display the estimations of cross-sectional regressions for the full sam-

ple and find that idiosyncratic volatility risk premium is cross-sectional variant. Especially,

low-priced stocks have higher idiosyncratic volatility risk premium than high-priced stocks

for all three measures. However, it is still puzzling that idiosyncratic volatility is negative

for high-priced stocks when conditional expected idiosyncratic volatility is estimated by

IV1 or IV2.

Cross-Sectional Regressions on the Sub-samples

In the last section, we add an interaction term to control the difference in idiosyncratic

volatility between stocks within different price groups and run cross-sectional regressions

for the full sample. However, this test is based on two important assumptions: (1) except for

idiosyncratic volatility risk premium, other risk premiums are similar across stocks within

different groups; (2) the difference in idiosyncratic volatility risk premium for stocks within
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Table 3.3: Fama-Macbeth regressions on the subsamples

This table reports the average coefficients in the Fama-MacBeth cross-sectional regressions for all common stocks in

NYSE/AMEX/NASDAQ over the period from Jan 1964 to December 2011. IV1 is the realized idiosyncratic volatility in the previ-

ous month. IV2 is estimated by Riskmetrics based on realized idiosyncratic volatility in the previous 12 months. IV3 is estimated by

EGARCH(1,1) model based on monthly return over the previous 24 to 60 months. Beta is estimated using the 10× 10 size/beta dou-

ble sorted portfolios following Fama and French (1992) and are adjusted by logarithm. Size and B/M are estimated as in Fama and

French (1992). Rett−1 is stock return in previous month. Price portfolios 1 from (lowest-priced) to 5(highest-priced) are created by stock

historical moving average price in previous 3 months. R̄2 is the average cross-sectional adjusted R2.

Price Portfolios Intercept Size B/M IV R̄2

Panel A: IV1: Realized Expected Idiosyncratic Volatility
1(lowest) -0.042 0.017 0.007 0.040 0.045

(-11.309) (18.876) (11.064) (5.132)
2 -0.035 0.011 0.005 0.014 0.046

(-11.244) (17.529) (9.110) (1.667)
3 -0.024 0.007 0.004 -0.010 0.047

(-8.476) (15.653) (6.559) (-0.951)
4 -0.023 0.006 0.004 -0.014 0.049

(-8.463) (15.324) (6.445) (-1.332)
5(highest) -0.026 0.005 0.005 -0.010 0.055

(-9.599) (14.853) (7.106) (-0.819)
Panel B: IV2: Expected Idiosyncratic Volatility by Riskmetrics
1(lowest) -0.072 0.020 0.008 0.145 0.049

(-16.835) (20.104) (12.677) (9.768)
2 -0.054 0.012 0.007 0.103 0.053

(-16.892) (20.008) (11.770) (6.288)
3 -0.036 0.008 0.005 0.059 0.054

(-12.890) (17.822) (8.652) (3.294)
4 -0.031 0.006 0.005 0.037 0.057

(-11.280) (17.625) (8.146) (1.836)
5(highest) -0.030 0.005 0.005 0.020 0.064

(-10.343) (15.971) (8.579) (0.979)
Panel C: IV3: Expected Idiosyncratic Volatility by EGARCH(1,1) model
1(lowest) -0.086 0.021 0.012 0.271 0.065

(-24.392) (24.326) (18.475) (15.781)
2 -0.064 0.013 0.008 0.189 0.058

(-21.855) (22.632) (14.503) (11.457)
3 -0.046 0.009 0.006 0.131 0.056

(-18.378) (20.992) (10.753) (8.019)
4 -0.039 0.007 0.006 0.095 0.057

(-15.677) (19.974) (9.403) (5.957)
5(highest) -0.038 0.006 0.006 0.067 0.062

(-13.823) (17.642) (9.659) (1.116)
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adjacent groups is the same.

To mitigate our concern on the two assumptions, we run cross-sectional regressions

for stocks within each price group by model (1). The subsample tests allow stocks within

different price group have different risk premiums and more importantly risk premiums for

each price group can be estimated independently.

Table 3 yields striking evidence to support two theories in finance literature. Merton

(1986) predicts that retail investors require a positive idiosyncratic volatility risk premium

to compensate for holding under-diversified portfolios. If representative investors of cer-

tain stocks are retail investors, these stocks will have a positive idiosyncratic volatility risk

premium. For all three different measures, lowest-priced stocks have a positive idiosyncrat-

ic volatility risk premium and it is significant at 5% level. To be addressed, lowest-priced

stocks hold mainly by retail investors. This indicates that when retail investors are the rep-

resentative investors of low-priced stocks, they require a positive idiosyncratic volatility,

which is the same as predicted in Merton (1986). Classical portfolios theory shows that,

when representative investors hold well diversified portfolios, idiosyncratic risk is diversi-

fied away and should not priced. In Table3, for all three different measures, highest-priced

stocks have an insignificant idiosyncratic volatility risk premium. This implies that as rep-

resentative investors of highest-priced stocks are institutional investors, these stocks do not

have any idiosyncratic volatility risk premium.

In sum, results from cross-sectional regressions on the full sample and sub-samples

both show that idiosyncratic volatility risk premium is cross-sectional variant, especial-

ly low-priced stocks earn a higher idiosyncratic volatility risk premium than high-priced

stocks on average. Besides that, we get striking evidence from sub-sample tests to sup-
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port that lowest-priced stocks earn a positive idiosyncratic volatility risk premium while

highest-priced stocks earn an insignificant idiosyncratic volatility risk premium. If price is

an accurate proxy for retail ownership, this indicates that retail investors as representative

investors of lowest-priced stocks require a positive idiosyncratic volatility risk premium

and institutional investors as representative investors of highest-priced stocks require noth-

ing for idiosyncratic risk. This finding is consistent with the theoretic predictions in Merton

(1987) and classical portfolio theory.

3.4.3 Main Results from Portfolio Analysis

Delong at all (1990) show that noise traders can earn a higher expected return than

rational investors do for bearing a disproportionate amount of risk created by themselves. If

price level is an accurate proxy for retail ownership, we can easily compare returns between

low-priced stocks and high-priced stocks to test whether retail investors can earn a higher

return than institutional investors on average.

In each month, we sort all stocks into five portfolios by historical moving average price

and calculate value-weighted return for each portfolio. The second column in table 4 shows

the simple value-weighted excess return of each portfolio, all the numbers in column 2 are

in percentage and the number in bracket denotes the corresponding t statistics. The aver-

age returns from quintile 1 to 5 are 1.66%, 0.98%, 0.74%, 0.50% and 0.02% respectively.

This indicates that Low-priced stocks earn a robust higher return than high-priced stock on

average every month.

We also calculate risk-adjusted abnormal returns for all quintiles by different models.

Column 3 to 5 in Table 4 reports CAPM-alpha, FF-alpha and Carhart-alpha for all quintiles.

We can observe that low-priced portfolios have larger alpha than high-priced portfolios.
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Table 3.4: Portfolios sorted by historical moving average price

We form value-weighted quintile portfolios every month by sorting stocks based on historical moving average
price. Portfolios are formed every month, based on historical moving average price computed using monthly
return in the previous 3 months. Portfolio 1(5) is the portfolio of stocks with the lowest (highest) moving
average price. The statistics in the column labeled average return are measured in monthly percentage terms
and apply to excess -returns, t statistics are displayed in the corresponding brackets. The row ``1-5'' refers
to the difference in monthly returns between portfolio 1 and portfolio 5. The Alpha columns report Jensen's
alpha with respect to the CAPM, Fama-French (1993) three-factor model or Cahart (1997) four-factor model.
Robust New-West (1987) t statistics are reported in the brackets. The sample period is January 1964 to
December 2011.

Rank Average Return CAPM-Alpha FF3-Alpha Carhart-Alpha

1 (lowest) 1.66 1.16 0.85 1.18
(4.57) (5.13) (5.11) (6.09)

2 0.98 0.50 0.18 0.39
(3.21) (3.18) (2.15) (4.33)

3 0.74 0.29 0.00 0.12
(2.74) (2.27) (0.00) (2.13)

4 0.50 0.06 -0.15 -0.10
(2.05) (0.65) (-3.15) (-1.93)

5 (highest) 0.02 -0.42 -0.53 -0.54
(0.08) (-5.86) (-13.36) (-13.46)

1-5 1.64*** 1.58*** 1.37*** 1.72***
(7.84) (8.04) (7.85) (8.56)
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This pattern is robust to different models. We also compare the returns between low-priced

stocks and high-priced stocks when size, book to market ratio, short-term reversal, liquidity

or momentum effect is controlled. All these common factors cannot explain the abnormal

return earned by low-priced stocks. All the tables of robustness check are available upon

request.

To test whether low-priced quintiles have significant higher returns than high-priced

quintiles, we can build up a portfolio by long lowest-priced stocks and short highest-priced

stocks and test whether its alpha is significant from zero. The last row in Table 4 reports

the performance of this portfolio formed on price quintiles. The 1-5 differences in average

return, CAPM-alpha, FF-alpha and Carhart-alpha are 1.64%, 1.58%, 1.37% and 1.1.72%

respectively and all the differences are significant at 5% level.

All the evidence in Table 4 supports that low-priced stocks earn higher return and higher

risk adjusted return than high-priced on average and we can get positive abnormal return by

long quintile 1 and short quintile 5. Together with the empirical findings that retail investors

are mainly concentrated in low-priced stocks and institutional investors are concentrated

in high-priced stocks, all above implies that retail investors can earn higher return than

institutional investors on average.

As the difference in return between low-priced stocks and high-priced stocks cannot be

explained by common systematic risk, we conjecture that the difference in return can be

explained by idiosyncratic risk. Our story is very intuitive. As retail investors are concen-

trated in low-priced stocks, they can affect stock price by two ways. Firstly, trades of retail

investors can increase idiosyncratic volatility. By studying a reform of the French stock

market, Foucault et all (2011) find that retail trading activity has a positive effect on the
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volatility of stock return. This may explain why low-priced stocks have higher idiosyncrat-

ic volatility than high-priced stocks on average, which is widely documented in literatures

(See Kumar and Lee (2006) and Brant et All (2009)). Secondly, because retail investors

are concentrated in low-priced stocks while institutional investors are concentrated in high-

priced stocks, by theory low-priced stocks should earn a higher idiosyncratic volatility risk

premium than high price stocks. In other words, high return earned by low-priced stock-

s may be explained by high idiosyncratic volatility and high idiosyncratic volatility risk

premium simultaneously.

In this chapter, our core goal is to prove that idiosyncratic volatility risk premium is

cross-sectional variant. To find evidence from portfolio analysis, we can check whether

low-priced stocks still earn higher returns than high-priced stockswhen idiosyncratic volatil-

ity is controlled.

To control for idiosyncratic risk, every month we firstly sort all stocks into 5 groups by

the three measures of conditional expected idiosyncratic volatility. Then within each group,

we sort stocks into 5 groups by historical moving average price. Within each idiosyncratic

volatility quintile, quintile 5 contains the highest-priced stocks while quintile 1 contains the

lowest-priced stocks. We expect that high idiosyncratic volatility quintiles have larger dif-

ference in return between low-priced stocks and high-priced stocks than low idiosyncratic

volatility quintiles, because the difference is enlarged by high-idiosyncratic volatility.

Table 5 reports Carhart-alpha of the 25 idiosyncratic volatility-price portfolios when

conditional expected idiosyncratic volatility is measured by IV1. Within each idiosyncratic

volatility quintile, low price quintile has a larger Carhart-alpha than high price quintile

and the 1-5 Carhart-alpha are negative and significant at 5% level. This indicates that the
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abnormal return of low-priced stocks cannot explain by the story that low-priced stocks

have high idiosyncratic volatility alone. As what we expected, the highest idiosyncratic

volatility quintile has the largest 1-5 difference in Carhart-alpha 3.51%, while the lowest

idiosyncratic volatility has the smallest 1-5 difference in Carhart-alpha 0.3%.

When idiosyncratic volatility is measured by IV2,We have similar findings in Table 6 as

if idiosyncratic volatility is measured by IV1. The highest idiosyncratic volatility quintile

has the largest 1-5 differences in Carhart-alpha, −3.66% and significant at 5% level, while

the lowest idiosyncratic volatility quintile has the smallest 5-1 differences in Carhart-alpha,

0.27% and is also significant at 5% level. The phenomenon that low-priced stocks earn

higher return than high-priced stocks is persistent in each idiosyncratic volatility quintile.

When idiosyncratic volatility is measured by IV3, in Table 7, the highest idiosyncratic

volatility quintile has a significantly positive 1-5 difference in Carhart-alpha. This indi-

cates that the anomaly that low-priced stocks earn higher return than high-priced stocks are

mainly driven by stocks with high idiosyncratic volatility2.

To sum up, in this section, we compare returns between low-priced stocks and high-

priced stocks on average when idiosyncratic volatility is controlled. We find that low-priced

stocks still earn higher return than high-priced stocks even when idiosyncratic volatility

is controlled. Especially, the highest idiosyncratic volatility quintile has the largest 1-5

difference in Carhart-alpha while the lowest idiosyncratic volatility quintile has the smallest

or insignificant 1-5 difference in Carhart-alpha. All the above is consistent with our story

that low-priced stocks have higher idiosyncratic volatility risk premium than high-priced

stocks.
2Following Fu (2009), we estimate EGARCH (1,1) model for each individual stock every month. As

attacked by Hui Guo and Michael Ferguson (2012), this approach may over-fit the data and estimations from
which are too noisy.
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Table 3.5: Alpha of price-idiosyncratic volatility portfolios

The table report Carhart (1997) alpha, with robust Newey-West (1987) t-statistics in the brackets. All the stocks are sorted into 5×5

Idiosyncratic volatility-Price portfolios. We firstly sort all stocks into five quintiles based on conditional expected idiosyncratic

volatility measured by IV1 every month. IV1 is the realized idiosyncratic volatility relative to the FF-3 model in the previous month.

Within each idiosyncratic volatility quintile, we sort all stocks into 5 price quintiles based on historical moving average price computed

using monthly return in the previous 3 months. In the column ``IVOl'', Portfolio 1(5) is the portfolio of stocks with the lowest (highest)

conditional idiosyncratic volatility. The column ``1-5'' refers to the difference in Carhart-alpha between portfolio 1 and portfolio 5 in

each idiosyncratic volatility quintile. The sample period is January 1964 to December 2011. All the results are based on monthly

value-weighted portfolio returns.

Price Portfolio
VOL portfolio 1 2 3 4 5 1-5

Fama-French-Carhart Alpha

1 0.35 0.22 0.15 0.11 0.06 0.30
(4.66) (3.20) (2.19) (1.55) (0.78) (3.73)

2 0.51 0.32 0.23 0.21 0.06 0.45
(5.65) (4.71) (3.22) (2.85) (0.88) (4.40)

3 0.73 0.29 0.30 0.27 0.16 0.58
(6.49) (3.85) (4.03) (3.35) (2.38) (4.46)

4 0.96 0.33 0.29 0.25 0.04 0.92
(6.13) (2.77) (3.01) (3.20) (0.47) (5.39)

5 3.39 0.36 0.20 0.06 -0.12 3.51
(10.25) (1.72) (1.14) (0.37) (-0.75) (12.43)
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Table 3.6: Alpha of price-idiosyncratic volatility portfolios

The table reports Carhart (1997) alpha, with robust Newey-West (1987) t-statistics in the brackets. All the stocks are sorted into 5×5

Idiosyncratic volatility-Price portfolios. We firstly sort all stocks into five quintiles based on conditional expected idiosyncratic

volatility measured by IV2 every month. IV2 is estimated from realized idiosyncratic volatility relative to the FF-3 model in the

previous twelve months by Riskmetrics approach. Within each idiosyncratic volatility quintile, we sort all stocks into 5 price quintiles

based on historical moving average price computed using monthly return in the previous 3 months. In the column ``IVOl'', Portfolio

1(5) is the portfolio of stocks with the lowest (highest) conditional idiosyncratic volatility. The column ``1-5'' refers to the difference in

Carhart-alpha between portfolio 1 and portfolio 5 in each idiosyncratic volatility quintile. The sample period is January 1964 to

December 2011. All the results are based on monthly value-weighted portfolio returns.

Price Portfolio
IVOL portfolio 1 2 3 4 5 1-5

Fama-French-Carhart Alpha

1 0.37 0.23 0.20 0.07 0.10 0.27
(5.32) (3.45) (2.93) (0.94) (1.45) (4.07)

2 0.43 0.22 0.16 0.12 0.05 0.38
(5.14) (3.11) (2.24) (1.60) (0.68) (4.44)

3 0.46 0.21 0.19 0.16 0.10 0.36
(4.41) (2.48) (2.49) (2.15) (1.31) (2.99)

4 0.69 0.17 0.15 0.25 0.04 0.65
(4.64) (1.46) (1.50) (2.74) (0.37) (3.64)

5 3.72 0.50 0.58 0.49 0.06 3.66
(10.90) (2.37) (3.05) (2.73) (0.30) (12.55)
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Table 3.7: Alpha of price-idiosyncratic volatility portfolios

The table reports Carhart (1997) alpha, with robust Newey-West (1987) t-statistics in the brackets. All the stocks are sorted into 5×5

Idiosyncratic volatility-Price portfolios. We firstly sort all stocks into five quintiles based on conditional expected idiosyncratic

volatility measured by IV3 every month. IV3 is estimated from monthly return in the previous 24 to 60 months by EGARCH (1,1)

model every month. Within each idiosyncratic volatility quintile, we sort all stocks into 5 price quintile based on historical moving

average price computed using monthly return in the previous 3 months. In the column ``IVOl'', Portfolio 1(5) is the portfolio of stocks

with the lowest (highest) conditional idiosyncratic volatility. The column ``1-5'' refers to the difference in Carhart-alpha between

portfolio 1 and portfolio 5 in each idiosyncratic volatility quintile. The sample period is January 1964 to December 2011. All the results

are based on monthly value-weighted portfolio returns.

Price Portfolio
IVOL portfolio 1 2 3 4 5 1-5

Fama-French-Cahart Alpha

1 -0.02 0.06 0.06 -0.04 -0.09 0.07
(-0.22) (0.82) (0.84) (-0.60) (-1.36) (0.97)

2 0.05 0.02 0.02 0.03 0.02 0.03
(0.65) (0.23) (0.21) (0.41) (0.31) (0.36)

3 -0.01 -0.03 0.04 0.09 0.07 -0.08
(-0.13) (-0.35) (0.50) (1.30) (1.17) (-0.77)

4 0.22 -0.05 0.06 0.15 0.01 0.21
(1.62) (-0.45) (0.67) (1.91) (0.12) (1.30)

5 4.62 1.34 1.28 1.07 0.76 3.86
(12.17) (5.38) (5.91) (5.92) (4.38) (12.00)
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3.5 Conclusion

Financial theories imply that idiosyncratic risk is priced differently by different repre-

sentative investors. Merton (1987) implies that when representative investors hold under-

diversified portfolios, idiosyncratic volatility is positively priced. In contrast, classical

portfolio theory suggests that idiosyncratic risk should not be priced when representative

investors hold well-diversified portfolios.

In reality, different stocks may have different representative investors. In finance, in-

vestors are often sorted into two groups-retail investors and institutional investors. Empir-

ical studies find that these two groups have significantly different appetite for stocks and

hold different portfolios. Retail investors prefer low-priced, small-cap, value stocks and

stocks with lottery features and often hold under-diversified portfolios, while institutional

investors prefer high-priced, large-cap and growth stocks and hold well-diversified portfo-

lios.

In this chapter, we attempt to link idiosyncratic volatility risk premium with the type

of representative investors and test whether idiosyncratic risk is priced differently in stocks

with different representative investors. Shed lights from Brandt et all (2009) and other

literatures, we use stock price level as a proxy for retail ownership and attempt to answer

this question by three different approaches.

Firstly, we implement cross-sectional regressions for the full sample and test whether the

coefficient estimate of an interaction term between price dummy and idiosyncratic volatility

is significant from zero. For different measures of idiosyncratic volatility, the coefficient

is negative and significant at 5% level. This indicates that low-priced stocks have higher

idiosyncratic volatility risk premium than high-priced stocks.
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Secondly, we run cross-sectional regressions for subsamples. It turns out that lowest-

priced stocks have the largest idiosyncratic volatility risk premium while highest-priced

stocks have an insignificant idiosyncratic volatility risk premium. If representative in-

vestors of lowest-priced stocks and highest-priced stocks are retail investors and institution-

al investors respectively, these findings are consistent with theoretic predictions in Merton

(1987) and classical portfolio theory.

Thirdly, we examine the returns of a set of portfolios that are sorted by idiosyncratic

volatility and price level. We uncover a very robust result that low-priced stocks have

high abnormal return. Especially the abnormal return is highest in the highest idiosyncratic

volatility quintile and is the lowest or insignificant in the lowest idiosyncratic volatility

quintile. This implies that, together with high idiosyncratic volatility, high idiosyncratic

volatility risk premium can explain the high abnormal return of low-priced stocks.

In sum, we find evidence to support that idiosyncratic volatility risk premium is cross-

sectional variant. Specifically speaking, low-priced stocks have higher idiosyncratic volatil-

ity risk premium than high-priced stocks. If price level is an accurate proxy for retail own-

ership, stocks with higher retail ownership has higher idiosyncratic volatility risk premium

than stocks with lower retail ownership. Besides that, we discover striking evidence from

subsample tests to support Merton (1987) and classical portfolio theory simultaneously. As

stocks with different representative investors have different idiosyncratic volatility risk pre-

miums, it requires us to carefully interpret the empirical findings of idiosyncratic volatility

risk premium in and re-examine the way to test idiosyncratic volatility risk premium in

literatures.
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