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ABSTRACT 
 
 

TYLER K. MORGAN.  Manpower and Efficiency Study of the Manns Harbor Shipyard through Data 
Envelopment Analysis.  (Under the direction of DR. OMIDREZA SHOGHLI)   

 
 

The NCDOT Ferry Division (NCDOT-FD) self-performs preventative maintenance, 

emergency maintenance, and scheduled overhauls on a continual basis with manpower staffing 

to support the North Carolina Ferry Service’s (NCFS) ability to continue to operate and provide 

the high level of services provided to North Carolinians and visitors to the state’s east coast. 

Establishing performance targets for marine maintenance and repair operations can be 

challenging for management due to the multitude of factors that can potentially influence 

productivity, efficiency, and manpower requirements. The aim of this study is to measure and 

evaluate the efficiencies of the NCDOT-FD maintenance and repair operations using Data 

Envelopment Analysis (DEA). The use of DEA allows for multiple factors affecting maintenance 

productivity to be accounted for and allows the sources of inefficiencies in maintenance 

operations to be identified through examination of efficient or “best practice” DMUs. Results 

presented in this study are used to develop an overall strategic plan for enhanced decision-making 

with regards to labor and resource requirements, maintenance scheduling, and management 

strategies for the NCDOT-FD. Inefficient maintenance operations are identified through DEA 

evaluation, and recommendations for increased efficiency and productivity of these operations 

are provided through analysis of several quantitative and qualitative factors. Additionally, 

performance benchmarks provided in this paper can be used as an early warning system for 

inefficient shipyard maintenance operations. The use of quantified factors in the development of 

an overall strategic plan for manpower needs may be used for both short and long-term planning 
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to provide an analytical approach for what is typically subjective judgement in determination of 

staffing and scheduling needs, organizational structure, and performance targets. 
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CHAPTER 1: INTRODUCTION 
 
 

Information provided by ferry operators participating in the 2014 NCFO survey shows that 

U.S. ferries carried over 115 million passengers and just over 30 million vehicles in the year 2013 

(Steve et al., 2016). In the South, there were 26.4 million passengers served followed by the 

Midwest with approximately 10.4 million passengers. The importance of maintaining assets for 

the NCDOT Ferry Division (NCDOT-FD) directly influences the services provided to millions of 

passengers each year. Although the Manns Harbor (North Carolina State) shipyard is the largest 

state-operated shipyard in the U.S., the number of personnel at that operation has decreased. 

The current number of personnel for the shipyard has reduced from previous years to now 65 

employees (Stegall, 2017).  Coast Guard polices require all ferries to be dry-docked twice every 

five (5) years for maintenance, repair, and inspection. However, with augmented ridership, aging 

vessels, and annually deteriorating channel conditions, the maintenance levels for ferry vessels 

require increasingly more attention, which has an effect on the planned manpower staffing needs, 

resource requirements, and dry-docking schedules. The number of personnel for an operation is 

an important factor in not only ensuring the needs for vessel repair and maintenance, but also to 

the success of the entire maintenance operation’s mission. Staff shortages can affect personnel 

workloads, stress, and productivity. Long-term effects may also include low morale and 

absenteeism and can become a systemic issue that is difficult to redirect. Forecasting upcoming 

needs is a good business practice and assists with planning to minimize these effects. This is 

especially important in the maritime maintenance and repair industry where the majority of 

operations are heavily dependent on skilled trades and manual labor. Efficient operations, 

increased productivity, and effective management strategies are critical to the vitality of ship 

repair facilities, where time is of the essence in many cases.   
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To effectively study manpower for any operation, there is a need to understand efficiency, 

which is a nebulous concept that pertains to the ideal levels of productivity. Productivity is the 

ratio of output to input. For example, “Employees who seem to work the least can be the most 

productive. Business units that boast high profitability can sometimes be the least efficient” (Cook 

& Zhu, 2013). To accurately evaluate the efficiency of an operation, all factors potentially affecting 

productivity and the production process must be taken into account. Therefore, manpower 

studies can be difficult because of the vast number of variables affecting production and 

productivity. From a general approach, if a worker produces twice as many units or performs the 

same service in one-half the time, it can be said that his or her productivity has doubled, but this 

does not account for quality and other important considerations. Determining efficiency is also 

more challenging for public agencies, who have typically struggled with the concept. In the public 

service industry, productivity is the effectiveness with which resources are consumed throughout 

the delivery of a service. As opposed to a manufacturing setting, public organizations and other 

service related industries do not produce a product; instead, they provide imperative services to 

their customers making quantification of productivity and efficiency ever more challenging. 

Factors affecting productivity are not always directly related to the production process, which 

makes the identification of these variables an extensive task. Productivity can be influenced by 

production processes, management strategies, organizational structure, environmental 

elements, and geographical constraints, as well as many other internal and external factors 

(Rabar, 2015). Therefore, the maintenance and repair process must be investigated thoroughly 

and understood fully so that variables selected for efficiency evaluation of the NCDOT-FD are 

inclusive of all factors affecting productivity.  



3 
 

Traditional approaches to measuring shipyard productivity have included generic 

calculations, which have weaknesses because they provide little insight into the causes of 

productivity changes. Other methods generate very detailed measures that make it difficult to 

draw the needed conclusions for operational decisions. Many efforts concerning efficiency are 

used to review individual or group productivity levels using a single input/single output method. 

The approach presented in this research uses Data Envelopment Analysis (DEA) as a method of 

evaluating efficiency in shipyard operations. DEA is a methodology that may be used as a human 

resource indicator and corrects some of the previously mentioned weaknesses (Monika & 

Mariana, 2015). The main advantage of DEA, with respect to other methodologies, is that DEA has 

the capability to handle multiple inputs and outputs (Charnes et al., 1978). DEA is a methodology 

designed to assess how efficiently a firm, organization, agency, program, or site produces the 

outputs that it has been charged to produce. These “outputs” can also be service-related as 

opposed to a manufactured part. This advantage in DEA is beneficial as an analysis for determining 

efficiency and manpower for the NCFS because the effort requires a level of pragmatic 

investigation into the realistic operations. Moreover, DEA can be used as a forecasting and 

benchmarking tool as well as a tool for establishing performance targets in multiple industries. 

This research uses the efficient frontier and efficiency scores provided by DEA, along with 

qualitative measures identified through conversation with industry experts to recommend 

methods of determining optimal organizational hierarchy, manpower levels, and shipyard 

scheduling for efficient and effective operations.  

The purpose of this research is to develop a methodology that can be used by the NCDOT-

FD and other ship maintenance facilities as a tool for benchmarking and forecasting, as well as 

strategic, operational, and tactical planning. DEA was utilized as a method of evaluating the 
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efficiency of maintenance and repair operations, analyzing the causes of inefficient operations, 

and determination of potential corrective action. The most significant contribution provided by 

this analysis is the use of the procedures described and outlined in this report as an analytical 

means of determining organizational structure, manpower staffing requirements, and optimal 

shipyard maintenance schedules. Continuous improvement in any application requires constant 

changes to operations and procedures. However, from first hand observation many industries and 

businesses, especially those concerned with marine maintenance and repair, have a resistance to 

change. When combined with poor management strategies, many times these businesses 

become stagnant and unchanging which leads to less than optimal performance. The significance 

found in this research stems from the ability to evaluate marine maintenance and repair 

operations and determine corrective action in cases of inefficiency. In order to remain competitive 

in the ship repair industry and on course with the ever-increasing productivity of maintenance 

and repair facilities, continuous improvement strategies must be implemented into the planning 

strategies of these facilities. This research is aimed at developing a methodology for use in 

planning day-to-day operations as well as a continuous improvement tool for ship repair facilities.  
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CHAPTER 2: LITERATURE REVIEW 
 
 
2.1 - Efficiency and Productivity  

As previously mentioned, understanding efficiency and productivity is crucial to 

effectively studying manpower. At the most basic level, productivity can be defined as the ratio 

of output to input (Lamartin, 1980). Inputs can be understood as the resources used to produce 

an output, which can be a product or service. Therefore, optimal productivity can be understood 

as producing the greatest possible amount of output using the least amount of input. While 

productivity may seem rather easy to understand, there are several insinuations that have caused 

confusion surrounding the term (Tangen, 2002). One of the most common faults surrounding 

productivity, is the use of the term synonymously with the term production, which refers to the 

amount of a product or service produced (Tangen, 2002). As a result of this, Tangen (2002) states 

that people tend to relate an increase in production with an increase in productivity, which is not 

necessarily true because productivity is a relative concept and cannot be said to increase or 

decrease unless comparison is made between two time periods, entities, or other standards. 

However, there are five basic ways that productivity can be increased: (1) output and input 

increases, where the increase in input is proportionally less than the increase in output; (2) output 

increases while input stays the same; (3) output increases while input is reduced; (4) output stays 

the same while input decreases; and (5) output decreases while input decreases even more 

(Tangen, 2002). To further eliminate confusion surrounding productivity, there is a need to 

understand the different types of productivity. The two types are partial productivity and total 

productivity.  Partial productivity is understood to be output related to one type of input while 

total productivity is output related to multiple types of input (Tangen, 2002). For example, in ferry 

maintenance, partial productivity would be looking at the productivity of an individual trade 
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(single input) that performs ferry maintenance while total productivity would be the productivity 

of all the trades (multiple inputs) that perform maintenance. The ability to distinguish between 

the two is vital to understanding the concept of productivity.  

In realistic applications, this basic ratio of output to input does not take into account many 

of the additional factors that affect productivity. Rabar (2015) suggests that productivity 

measures are partial when based on single indicators because they are not inclusive of all factors 

which affect production. Furthermore, it has been stated that the efficiency of a shipyard 

operation is comprehensively affected by the mix of management, technology, and production 

activities. Inputs used for evaluation of productivity must include resources used as well as 

general production influencers to accurately determine production efficiency. Earlier studies and 

research have transformed the definition of productivity to include these factors. In a work study 

on the relationships between productivity and efficiency, Al-Darrab (2000) defines productivity as 

the ratio of output to input multiplied by a quality factor, he goes on to further define productivity 

as the product of quality, utilization, and efficiency. Pires and Lamb (2008) suggest production 

influencers include the industrial environment of the region, technology levels, and output 

pattern characteristics such as the types of products produced, and the production processes 

used. Additionally, theses definitions, applied to this study, indicate that technological and 

managerial capabilities are important influencers of competitiveness for a shipyard. 

Understanding that there are numerous factors in the determination of productivity is 

essential when conducting studies on manpower. Traditionally, productivity measurement has 

been interpreted as the process of identifying and comparing an output to input ratio over two or 

more periods of time (Lamartin, 1980). While this process may seem straight-forward in many 

cases, in public entities and other service industries, this process is more complex due to the 
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nature of production. Service industries provide a service to their customers and productivity in 

these industries is measured by the resources consumed to provide service to a customer. 

Generally speaking, the primary resource used to provide services is manpower. The problem 

arises when trying to quantify the amount of manpower required to provide a service. While using 

pure man-hours as the input to a service makes logical sense, using only time as an input does not 

take into account the many aforementioned production influencers that may affect manpower 

productivity. Additionally, in service industries quantification of output is also much more 

complex. Because of this, measurement of production efficiency in service industries requires 

detailed investigation into the production operations and thorough understanding of the factors 

related to production.  

Efficiency is an ambiguous concept used to develop a theoretically ideal productivity 

situation. Abdullah et al. (2012)  stated that the theory of efficiency is related to the association 

between resources used and results achieved. In other words, efficiency is strongly related to the 

utilization of resources and mainly influences the input of the productivity ratio (Tangen, 2002). 

In more simplistic terms, efficiency can be understood as how well an input of a process is utilized. 

Tangen (2002) defines efficiency in manufacturing as the minimum resource level that is 

theoretically required to run the desired operations, compared to the quantity of resources 

actually used. Efficiency can be used in a manpower study to compare how productive one 

operation is to another. Al-Darrab (2000), when comparing labor productivity, defines efficiency 

as a ratio of standard hours to actual worked hours. Efficiency measurement is a key concept to 

companies, organizations, firms, or facility operations that struggle with measuring their own 

productivity and efficiency (Shirouyehzad et al., 2012) . To analyze efficiency in any operation, the 

first step is to begin by developing a simple equation that relates productivity with efficiency and 
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utilization (Al-Darrab, 2000). However, the problem with developing this equation comes when 

there are multiple inputs and outputs to be analyzed. The reason for the majority of failure in 

terms of measuring efficiency stems from the failure to combine the measurements of multiple 

inputs and outputs as well as unjustified combination of multiple inputs and outputs (Cook & 

Seiford, 2009; Shirouyehzad et al., 2012).  

2.1.1 - Previously Developed Methods and Approaches 

Performance measurement, as defined by Neely et al. (1995), “is the process of 

quantifying action, where measurement is the process of quantification and action leads to 

performance.” A performance measure is defined as a metric used to quantify the efficiency 

and/or effectiveness of an action and a performance measurement system can be defined as the 

set of metrics used to quantify the efficiency and effectiveness of an action (Neely et al., 1995). 

Performance of an operation or entity can be defined in many ways (Coelli et al., 2005). 

Productivity ratio is a natural measure of performance in many instances. Conversely, Coelli et al. 

(2005) stated that performance is a relative concept. For example, the performance of a shipyard 

in the current year (in terms of productivity) can be measured relative to the performance of the 

shipyard in previous years or it can be measured relative to the performance of other shipyards. 

Moreover, Al-Darrab (2000) expresses that measures of performance include productivity, 

efficiency, utilization, and quality. For the purpose of this research however, only productivity and 

efficiency will be used as performance measures.  

Productivity measurement, historically, has been used for many diverse purposes. One of 

the most significant uses of productivity measurement has been to benchmark and track 

performance over time. Benchmarking is good business practice and has been the customary way 

for many businesses to determine and measure their performance. Additionally, benchmarking 
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allows for the establishment of performance targets. Rabar (2015) suggests that production 

benchmarks establish an early warning system for inefficient operations. Moreover, establishing 

targets creates a sense of accountability for reaching these goals and allows for continuous 

improvement and increased productivity through continual monitoring of production operations.  

Throughout earlier studies and research there have been many unique methodologies 

and techniques employed to measure efficiency and productivity in various operations. 

Quantifying performance is important when making decisions. Performance measurement 

metrics enable entities to determine poor performance, identify and mitigate root causes of poor 

performance, and monitor improvement over time (Abdullah et al., 2012). Two approaches to 

measuring performance are parametric and non-parametric. Abdullah et al. (2012) explain that 

parametric approaches require functional form and account for residual term during analysis and 

non-parametric approaches require less structure and do not assume random error. The main 

difference between the two approaches is in terms of data distribution, parametric approaches 

are concerned with the normality of the distribution while non-parametric approaches do not 

(Abdullah et al., 2012). Non-parametric approaches have many advantages when compared to 

parametric approaches. Benefits of non-parametric approaches are simplicity, effects of outliers 

are less significant, consideration of data set relationships is not required, assumptions about data 

is not required, and generally non-parametric methods can be used in a more comprehensive 

range of data (Abdullah et al., 2012).  

In routine operations, businesses use and count on a number of performance 

measurement methods related to productivity and efficiency measurement including but not 

restricted to key performance indicators, input/output analysis, balanced scorecard, and data 

envelopment analysis (Bröchner, 2017). Cook and Seiford (2009) acknowledged other approaches 
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to measuring efficiency, which involved finding an average productivity for a single input and 

devising an efficiency index where a weighted average of inputs is compared to output. Yet, this 

method ignored all other inputs and focused only on one single input. Farrell (1957) fashioned an 

activity analysis approach that would more sufficiently quantify efficiency and productivity. 

Farrell’s method was intended to be pertinent to any productive organization, however he 

restricted his discussions to single output cases (Cook & Seiford, 2009).  

To measure productivity and efficiency in the healthcare industry, Al-Darrab (2000) 

developed a methodology that related productivity to efficiency, utilization, and quality. The data 

used in this method was associated specifically to labor productivity and included worked man-

hours, required man-hours and actual worked man-hours. This method developed equations to 

determine productivity, utilization, and efficiency and the results were used to produce numerous 

production level curves. A productivity index was used to establish manpower productivity levels 

by dividing earned man-hours by worked man-hours. Using this index, Al-Darrab was able to 

define optimal productivity, a value greater than 100 percent indicated greater productivity than 

expected and a value of less than 100 percent showed less than optimal productivity (Al-Darrab, 

2000). This method, like many others, only uses a single input/output method to determine 

efficiency and productivity limiting the areas to which it is applicable.  

Deng, Smyth, and Anvuur (2013), reviewed performance measurement systems in 

construction firms across the world. Throughout a greater part of the research, Deng et al. (2013) 

determined the majority of performance measurements in the construction industry were related 

to key performance indicators (KPI). It was concluded there are two main types of performance 

measurement systems used in construction. The first includes those that only focus on identifying 

KPIs and the second are those that focus on identifying KPIs as well as delivering benchmarking 
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tools (Deng et al., 2013). Nevertheless, these methods only provide indicators to help improve 

performance; they do not provide an objective solution in defining efficiency or productivity. 

While many of these methods are applicable in many situations, they do not offer a means 

for performance measurement in all instances. The aforementioned methodologies and 

approaches have considerable limitations and do not provide a means for efficiency and 

productivity analysis when multiple inputs and outputs need to be considered or if there are 

uncontrollable factors that play a significant role in productivity. Efficiency cannot be measured 

explicitly using traditional methods when multiple input/output factors are involved and cannot 

be directly added together (Zhang, Agbelie, & Labi, 2015). Conversely, a method generated by 

Charnes, Cooper, and Rhodes (1978), Data Envelopment Analysis (DEA), can be used to measure 

technical efficiency and productivity in multiple input/output cases. DEA, its methodologies, 

types, and practices are described in detail in the subsequent section of this document.  

2.2 - Data Envelopment Analysis (DEA) 

2.2.1 - Multiple Input and Output Methods 

Data Envelopment Analysis uses the measurements of the efficiencies instances where 

there are multiple inputs and/or outputs. Ozbek et al. (2010) identified the five approaches that 

can be used to measure and compare the efficiencies of processes with multiple inputs/outputs. 

These five identified approaches are the partial efficiency measure approach; the total factor 

efficiency approach; system dynamics; regression analysis; and DEA (Ozbek et al., 2010). A brief 

discussion of the first four previously listed approaches as well as the advantages and/or 

disadvantages to each will be provided in the following paragraphs. DEA is explained in detail in 

the following section.  
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The partial efficiency measure approach requires calculating the single output to input 

ratio, one at a time, for each relevant input and output (Ozbek et al., 2010). Though this process 

may be used to determine the overall efficiency, it has the potential to produce inaccuracies and 

misunderstandings in relation to its results. One of the major downsides to this approach is that 

it is exceptionally challenging for decision makers to make definitive conclusions about the overall 

efficiency of a process when compared to the efficiency of other processes, even if all of the 

possible partial efficiency ratios are computed for that process (Ozbek et al., 2010). The total 

factor efficiency approach determines efficiencies by deriving an output-to-input measure that 

accounts for all of the inputs and outputs at one time (Ozbek et al., 2010). While this solves the 

problem encountered with the partial efficiency measure approach, Ozbek et al. (2010) state that 

the disadvantage to this approach is that it requires the user to prescribe weights to each input 

and output variable to obtain a ratio that can be simplified to the basic output to input ratio.  

The third approach capable of analyzing multiple inputs/outputs is system dynamics. This 

approach is used to understand, model, and simulate the dynamic behavior of complex systems 

(Ozbek et al., 2010). System dynamics models a problem that establishes itself over time by 

capturing feedback mechanisms (Ozbek et al., 2010). Advantages and disadvantages of this model 

have been identified throughout literature, such as by Ozbek et al. (2010) who identified the major 

advantage as its ability to capture temporal impacts of decisions and the major disadvantage as 

the requirement of definition of structure for the process being analyzed. The fourth approach 

for multiple inputs/output cases is regression analysis. This approach suggests that a parametric 

equation for efficiency that relates inputs and outputs can be developed by performing regression 

analysis on input/output data under investigation (Ozbek et al., 2010). This main disadvantage to 

this approach is due to the fact that it compares efficiency of units to a hypothetical average 
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performance from the developed equation rather than the best performers (Ozbek et al., 2010). 

Due to the shortcoming of the aforementioned approaches, DEA has been identified as the best 

approach for the study of efficiency and manpower in relation to shipyards and shipyard 

maintenance.  

2.2.2 - Basics of DEA 

The DEA method was first established for the purpose of establishing an estimate of 

technical efficiency by Charnes et al. (1978). From a technical viewpoint, DEA is termed a non-

parametric optimization method of mathematical programming (Bröchner, 2017; Monika & 

Mariana, 2015; Shirouyehzad et al., 2012). Technical efficiency is understood to be the ratio of 

minimum possible input, given a fixed output level, to actual input required (Carnes, Hunn, & 

Jones, 1998). Efficiency and process flow may be analyzed by DEA because it is used to measure 

efficiency when there are multiple inputs and outputs and there are no generally acceptable 

weights for aggregating those inputs and outputs. DEA allows for these variations – as opposed 

to attempting to associate a unit’s performance with statistical averages. Often, these averages 

may not be applicable to that particular unit’s operations (Gökşen, Doğan, & Özkarabacak, 2015).  

DEA applications have since been used to evaluate the efficiency of decision-making units 

(DMUs) for entities like cities, courts, universities, business firms and hospitals. Determination of 

ideal performance within an entity is often impossible. The advantage of DEA is that efficiencies 

are observed as comparisons between entities or selected DMUs rather than comparison using a 

theoretical ideal performance measurement (Carnes et al., 1998). After analysis, the resulting 

information by DEA establishes what is called an “efficiency frontier” consisting of many linear 

combinations of efficient producing units. Those producing units not in the frontier are said to be 

inefficient. The inefficiency can be described through the variables selected and may also provide 
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an indication as to why there are certain inefficiencies based on the selected input and output 

variables. DEA essentially calculates the economic efficiency of a given utility relative to the 

performance of other utilities producing the same sorts of services, rather than against an 

idealized standard of benchmarked performance. Cook and Zhu (2013) coined the term “balanced 

benchmarking” as a description of the DEA method because it generates a composite measure 

based on the best scenario. For example, as opposed to finding the central tendency for a data 

set and trying to fit a regression plan through the center of the data, DEA applies a piecewise 

linear surface over the observations. A distinct advantage is that it enables a view of potential 

improvements (that are not at the expense of other metrics) and uncovers relationships that may 

not have been apparent with fitted data. Moreover, each DMU is viewed as a possible benchmark 

for improvement, as opposed to attempting to fit with what is considered a normal level of 

efficiency (Zhu, 2014). The purpose of benchmarking is to provide a “best practices” metric with 

regards to other similar services (shipyards in this case). Benchmarked information will enable the 

researchers to utilize existing industry practices to apply operations metrics for other ferry 

services to the analysis.  

2.2.3 - DEA Models 

Since the advent of DEA by Charnes et al. (1978) there has been tremendous 

advancement around DEA in terms of theoretical developments and useful applications (Cook & 

Seiford, 2009). Due to this evolution of DEA, many new models and methodologies have been 

established and implemented by both researchers and practitioners. While the purpose of this 

paper is not to discuss the entirety of all the numerous models in detail, the three basic types of 

DEA models are envelopment models, multiplier models, and additive or slack-based models 

(Cook & Zhu, 2013). Of the three basic model types, envelopment models were the first 
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developed, the most simplistic in nature, and provided a foundation for future model 

development. Multiplier and additive models use the same fundamental process as envelopment 

models. However, the main differences between the basic envelopment models and multiplier or 

additive models are the procedures to calculate technical efficiency, the use of additional 

constraints, and the means of assessing inefficiencies. Along with these basic models, other 

models include super efficiency, Malmquist Index, the Russell measure, the free disposal Hull 

model, the Andersen-Petersen model, as well as many various multilevel models (Cook & Seiford, 

2009). Of these abovementioned models, only the three basic model types will be discussed 

further as many of the multilevel models are intended for specific applications not relevant to this 

research.  

Envelopment models are used to establish a best-practice frontier and get their name 

because the best-practice frontier produced from the model envelops all referenced DMUs (Cook 

& Zhu, 2013). The two most basic types of envelopment models are the CCR model and the BCC 

model. The CCR model was the first DEA model, originally developed by Charnes et al. (1978); it 

is also one of the most basic DEA models. The BCC model was crafted by Banker et al. (1984) as 

an extension of the initial work of Charnes et al. (1978); (Cook & Seiford, 2009). The main variance 

between the two models is the returns-to-scale (RTS) used in each. The CCR model uses a 

constant-return-to-scale (CRS) and the BCC model uses a variable-return-to-scale (VRS). Because 

of this discrepancy, the frontier surfaces formed by the models are different. The surface 

developed by the CCR model is characterized by a straight line starting at the origin and passing 

through the first DMU encountered as it approaches the efficient frontier. The surface created by 

the CCR model assumes that an increase in inputs results in a proportional increase in outputs 

(McCabe, Tran, & Ramani, 2005). The surface established by the BCC model encases the data by 
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connecting the outermost DMUs including the one approached by the CCR model. Using the BCC 

model allows for an increase in input values to result in a non-proportional increase in output 

levels (McCabe et al., 2005). In actuality, a CRS is a rather ideal assumption that does not occur 

often, therefore a VRS is normally chosen more often (Zhang et al., 2015). A visual representation 

of the differences between the two models can be seen in Figure 1. Further discussion of returns-

to-scale (RTS) and the types are provided later in this section.  

 

 
Figure 1: Surface and Orientation 

Multiplier models are very similar in nature to the basic envelopment models. The main 

difference being the way efficiency is measured. In the basic envelopment models, the efficient 

frontier is developed through radial projection and it is assumed that all inputs (or outputs) 

undergo a proportional increase or decrease when evaluating inefficient DMUs (Cook & Zhu, 

2013). Multiplier models on the other hand, introduce an additional element to the basic 

envelopment models. In multiplier models, input and output variables are weighted based off 

importance or other various factors, and efficiency is evaluated as the ratio of weighted outputs 

to weighted inputs (Cook & Zhu, 2013). Multiplier models can be very valuable in real-world 

applications where multiple factors, both internal and external, can affect production in varying 
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degrees. Additive or slack-based models, like multiplier models, are much the same as 

envelopment models with the main difference being the evaluation of inefficient DMUs. In 

envelopment models, the assumption is made that an increase or decrease in inputs results in a 

proportional increase or decrease of output. Therefore, in envelopment models inefficiencies are 

evaluated off this assumption or the efficiency scores produced by the model (Cook & Zhu, 2013). 

For additive models, this assumption is not present which makes the evaluation of inefficiencies 

much different.  In additive models, inefficiencies are evaluated by reducing inputs and increasing 

outputs (or vice versa) at different proportions to determine the source of inefficiencies (Cook & 

Zhu, 2013).  

While there are differentiations between models, the fundamental process for carrying 

out Data Envelopment Analysis does not change on a model-to-model basis. Models should be 

selected on a case-to-case basis based on the application and anticipated outcomes or goals of 

the analysis. Once a DEA model has been selected, an orientation of the model must be 

determined. Orientation is a vital aspect of DEA models. Orientation specifies the direction in 

which an inefficient DMU approaches the efficient frontier (McCabe et al., 2005). Models can be 

either input-oriented or output oriented. Input-oriented models accentuate the use of minimal 

input resources to attain a known output level (Abdullah et al., 2012). Output-oriented models 

place emphasis on achieving maximum possible output using a given set of inputs (Abdullah et al., 

2012). In other words, an input-oriented model is concerned with reducing inputs and maintaining 

current output levels, while an output-oriented model is focused on maximizing output given 

current input levels. A graphical depiction of output and input orientation can been seen in Figure 

1. Relative efficiencies can be measured using either orientation however; the efficiency score 

range is dependent on the type of orientation.  The range of efficiencies for input-oriented models 
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is from 0 to 1.0 and for output-oriented models the range is from 1.0 to infinity (Abdullah et al., 

2012). In either case, a score of 1.0 is considered efficient.  

Additionally, when selecting a DEA model, the type of returns-to-scale (RTS) used is a 

major factor and knowledge of the production frontiers of the process to be analyzed is crucial 

(Rabar, 2015). RTS refers to the increasing rates of output when inputs are increased 

proportionately (Ok & Feng, 2017). The two main types of RTS used in DEA models are the 

constant-returns-to-scale (CRS) and the variable-returns-to-scale (VRS). The CRS assumes changes 

to input results in a proportional change to output. A linear frontier is produced using a CRS, and 

only DMUs that fall on the frontier are considered efficient. While simplistic in nature, often times 

the efficient frontier produced by the CRS does not represent realistic conditions. This is due to 

the fact that, in actuality inputs and outputs very seldom change proportionally. This limitation 

was overcome by Banker et al. (1984) through the development of the BCC or VRS model. The 

VRS surface is made up of three individual elements: the CRS surface, the non-increasing-returns-

to-scale (NIRS) surface, and the non-decreasing-returns-to-scale (NDRS). The VRS surface is 

developed by connecting the two outermost DMUs on the efficient frontier with the CRS surface, 

which can be seen in Figure 1. The VRS surface allows for increases in inputs to result in non-

proportional increases to outputs, or in other words, the VRS better estimates actual conditions 

(in most cases) rather than making an assumption of proportionality between inputs and outputs. 

As previously stated, selecting the correct RTS for analysis is dependent on the specific application 

area under investigation and the production characteristics of that industry. Knowledge of 

production frontiers comes from historical data analysis and experts in the particular application. 

In a manufacturing setting, understanding production trends is much more forthright than the 

production trends of a service provider because the amount of resources (inputs) required to 
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produce a product (output) is a known, trackable variable. In a service industry such as a ship 

repair facility for example, understanding production frontiers is not as straightforward because 

the facility provides a service instead of a product. Unlike the repetitive cycle of manufacturing, 

ship repair services do not remain constant from vessel to vessel. Therefore, the levels of service, 

maintenance requirements, ship geometry, and ship operational systems vary from project to 

project. As a result, production patterns can vary drastically from project to project making them 

difficult to predict or standardize. While this is just one example, determining production patterns 

requires detailed knowledge of the area under investigation regardless of industry and in many 

cases cannot be accurately determined.  In cases where an RTS type cannot be determined with 

certainty, literature suggests that the analysis should be carried out using both CRS and VRS (Ok 

& Feng, 2017; Rabar, 2015). Performing the analysis using both RTS forms allows the RTS that best 

represents the production frontier to be identified and ensures the accuracy of the analysis. In 

addition to these benefits, execution of DEA using a CRS and VRS permits the calculation and 

comparison of multiple different type of inefficiencies (Rabar, 2015). Therefore, it can be said that 

regardless of industry or production knowledge, performing DEA with both RTS can provide 

additional benefits and redundancy, while providing potentially more accurate determination of 

the sources of inefficiencies.  

When comparing DEA to traditional performance measurement practices several 

advantages are realized. Some of these benefits have been discussed in prior sections of this 

document. These previously conversed advantages are the proficiency in handling multiple inputs 

and outputs, efficiencies are reflected as comparisons between DMUs, and DEA assists in 

distinguishing potential improvements while bringing to light relationships not professed in 

former methods. Zhang et al. (2015) pinpoint that advantages to DEA are its flexibility, its 
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capability of handling any type of input or output, and its ability to use data sets that do not 

encompass a common unit of measurement. Moreover, DEA provides objectivity to efficiency 

scores and can evaluate external and uncontrollable factors in the analysis (Ozbek, 2007). Along 

with advantages, there are also limitations to DEA. Ozbek (2007) states that DEA is a non-

parametric method therefore statistical tests are not capable of easily evaluating the validity of 

results making the results very subjective in many instances. Ozbek (2007) goes on to state other 

confines include inaccuracies in input and output variables have the potential to cause substantial 

problems and that DEA is difficult to explain to non-technical audiences because it uses a series 

of linear programming formulations to determine efficiency scores (Ozbek, 2007). Basic DEA 

models are also not capable of handling negative numbers, consequently all data must be non-

negative (Sarkis, 2007). 

2.2.4 - Selection of Inputs/Output Variables and DMUs 

The applications and use of Data Envelopment Analysis depend heavily on the data used 

as inputs and outputs (Sarkis, 2007). The discriminatory power of DEA is reliant on the inputs, 

outputs, and number of DMUs (Sarkis, 2007). Carnes et al. (1998) assert that the fewer inputs and 

outputs, the better the discrimination generated. When determining data sets for DEA, multiple 

contemplations need to be made. The primary and most imperative criteria when selecting data 

is homogeneity among DMUs (Zhang et al., 2015). When looking at the homogeneousness among 

DMUs, the three most important considerations are (a) performing similar tasks with similar 

objectives, (b) similar market conditions, and (c) the use of similar technology (Zhang et al., 2015). 

Carnes et al. (1998) further illuminate this by declaring that DEA is only fitting for assessment of 

facilities involved in similar activities.  
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In literature focused on DEA, the number of DMUs along with the number of variables to 

use for input and output for accurate analysis has been a topic of abundant discussion. Many of 

the recommendations provided from prior research contain conflicting considerations. One 

suggestion is to include as many DMUs as possible as there is a larger probability of capturing high 

performance units which determine the efficient frontier (Sarkis, 2007). However, the 

contradictory consideration to be made when a large quantity of DMUs are used is the potential 

for a significant decrease in homogeneity across the data set. When homogeneity is decreased, 

uncontrollable exogenous factors have a greater chance of affecting the results of the analysis 

(Sarkis, 2007). While there is not an exact solution for determining the appropriate data set for 

accurate analysis using DEA, over the years, researchers and DEA specialists have created several 

rules of thumb to follow when selecting data. 

 Sarkis (2007) identified these generally accepted rules of thumb in his publication about 

the preparation of data for DEA citing authors such as Golany and Roll (1989) who were the first 

to establish a rule of thumb concerning data selection for DEA. They suggested the number of 

DMUs should be two times the number inputs and outputs. Bowlin (1998) proposed there should 

be three times the number of inputs and outputs. Boussofiane, Dyson, and Thanassoulis (1991) 

advised the minimum number of DMUs should be the product of inputs and outputs and Dyson 

et al. (2001) mentioned the number of DMUs should equal twice the product of inputs and 

outputs. For example, in a case where there are two inputs and four outputs, Golany and Roll 

(1989) recommend a minimum of 12 DMUs, Bowlin (1998) recommends 18, Boussofiane et al. 

(1991) recommend 8, and Dyson et al. (2001) recommend 16.  In spite of the fact these rules were 

developed to assist with data selection, in most circumstances they should be used as minimums 

for basic productivity models (Sarkis, 2007). The rule of thumb used by analysts in prior DEA is 
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dependent on their personal preference. Abdullah et al. (2012), McCabe et al. (2005), and 

Marchetti and Wanke (2016) all suggest the use of the recommendation set forth by Bowlin 

(1998). Zhang et al. (2015) and Ozbek et al. (2010) use the rule suggested by Dyson et al. (2001) 

while Carnes et al. (1998) suggest following the rule of thumb introduced by Boussofiane et al. 

(1991). There is no consensus on which rule of thumb provides the best discrimination during 

analysis.   

The previously cited rules are thumb are helpful in the majority of DEA uses, however 

there are many occasions where the number of DMUs available for study can be relatively small. 

For instance, the extent of DMUs available for efficiency evaluation of ferry maintenance 

operations is constrained because of the infinitesimal number of shipyards concerned with ferry 

maintenance and repair willing to share operational information. To accommodate the loss of 

discriminatory power due to the lesser number of DMUs, specialized variations of traditional DEA 

models have been established. These specialized models, referred to as super efficiency models, 

have the capability to discriminate amongst DMUs regardless of data set size (Cook & Seiford, 

2009; Sarkis, 2007). The development of these models has expanded the realm to which DEA is 

applicable. As an alternative to super efficiency models, other methods to increase the quantity 

of DMUs have also been developed for use in basic DEA model applications. Of the alternative 

methods, time series application of DEA, or more commonly referred to as window analysis, is the 

most pertinent in terms of this research and has been used in various practical and service related 

applications (Al-Refaie, Hammad, & Li, 2016; Asmild, Paradi, Aggarwall, & Schaffnit, 2004; 

Charnes, Clark, Cooper, & Golany, 1984; Pjevčević, Radonjić, Hrle, & Čolić, 2012; Rabar, 2015; Yang 

& Chang, 2009).  
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Originally implemented by Charnes et al. (1984), window analysis has proven to be 

valuable in many practical applications where the data available for use in efficiency evaluation 

are from different time periods; e.g. yearly, quarterly, monthly, etc. (Al-Refaie et al., 2016; Asmild 

et al., 2004; Charnes et al., 1984; Pjevčević et al., 2012; Rabar, 2015; Yang & Chang, 2009). Window 

analysis is an application of DEA in a time series mode that generalizes the notion of moving 

averages to detect efficiency trends of DMUs over time (Yang & Chang, 2009). In terms of 

discriminatory power, window analysis increases the discriminatory power of the model by 

increasing the number of DMUs available for evaluation (Pjevčević et al., 2012; Yang & Chang, 

2009). The rationale behind window analysis is that each DMU in a window or period is regarded 

as an entirely different one, effectively increasing the number of units available for evaluation.  

For example, if five DMUs are being evaluated and the available data is over a five-year period 

(assuming each year is a different window), application of window analysis would increase the 

number of DMUs to 25 because each DMU per period is evaluated independently. Furthermore, 

the performance of each DMU is compared with its performance in other periods of time and with 

the other DMUs in the same time period. Application of window analysis also provides several 

additional benefits when compared to traditional DEA applications. The main advantage is that 

window analysis allows for determination, observation, and evaluation of efficiency changes over 

time. Moreover, the results of window analysis can serve as an early warning system for inefficient 

DMUs (Rabar, 2015). Additionally, another distinct advantage provided by window analysis is that 

the length of each window can be selected by the practitioner conducting the analysis (Pjevčević 

et al., 2012). Despite the notion that window length can be chosen freely, it has been pointed out 

that the window should be as small as possible to ensure the technological change within each 
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window is negligible, but large enough to maintain a sufficient sample size for adequate 

discriminatory power (Asmild et al., 2004; Yang & Chang, 2009).  

Along with the selection of DMUs, the selection of variables used as inputs and outputs is 

equally important to the discriminatory power of DEA. DEA is profoundly reliant on the data used; 

meaning correct application requires proper selection of input and output variables. In DEA, all 

variables have an equal opportunity to influence efficiency outcomes because no former 

distinction is made regarding the relative importance of one variable compared to another (Zhang 

et al., 2015). Therefore, including too many variables into a model has the potential to reduce 

discriminatory power, especially when the number of DMUs is relatively small (Sarkis, 2007). A 

large quantity of DMUs will have high efficiency scores when too many variables have been 

included (Zhang et al., 2015). Generally, smaller quantities of inputs and outputs produce better 

discrimination. Across the review of numerous publications concerning DEA, the number of inputs 

and outputs used tend to be relatively small and more often than not are limited to five or less. 

Because of this, only the most pertinent and relevant variables related to production should be 

selected.  Likewise, Rabar (2015) suggests that the most important criterion for variable selection 

is to ensure the variables selected will provide relevant and useful information to management, 

owners, and other personnel concerned with production or performance decisions.  In instances 

where numerous variables are being considered, examination of the correlation amidst the 

variables will identify redundancy and support with eradicating unnecessary variables (Lamartin, 

1980).  

2.2.5 - Historical Approaches and Uses of DEA 

Department of Transportation (DOT) research has reported various uses of DEA to 

determine efficiencies (Jalili, 2015); Ozbek (2007); Ozbek, de la Garza, and Triantis (2009); Ozbek 
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et al. (2010); (Zhang et al., 2015). In his doctoral dissertation, Ozbek (2007) performed one of the 

initial comprehensive studies on the application of DEA to the transportation industry. Ozbek 

(2007) researched the use of DEA as a comprehensive efficiency measurement framework of 

highway maintenance for the Virginia DOT. To conduct his study, Ozbek (2007) used an input-

oriented BCC model that included eight DMUs, three inputs, and one output. Since this initial 

study, the application of DEA in transportation applications has been further researched by Ozbek 

and others. Ozbek et al. (2009) investigated the use of DEA in DOT applications and provided an 

analysis on its use for transportation professionals. Ozbek et al. (2010) furthered exploration 

surrounding these applications by identifying common issues faced during DEA applications for 

road maintenance and provided guidance for mitigating those issues.  Additionally, during the 

research (Ozbek et al., 2009) outlined the steps to generate a DEA model. Their steps and 

subsequent notable explanations include: 

Phase 1 - Definition and Selection of Decision-Making Units to be used.  
 Input/output variables should be identical and units to be considered should be for 

similar objectives and operating in a similar environment. Also, the larger the population 
of the data set, the larger the probability of capturing high performance DMUs that 
would form the efficient frontier.  

Phase 2 - Definition, Selection, and Measurement of Input and Output Variables 
 There is no prior distinction made between the input/output results so any variable may 

equally influence the calculated efficiency. Additionally, using a number of variables will 
shift the DMUs because as DEA allows flexibility in the choices and weights, the greater 
the number of variables, the lower its level of discrimination. It is recommended to use 
2*m*t where m*t is the product of the number of inputs and outputs (Dyson et al., 2001).  

Phase 3 - Selection of the Data Envelopment Analysis Model and Formulation 
 The article outlines sub-steps of this phase to state that first, if the data set are 

experiencing variable returns to scale, the use of the Banker, Charnes and Cooper (BCC) 
model can be used to account for scale inefficiencies.  If not, the Charnes, Cooper, Rhodes 
(CCR) model should be used.  Secondly, the decision should be made to identify whether 
to use and input-oriented or output-oriented model depending on the decision maker’s 
interest and goals.   
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Phase 4 - Application of DEA Models 
 It is recommended that an appropriate software specifically designed for DEA analysis be 

used.  

Phase 5 - Post data Envelopment Analysis Procedures 
 Because DEA is a nonparametric method, it is not possible to estimate the confidence 

levels as used in general statistical methods. The DEA results should be viewed with 
caution and consideration should be taken to conduct sensitivity analyses – for example, 
removing the efficient DMUs and reviewing again.  

Phase 6 - Presentation and Analysis of Results 
 “The DEA results are intended to be used as guidelines for managerial actions and 

policymaking as calculated targets for inputs and outputs indicate potential performance 
and efficiency increases for inefficient DMUs.” For this reason, DEA results should be 
presented in a very concise way, possibly with the use of some charts and easy to follow 
tables.  

Zhang et al. (2015) studied the use of DEA in effectively measuring the efficiency of bridge 

replacements and rehabilitation programs of state highway agencies. Zhang et al. (2015) also 

explored the ability to evaluate technical efficiency change and technological change of these 

operations using DEA. Technical efficiency change and technological change were evaluated using 

the Malmquist productivity index (MPI) model. MPI, also known as total factor productivity 

change, was developed as a combination efficiency and productivity to be an appropriate tool in 

measuring the change in productivity of DMUs over time (Cook & Seiford, 2009; Zhang et al., 

2015). To perform the analysis, Zhang et al. (2015) used a modified input-oriented variable 

returns-to-scale model with 48 total DMUs (state DOTs), six inputs, and two outputs. Jalili (2015), 

used DEA as a means to evaluate performance of the Wyoming Highway Patrol divisions and 

provide benchmarks. Jalili (2015) used an output-oriented BCC model with both controllable and 

uncontrollable inputs to perform the assessment.  Marchetti and Wanke (2016) also used DEA as 

a means to assess efficiency in the transportation sector. In their research, Marchetti and Wanke 

(2016) looked at the application of DEA to determine efficiencies in Brazil’s freight transportation 
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by rail. Their study used a combination of two output-oriented DEA models (one CCR model and 

one BCC model) with two inputs, one output and 60 DMUs.  

The abovementioned instances pertain to the use of DEA relating the transportation 

industry; however, DEA has been used across countless industries and sectors across the world. 

Carnes et al. (1998) provided a DEA methodology to evaluate and benchmark building energy 

consumption in service institutions in terms of productivity. McCabe et al. (2005) researched the 

application of DEA in the construction industry to provide a benchmarking tool for owners to 

standardize contractor prequalification. Trappey and Chiang (2008) used DEA as a benchmarking 

technique for planning in new product development. Abdullah et al. (2012) evaluated the 

efficiency of internal company projects using DEA. Shirouyehzad et al. (2012) used a DEA approach 

for measuring employee efficiency in terms of physical working conditions and organizational 

commitment. Monika and Mariana (2015) explored the use of DEA in human resource controlling 

as a qualitative human resource indicator. And, Visani et al. (2016)  investigated the use of DEA as 

a new approach to total cost of ownership. These examples are not meant to encompass all the 

potential uses of DEA but are intended to show the vastness of potential uses as well as provide 

further historical uses of DEA outside of the transportation industry. Table 1 summarizes the 

aforementioned uses of DEA.  
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Table 1: Historical Applications of DEA 

Author Application 
Area 

Description 

Carnes et al. (1998) Energy Study to evaluate and benchmark energy consumption of 
buildings in terms of productivity 

McCabe et al. (2005) Construction Use of DEA to establish benchmarks for contractor 
prequalification 

Ozbek (2007) Transportation Study of the efficiency of bridge maintenance 

Trappey and Chiang (2008) New Product 
Development 

DEA as a benchmarking technique for planning 

Abdullah et al. (2012) Company DEA to determine efficiency of internal company projects 

Shirouyehzad et al. (2012) Employee DEA to measure employee efficiency 

Monika and Mariana (2015) Human 
Resources 

DEA as human resource controlling tool 

Zhang et al. (2015) Transportation Study of the efficiency of bridge replacement and 
rehabilitation programs 

Visani et al. (2016) Ownership DEA as a means of determining total cost of ownership 

Marchetti and Wanke (2016) Transportation Study of the efficiency of Brazil’s freight transportation by rail 

 
2.3 - Efficiency and Productivity in Shipyards, Maintenance, and Facilities Management 

The previous section of this literature review discussed various historical and current 

applications of DEA. The succeeding section is focused on performance evaluation methods used 

to evaluate performance in shipyards, maintenance, facilities management, and other similar 

applications. Along with DEA methodologies, other tactics and approaches to performance 

evaluation are also discussed. Discussion is provided for each application that includes the 

methodology and variables used, the area of application, the purpose of the evaluation, as well 

as discussion of the results of the evaluation.   

2.3.1 - Approaches to Evaluate Efficiency and Productivity in Service Related Industries 

The notion to study efficiency and productivity in areas relating to shipyards, 

maintenance, and facilities management has been around for quite some time. Traditional tactics 

of performance measurement and benchmarking relating to these fields has been researched in 
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multiple studies (International, 2016, 2017; F. Lamartin & Powell, 1980). Along with traditional 

approaches, various other studies others have proposed methods utilizing DEA (Charnes et al., 

1984; Itoh, 2002; Macmillan, 1987; Park, Lee, & Zhu, 2014; Pires & Lamb, 2008; Rabar, 2015; 

Tongzon, 2001; Wong, Leung, & Gilleard, 2013). Of these studies, only the studies of Chudasama 

(2010), Lamartin (1980), Guofu et al. (2017) International (2016,2017), Ok and Feng (2017), Park 

et al. (2014), Pires and Lamb (2008), and Rabar (2015) are directly concerned with productivity 

and benchmarking in shipyard maintenance or shipbuilding activities. The remaining studies are 

either connected to maintenance, shipyards, or facilities management (FM) in general.  

A new method for manpower decisions in shipyards, utilized in the 1980’s by a large 

military shipyard operation, included a “profiling” approach (Lamartin, 1980). The approach 

included considerations of multiple variables, which contribute to the overall productivity. It was 

recognized during that time that measuring ship repair and overhaul productivity is much more 

difficult than measuring shipbuilding productivity – often because the goal in shipbuilding was to 

estimate construction costs (Lamartin, 1980).  The variables used during this particular study 

included relationships between productivity, work force characteristics, and working conditions. 

This method, like many efforts concerning efficiency, often serves the mission to review individual 

or group productivity levels using a single input/single output method. Under Lamartin’s 

“profiling” approach, productivity was measured using standard input to output ratio. To measure 

overall productivity, Lamartin (1980) suggested carrying out a three step measurement process 

of setting baselines, observing variations from baselines, and combining individual productivity 

measurements to develop overall efficiency. While this method does provide productivity 

measurement, it is limited to single input/single output situation and requires common 
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measurement units to combine individual measurements into an overall measure of productivity 

making the results subjective.  

 Charnes et al. (1984) studied the use of DEA in measuring the efficiency of maintenance 

units in the United States Air Force. In this study, Charnes et al. (1984) identified four basic areas 

of concern evaluating the efficiency of maintenance units. These questions concern the highest 

level of service achievable, shortfalls, effective resource acquisitions, and management system 

improvements. Data collected for inputs and outputs was taken from fourteen separate Air Force 

maintenance wings. The methodology used for analysis was the basic CCR model with eight inputs 

and four outputs. Results of the study determined the inefficient maintenance units and provided 

a basis for improvement. While this study concerns maintenance, its methodologies do not 

provide a basis for which shipyard manpower levels can be determined.  

 Tongzon (2001) and Itoh (2002) both conducted studies relating to shipyards however, 

both studies focused on the efficiencies of port operations as a whole. Tongzon’s (2001) study 

was concerned with twelve international ports and used six inputs and two outputs. Itoh’s (2002) 

study only included eight major container ports in Japan. Itoh’s study took advantage of both the 

CCR and BCC models to analyze the efficiency of Japanese ports using three inputs and one output. 

Wong et al. (2013) researched the use of DEA in facilities management to overcome 

benchmarking challenges. Four inputs along with nine outputs were used in the evaluation of nine 

buildings. 

First Marine International (FMI) completed a two-part study (project 9Y1755) for the US 

Naval Shipbuilding and Repair Industry to find strategies for performance improvement 

(International, 2016, 2017). They researched performance targets expressed in terms of the 

budget required to carry out a specific task. In this case, the research simply utilized a survey to 
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compare categorized tasks, technologies and skills to assess and improve shipyard productivity. 

Eight shipyards participated in the survey, five large and three mid-tier. Target ranges were 

reported and the benchmarks are referenced with each update of the report to identify possible 

improvements from year to year (International, 2016). Key facility and equipment 

recommendations provided by FMI to be included in each shipyards’ benchmarking report are 

materials handling and storage, unit and block assembly, welding, module building, support and 

services, workstation organization, pipe shop, and construction points. From the second part of 

the report, it was determined that the top five industry performance improvement areas are: 

approach to performance improvement; organization and approach to work; support for work; 

planning scheduling and control; and commercial relationships (International, 2017). Although 

this type of report is beneficial, the information is reported in aggregate and not very specific for 

the needs to outline manpower roles in the shipyard industry.   

 Pires and Lamb (2008) proposed an approach for establishing performance targets for 

shipbuilding operations using Data Envelopment Analysis (DEA). The expected outcome of the 

research was to make it feasible to estimate productivity and project duration, while accounting 

for the many various external components that influence shipyard performance. Namely, these 

external components that influence shipyard productivity and project duration include the 

shipyard’s output patterns, the technological levels of the shipyard, and the industrial 

environment of the region where the shipyard is located. Pires and Lamb (2008) concluded that 

in order to become competitive with the international standards the technological levels of many 

Brazilian shipyards must be dramatically updated, and shipyards must be greatly modernized. This 

suggests that the level of technology for a shipyard is directly related to the 

productivity/performance of that shipyard. Consequently, the technology levels of shipyards must 
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be considered when comparing the performance of one shipyard to another. To account for 

technology levels for each shipyard, Pires and Lamb (2008) used a synthetic comparative index 

they called a technological development index (ITECH) as an input to the DEA evaluation. The 

index was compromised of four activity groups which are graded from 1-5, with a grade of five (5) 

being state of the art. The activity groups used to determine technology level included fabrication 

and assembly, erection and outfitting, product and process engineering, and organization and 

management activities. Each activity group was graded for all shipyards, and the input variable 

ITECH was calculated by taking the average of the mean values for the groups of activities.  Along 

with technology level, Pires and Lamb (2008) also included shipyard capacity and quality of 

industrial environment as production influencers in their DEA evaluation shipbuilding facilities.  

Chudasama (2010) evaluated the efficiency of shipbuilding in Indian shipyards using an 

input-oriented DEA model to assess the extent of optimal resource allocation to achieve the 

shipyard’s planned targets. Efficiency is capable of being measured in this context because the 

basis behind efficiency in DEA is the ability to convert inputs to outputs. The model used by 

Chudasama (2010) was input-oriented, meaning that the efficiency scores produced by the model 

represent the smallest proportion of the existing inputs a shipyard can use and still produce its 

existing output if it was using the best practices observed throughout the DMU sample. The 

orientation of the model was chosen based on the assumption that the main objective of a 

shipyard is to optimize the allocation of resources or to minimize the inputs required to reach a 

targeted level of output. Chudasama (2010) evaluated the efficiency of the shipyards based on 

three input variables and one output variable determined through discussion with industry 

experts. Like similar studies, shipyard facility characteristics and capabilities were utilized as input 

variables for the DEA model. The input variables used for this model include shipyard capacity in 
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deadweight tonnage, maximum length of vessel built, and total number of employees. The lone 

output variable for the model was annual income for the shipyard. The results of the study were 

evaluated, and sources of inefficiency were analyzed based on input slacks, peer group, and peer 

weights. The analysis of inefficiencies allowed Chudasama (2010) to benchmark performance 

targets and provide suggestions to make the operations of underperforming shipyards more 

efficient.  

 Park et al. (2014) proposed an approach for the performance evaluation for the Block 

Manufacturing process in a Korean shipbuilding company. The methodologies used for the 

evaluation include process mining along with DEA. Performance measurements used by Park et 

al. (2014) were number of unit operations, waiting time, total execution time, material amount, 

and gap between planned and actual working time. From these performance measurements, Park 

et al. (2014) created two inputs (total execution time and waiting time) and two outputs (number 

of operations and material amount). Data for the performance analysis was obtained from 

databases of actual data supplied by production information systems. Results of the analysis 

provided guidelines for improvement of underperforming units in relation to the entire 

manufacturing process. This approach set forth by Park et al. (2014) provides great insight into 

productivity evaluation of ship manufacturing; it does not provide the necessary information for 

the study of manpower efficiency and productivity in a ship maintenance setting.  

 Rabar (2015) used DEA as a means of setting key performance targets for shipbuilding in 

five Croatian shipyards. Best practice shipyards were identified from the efficient frontier 

developed by the DEA model and used as benchmarks of performance. Five variables were used 

during the analysis, three input variables and two output variables. The input variables selected 

were number of employees, number of effective working hours, and total expenditures. The 
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output variables included total delivered compensated gross tonnage and total revenue. Since 

the number of DMUs was relatively small, Rabar (2015) used window analysis to evaluate each 

shipyard on a yearly basis. Using window analysis creates more DMUs because it treats each time 

period as a separate DMU. For example, if there were four DMUs and the available data was from 

2015 to 2017, the total number of DMUs for the model would increase from four to twelve using 

window analysis because each period is treated as a separate DMU. For the analysis, Rabar (2015) 

used both the CCR and BCC models in an output orientation. Each model was ran with both a CRS 

and VRS due to the uncertainty concerning the appropriate RTS to use in the case of shipyard 

performance. Inefficiencies were evaluated based off technical efficiency and scale efficiency of 

the DMUs.  

Guofu et al. (2017) developed a model for the measurement and evaluation of 

shipbuilding production efficiency which used DEA as an evaluation tool. The efficiency model 

utilized four different DEA models, both an input and output oriented CCR as well as a BCC model 

in both orientations. Guofu et al. (2017) also included a four-step conceptual framework for 

selecting the appropriate data, methodology, performance indicators, and production variables 

for evaluation of shipbuilding efficiency. The conceptual framework was designed based off the 

theory that production efficiency in shipbuilding is the combined effect of multiple factors related 

to production (Guofu et al., 2017). Therefore, to effectively evaluate shipbuilding production 

efficiency, the efficiency evaluation model must be inclusive of all factors which affect production. 

Guofu et al. (2017) used their efficiency model to evaluate shipbuilding production efficiency of 

13 Chinese shipbuilding facilities. The model included two outputs, number of vessels delivered 

and delivered compensated gross tonnage (cgt) along with four production inputs, number of 

docks, total area of docks, number of cranes, and maximum lifting capacity. To evaluate the 
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results of the model, several production efficiency indicators were defined at the firm, 

organization, activity, and product level. These indicators were used to evaluate each shipbuilding 

facility and allowed the sources of inefficiencies to be better identified and related to a specific 

element of shipbuilding production. Guofu et al. (2017) used the results of this evaluation to 

provide valuable information to each shipbuilding facility concerning the direct causes of each 

inefficiency as well as strategies and suggestions for further improvement.  

Ok and Feng (2017) applied a DEA model in efforts to analyze the efficiency of the Chinese 

ship repair industry. The analysis evaluated 12 ship repair facilities including both public and 

private companies. Also included in the work of Ok and Feng (2017), is an extensive literature 

review of similar studies along with a table summarizing each of the referenced studies. An input-

oriented CCR model encompassing four inputs and three outputs was used during the evaluation. 

The input variables chosen were total dock length, total dock area, total docking capacity in tons, 

and number of production employees. The output variables utilized were total annual revenue, 

number of repaired ships, and the service range of the repair facility. Ok and Feng (2017) used the 

results of the analysis to analyze any inefficiencies, to determine the strengths and weaknesses 

of each facility, and to provide productivity improvement measures for the inefficient repair 

facilities. The sources of inefficiencies were analyzed by finding the causes through the 

development of an efficient DMU based off a reference group of efficient DMUs.  To provide 

accurate and appropriate efficiency improvement measures to each inefficient repair facility, Ok 

and Feng (2017) separated public and private companies during evaluation of the results. Results 

of the analysis show that, of the selected facilities, the private facilities were more efficient than 

public facilities. Ok and Feng (2017) suggest that public facilities are inefficient when compared 

to private companies because of increased liabilities and financial risks, and their systematic setup 
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makes them less flexible to changes. Regardless of company type, the authors suggest that the 

most important factors for improvements in ship repair efficiency are continuous improvement 

and upgrades to the facility, technology, and industry while ensuring the management style is 

ever evolving and not becoming stagnant.  

According to Bröchner (2017), many studies have been done concerning workplace 

productivity but there has been very little research on the direct productivity of facilities 

management. This identified gap in research is similar for the shipyard industry and the lack of 

DEA efficiency evaluations of maintenance and repair.  Providing an objective means for decision-

making in terms of manpower is fundamental for increased productivity and performance. 

Regardless of the fact that the aforementioned studies relate to efficiency and productivity 

evaluation of shipyard maintenance in some way, none of these studies provide an exact 

methodology for the study on manpower and efficiency of the Manns Harbor Shipyard. However, 

these prior studies do provide background knowledge pertaining to the types of data to be used, 

quantities of inputs and outputs, along with potential methodologies. A visual summary of these 

previously used methods can be seen in Table 2.  
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Table 2: Previous Methods of Performance Measurement in Shipyards/Maintenance/FM 

Author Method Application Area Description 

Lamartin (1980) Profiling (single 
input/output) Shipyards 

An approach to manpower 
decisions in shipyards based off 
of productivity 

Charnes et al. (1984) DEA Airforce 
Maintenance 

Application of DEA to 
determine efficient units in 
Airforce maintenance 

Tongzon (2001) DEA Shipyards Study of the efficiencies of port 
operations 

Itoh (2002) DEA Shipyards Study of the efficiencies of port 
operations 

Pires & Lamb (2008) DEA Shipbuilding 
Analysis of Brazilian shipyards 
using DEA to establish 
performance targets 

Chudasama (2010) DEA Shipbuilding Efficiency evaluation of Indian 
shipyards using DEA 

Wong et al. (2013) DEA Facilities 
Management 

Application of DEA to overcome 
benchmarking challenges in 
facilities management 

Park et al. (2014) DEA Shipbuilding 
DEA performance evaluation of 
the Block Manufacturing in a 
Korean shipbuilding company 

Rabar (2015)  DEA Shipbuilding 

Application of DEA to evaluate 
the performance of Croatian 
shipyards and set key 
performance targets 

International 
(2016,2017) Survey/Report Shipbuilding/repair 

Two-part study of US Naval 
Shipbuilding and Repair 
Industry for performance 
improvement 

Guofu et al. (2017) DEA Shipbuilding  
DEA application to evaluate the 
efficiency of shipbuilding 
production in Chinese shipyards 

Ok & Feng (2017)  DEA Ship Repair  
Application of DEA to evaluate 
the performance of the Chinese 
ship repair industry  
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CHAPTER 3: RESEARCH METHODOLOGY 
 
 

To evaluate the efficiency of Manns Harbor Shipyard, the research team conducted visits 

and held interviews with industry experts from other ship repair facilities that are similar in terms 

of their operations. Due to the limited number of shipyards and competitiveness of the industry, 

the majority of shipyards contacted were unwilling to participate or provide detailed operational 

data to the researchers. In spite of these challenges, three shipyards agreed to participate in this 

study fully while an additional shipyard agreed to conduct a visit but disinclined to offer any 

operational data. Due to the nature of this research and confidentiality agreements with the 

participating entities, the names of shipyards will remain anonymous and information in this 

report will be conveyed in aggregate. Of the participating shipyards, all of which are private 

entities, two are located along the Gulf Coast while the remaining two shipyards are located on 

the Atlantic Coast. To classify these participating shipyards, this research utilizes the shipyard 

classifications and definitions provided in a report by the U.S. Department of Transportation 

Maritime Administration (MARAD) on U.S. Shipbuilding and Repair Facilities. These classifications 

are based on the joint U.S. Navy and MARAD 1982 Shipyard Mobilization Base Analysis, or SYMBA 

(MARAD, 2004). 

The general measure of productivity is too generic to assess overall operational efficiencies. 

Shipyard operations, especially when considering the differences between public and private 

entities, can vary greatly and therefore the difficulty with any single-factor productivity measures 

is that it is easy to obtain a false sense of increased productivity due to a factor that provides no 

company value. For example, many operations focus on the basic labor related factors such as a 

total time for a task, for a single trade’s output. However, efficiency can be improved through 

planning and increased use of the combined time for all trades that produce an output for a 
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product. Improving the efficiency of one trade without consideration of project scheduling will 

negate the overall mission. Therefore, the research aimed to take a multifactor perspective 

through both qualitative and quantitative review of shipyard operations. The methodology used 

to carry out this research consists of the four basic steps listed below. The succeeding subsections 

will provide detailed descriptions and discussion of each research step.  

 Step 1 – Data collection through shipyard visits and interviews 
 Step 2 – Qualitative assessment of shipyard operations 
 Step 3 – Quantitative assessment of shipyard operations using DEA 
 Step 4 – Analyze assessment results and provide recommendations  

3.1 - Maintenance and Repair Facilities Overview 

The most appropriate description of the shipyards similar in operation to Manns Harbor 

includes those in a category titled, Repair Yards with Drydock Facilities (Major Shipyards) and an 

additional category titled, Medium and Small Shipyards. Repair Yards with Drydock Facilities are 

defined as those facilities having at least one drydocking facility that can accommodate vessels 

400 feet in length and over, provided that water depth in the channel leading to the shipyard is 

at least 12 feet (MARAD, 2004).  These facilities are also capable of constructing a vessel less than 

400 feet in length overall. The participating shipyards included three facilities in the “Major 

Shipyard” classification along with one facility classified as a “Medium and Small Shipyard”.  

During visits and interviews with experts at each shipyard, questions were asked 

concerning manpower levels and types, maintenance activities, facility characteristics, 

organizational structure, management styles and strategies, and typical day-to-day operations. 

Data gathered from these interviews, was used to evaluate the similarities and differences of 

shipyards and their operations. The evaluation of data and thorough investigation of shipyard 

operations also allowed for a list of production parameters to be established for vessel repair and 
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maintenance. A summary of general characteristics concerning each shipyard can be seen in Table 

3 below. Due to the aforementioned constraints, the name for each shipyard will be kept 

confidential. Manns Harbor Shipyard will be referred to as Shipyard A or SYA and the other 

shipyards will be referred to in similar fashion.  

Table 3: Shipyard General Characteristics 
 

Shipyard 
Classification 

Org.  
Type M&R Labor Full-Time 

Employees 
Org. 

Structure 

Max. 
Drydock 

Capability 

Apprentice 
Program 

Manns 
Harbor 
(SYA) 

Medium/Small Public In-house only 65 See Fig. 2a 
867 tons, 

220' LOA x 
50' Wide 

No 

Shipyard B 
(SYB) Major Private In-house and 

subcontracted 250 See Fig. 2b 
8,100 tons, 
341' LOA x 
110' Wide 

No 

Shipyard C 
(SYC) Medium/Small Private In-house and 

subcontracted 25 See Fig.  2c 
480 tons, 

200' LOA x 
38' Wide 

No 

Shipyard D 
(SYD) Major Private In-house and 

subcontracted 380 See Fig. 2d 
89,600 tons, 
751' LOA x 
110' Wide 

Yes 

Shipyard E 
(SYE) 

Major Private In-house and 
subcontracted Undisclosed See Fig. 2e 

17,640 tons, 
620' LOA x 
88' Wide 

Yes 
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Figure 2a: SYA Organizational Structure 

 

 

 
Figure 2b: SYB Organizational Structure 
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Figure 2c: SYC Organizational Structure 

 

 
Figure 2d: SYD Organizational Structure 
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Figure 2e: SYE Organizational Structure 
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of these public shipyards are not comparable to the operations of Manns Harbor (Shipyard A). 

Moreover, Manns Harbor (Shipyard A) is the only facility in which subcontracted labor is not 

utilized. All of the remaining shipyards utilize varying levels of subcontract and in-house labor for 

their maintenance and repair operations. Despite slight variations amongst the shipyards under 

evaluation, all of the facilities complete similar types of work on corresponding types of vessels, 

using comparable types of technologies and personnel. Because of these parallels among 

shipyards, the homogeneity requirement of DMUs used for DEA evaluation is satisfied.   

Similar to Manns Harbor (Shipyard A), interviews with management personnel from other 

facilities indicated that increased labor requirements and reduced employee retention are the 

primary issues with regards to downtime and operational efficiency. A representative from 

Shipyard E stated that painting is an area of continuous frustration and at any given time, the 

shipyard employees up to 100 additional temporary workers to meet the required manpower 

staffing levels. While this is just one example, the remaining shipyards employ similar tactics such 

as temporary employment and subcontract labor to accommodate for the lack of manpower. 

Alternatively, because the lack of manpower can be primarily attributed to a lack of training and 

poor retention, two of the participating shipyards, Shipyard D and Shipyard E, have established 

apprenticeship programs with local technical colleges. An apprenticeship is a combination of on-

the-job training (OJT) and related classroom instruction under the supervision of a journey-level 

craft person or trade professional in which workers learn the practical and theoretical aspects of 

a highly skilled occupation (WSLND, 2017). As a part of these apprenticeship programs, each 

apprentice is employed full time by the shipyard and compensated competitively throughout the 

duration of the required classroom instruction and training to advance to journeyman level for 

their particular trade.  These apprenticeship programs not only provide adequate and relevant 
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training, they also help with employee retention in the shipyards that have established them 

because employees understand and recognize the potential for advancement inside the 

organization.  

Outside of the aforementioned apprenticeship programs, several additional strategies 

have also been employed by shipyards to increase productivity and efficiency or alternatively, to 

decrease downtime and schedule overruns for their projects. One tactic observed in several of 

the shipyards under investigation, was to dedicate specific personnel as project managers for each 

project undertaken. A representative from Shipyard D stated that project management for their 

organization is key to connecting the schedule and efficiencies with the needs of the organization. 

The employment of project management positions allow for the workload of the superintendent 

and supervisors to be reduced. Instead of dedicating their time to planning, estimating and 

scheduling, the introduction of a project management role allows for the superintendent and 

supervisors to better manage their workforce and utilize their time in the field, rather than an 

office. Furthermore, the addition of the project management role allows for management and 

tradesmen to work together to maintain the project schedule, creates an additional means of 

checks and balances within the organization, and most importantly allows the employees to 

dedicate their time to their area of expertise. Other strategies implemented include bonuses and 

incentives for on time or early project completion as well as changes to management strategy or 

style. For example, Shipyard B has implemented lean operation and direct communication 

strategies to improve efficiency. Alternatively, Shipyard D has implemented an on time-focused 

management strategy to improve the operational efficiencies of the shipyard. Additional 

strategies to improve efficiency deal with improvements and upgrades to shipyard facilities and 
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equipment technology, as well as the use of computerized maintenance management systems 

(CMMS) specifically designed for marine maintenance and repair operations.  

While this section discusses the similarities and differences between the shipyards under 

evaluation, it is only meant to establish qualitative factors in which efficiency can be influenced. 

Despite the application of various strategies aimed at increasing operational efficiency, these 

strategies were implemented on a case-to-case basis and cannot be applied in every circumstance 

due to a multitude of factors concerning the organization and its makeup. However, evaluation 

of these shipyards allowed for a set of production parameters, discussed in a later section of this 

report, to be established for use as variables in the DEA model. Additionally, establishment of 

these qualitative factors will assist the researchers with providing suggestions and 

recommendations to the NCDOT concerning potential tactics to increase the productivity and 

efficiency of the Manns Harbor operation.  

3.2 - Facility Summaries Qualitative Review  

3.2.1 - Manns Harbor – Shipyard A 

Manns Harbor Shipyard is one of the six active public shipyards in the Unites States and 

is the only public shipyard that maintains a fleet of ferries. The other public shipyards conduct the 

majority of their work on military vessels and other large supply vessels. In addition to the ferry 

fleet, Manns Harbor is used to dock and repair all tugs, workboats and dredges operated by the 

NCFS. The shipyard utilizes a marine railway for all dry-docking and launching operations. The 

facility has the capability to dry dock up to three vessels at one time. The largest vessel in the fleet 

that must be dry docked by the facility is 220 feet in length, 50 feet in width and weighs 867 gross 

tons. Manns Harbor utilizes forklifts and cranes for material lifting and transportation. The 
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shipyard is also inclusive of a 10-story enclosed paint facility and an indoor machine shop outfitted 

with both mills and lathes.  

Manns Harbor utilizes in-house labor to complete all of their maintenance work without 

any subcontracted labor. The shipyard employs approximately 65 full-time employees along with 

temporary laborers from time to time as deemed necessary. Despite having 65 full-time 

employees, the Shipyard Superintendent stated that only 44 are production employees. The 

trades employed by the shipyard include machinists, painters, chippers, electricians, welders, pipe 

fitters, and mechanics. Of these trades, the Shipyard Superintendent stated that welders are the 

hardest to retain and have the highest turnover of any trade in the shipyard. The paint 

department, which is inclusive of painters as well as chippers, provides the majority of the labor 

hours for the Manns Harbor operation. One major difference between Manns Harbor and the 

other shipyards included in this study is that it is a state-owned public shipyard, while all of the 

others are private. Being a government entity, the shipyard is required to observe all federal 

holidays and must follow the state’s work calendar.  Manns Harbor operates Monday through 

Friday from 7:30 am to 3:30 pm. The workday schedule includes a morning break, a lunch break, 

and an afternoon break.   

As seen in the organizational structure shown above in Figure 2a, the shipyard does 

employ a shipyard planner/scheduler. However, until recently this position has been vacant. 

Because of this, the shipyard does not have any formal planning, estimating, or scheduling 

procedures. Moreover, despite the addition of a planner/scheduler, there is no direct link 

between the planner and the field personnel. All information must first be communicated to the 

Shipyard Superintendent, then to the department supervisors before it reaches the tradesmen in 

the field. As a result, the Shipyard Superintendent is responsible for maintaining and tracking 
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progress for each repair project and is the direct line of communication between repair operations 

and the management team. Project estimation is done prior to the arrival of each vessel during a 

production meeting between the supervisors, the shipyard superintendent, and management 

team through expertise and evaluation of the vessel condition. Estimates are based on the man-

hours required in each department rather than a quantity of work to be done (i.e. square feet of 

painting) and are completed using Excel spreadsheets. These estimates are used as the schedule 

to track the progress of the project.  

During a visit to the shipyard, when asked about incentives and employee advancement, 

the Shipyard Superintendent stated that there are very little to no incentives offered to the 

employees and that there is no way to advance once hired. Moreover, he stated that once hired 

employees would make the same salary with no increase or raise unless the entire NCDOT 

increases pay. The Shipyard Superintendent partially attributes this to the high rate of turnover 

inside of the shipyard. He stated that the majority of the time, when welders or other skilled 

trades leave it is related to a lack of incentives and no chance of advancement throughout the 

organization.  

Manns Harbor Shipyard utilizes the NCDOT SAP computer software to track and record 

man-hours on each maintenance and repair project. However, the NCDOT-Ferry Division has only 

utilized this system for approximately 18 months. Therefore, the amount of computerized 

historical data available for reference is very limited. Furthermore, through discussion with the 

Shipyard Superintendent, it was stated that despite having a computerized management system 

the system is utilized by the entire NCDOT and is not setup specifically for ship maintenance and 

repair. As a result, the software is not as useful and intuitive for the shipyard operations compared 
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to highway maintenance or bridge projects, making the use of the software as a maintenance 

management tool difficult for ship repair projects.  

3.2.2 - Shipyard B 

Shipyard B has three dry docks, five areas where work can take place “dockside”, and four 

new construction areas. The shipyard lies on a 50-acre site with one mile of waterfront property 

and a 30,000 square feet enclosed fabrication facility with two ten-ton overhead gantry cranes. 

Dock 1, the largest of the dry docks at Shipyard B, has a maximum lifting capacity of 8,100 tons, a 

wing wall depth of 20 feet and can accommodate vessels up to 341 feet in length and 110 feet in 

breadth. Dock 2 has a wing wall depth of 25 feet, a lifting capacity of 5,000 tons and can 

accommodate vessels up to a maximum of 292 feet in length and 82 feet in width. The smallest 

dry dock at this shipyard, Dock 3, is used mainly for barge repair. Dock 3 has a lifting capacity of 

2,200 tons, a length of 208 feet, a width of 61 feet, and a wing wall depth of 20 feet. Additionally, 

Shipyard B maintains a variety of crawler cranes, up to 230-ton single lift capacity, as well as a 

wide range of smaller mobile cranes in order to handle demanding lift requirements.  

 Shipyard B’s operation utilizes a lean organizational structure illustrated in Figure 2b 

above. During the visit to Shipyard B, the Project Manager/Estimator stated that project 

management for their organization is key to connecting the schedule and efficiencies with the 

needs of the organization.  Additionally, the representative stated that there are times when the 

project manager may have direct contact with the Foreman. The majority of these instances of 

direct contact are associated with schedule issues. The Project Manager indicated that a majority 

of his time is spent in the field rather than in an office. At Shipyard B, the Project Manager is 

responsible for planning, estimating and scheduling and operates directly with the 

Superintendent and the Foreman to maintain the schedule.  
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Shipyard B’s manpower utilizes 25 to 30 percent in-house personnel with the remaining 

manpower provided through subcontracted work. Shipyard B’s manpower strategy for multiple 

vessels in the yard is to develop work crews for each vessel. For example, if there are five boats 

in the yard, there are five crews. Each crew stays on the assigned vessel from project start to 

finish. This strategy is achievable because the employees understand their job role includes 

multiple-task duties. There are approximately 250 employees at Shipyard B. The workforce is 

inclusive of a diverse ethnic employee makeup.  In addition, there are opportunities for many of 

the employees to advance through promotions inside the company. Shipyard B operates seven 

days per week with most employees working a 6-day schedule. The company has an established 

recognition program with monthly leadership and quarterly awards for employees who exemplify 

good safety and work efficiencies. This is in the form of both a basic “recognition” as well as 

monetary rewards. The delineation of trades with regard to in-house work and subcontracted 

work are as follows:  

• In-house:  
o Machining 
o Painting 
o Fitting and Welding 

• Subcontracted: 
o Carpentry  
o Electrical  
o Gas-freeing Process 

In addition to the mobile and crawler cranes mentioned previously, Shipyard B utilizes 

advanced management technologies and equipment in their repair operations. In terms of 

increased efficiency and productivity, the shipyard utilizes a robotic paint-blasting slurry method 

for hull preparation and paint removal rather than the time consuming manual method, that 

utilizes hand sanders. A shipyard representative stated that when compared with the manual 
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method, the slurry method is quicker, more efficient, and removes any environmental regulation 

responsibility from the shipyard because the waste from the process is collected and disposed of 

by an outside vendor. Additionally, the management team at Shipyard B employs a “home-grown” 

Computerized Maintenance Management System (CMMS) that has been developed over the past 

ten years for. The CMMS uses an Oracle-based Integrated Work Management System (IWMS) to 

complete estimates. Moreover, the IWMS allows management to track costs and schedule 

throughout each project by producing progress reports. These reports have built-in “efficiency-

ratios” to assist the Project Manager with tracking progress. Additionally, the IWMS allows any 

changes or updates to the scope of work to be directly loaded in to Microsoft Project, which 

enables the project schedule to reflect these changes without any additional work.  Currently, 

Shipyard B only utilizes the IWMS for new ship construction and repair projects are tracked in a 

similar fashion to the system via Excel spreadsheets. However, the shipyard is in the process of 

planning the integration of repair work into the IWMS system so that all projects are estimated, 

tracked, and updated through a single means.  

In addition to the advanced technologies, Shipyard B has also implemented strategies 

processes aimed at improving organizational and operational efficiencies. The first of the 

strategies is reflected in the organizational structure of the shipyard. The introduction of the 

Project Manager role along with the implementation of lean operation and direct communication 

strategies is the primary means of tracking and improving internal efficiencies. These strategies 

ensure that initial planning is done accurately and that there is a direct line of communication 

from management to field personnel so that the project schedule is maintained and the vessel is 

delivered on time. Another efficiency strategy implemented is a strategy Shipyard B calls “rolling 

back”. This strategy requires the work crews to clean the shipyard and take all tools, hoses and 
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equipment back to inventorying at least once per week. This keeps the yard clean, supports with 

safety procedures, and assists with inventory of tools. Another strategy implemented to improve 

efficiency is to maintain workday schedule that does not include any breaks except a 30-minute 

lunch break. It is understood in the shipyard that if an employee requires a break to use the 

restroom or get water that they take it and return to work as soon as possible. The final efficiency 

strategy implemented by Shipyard B deals with the sequence of repair activities. As an alternate 

to the sequence of work at most repair facilities, Shipyard B begins their repair operation with an 

overall paint job once slurry-blasting activities are completed. This assists to mitigate the amount 

of rework for painting areas that begin to rush after blasting and sets a stage for a clean initial 

work area.  

3.2.3 - Shipyard C 

Shipyard C is a full service repair, conversion, and new construction shipyard that 

encompasses 46 acres of property. The shipyard has approximately 2,000 feet of waterfront 

property, which is inclusive of three boat slips for repairs that do not require dry-docking. The 

facility operates a 480-ton lifting capacity marine travelift capable of handling vessels up to 38 

feet in width for all dry dock repairs and new vessel construction. In addition to vessel repair and 

construction, Shipyard C also provides dry storage for vessels up to 200 feet in length. Shipyard C 

has constructed over 500 vessels, many of which were ferries. Furthermore, Shipyard C has 

constructed four ferries currently in operation for the NCFS.  

Shipyard C’s current employee level is approximately 25 in-house employees, 20 of which 

are specifically shipyard production employees. The majority of the work completed using in-

house labor is steel and hull work. Therefore, the trades employed by Shipyard C include 

machinists, pipefitters, and welders. The repair services provided directly by Shipyard C are USCG 
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inspections, underwater inspections, blasting and painting, audio gaging, and steel replacement. 

In addition to the in-house trades, Shipyard C maintains a team of subcontractors for other ship 

repair needs including electrical, HVAC, carpentry, machine work, and propeller work.  

Shipyard C completes their estimates for repair using spreadsheets and tracks employee 

and subcontracted labor hour using Intuit QuickBooks. As seen in Figure 2c above, the 

Estimator/Superintendent is responsible for creating estimates for each project as well as tracking 

and monitoring progress to ensure the project schedule is maintained. At Shipyard C, no formal 

schedule is developed for each project; instead, the estimate serves as the schedule for the 

project. However, despite no formal planning or scheduling Shipyard C reports high levels of 

performance and on-schedule project completion.  

3.2.4 - Shipyard D  

Shipyard D operates on a retired naval shipyard, which is leased through a naval shipyard 

redevelopment organization. Shipyard D has four dry docks and seven full service piers inclusive 

of over 8,000 feet of deep-water pier space. The largest of the dry docks at this operation is 

capable of handling vessels up to 90,000 tons, 751 feet in length, and 110 feet in width. The largest 

of the seven full service piers can handle vessels up to 1,000 feet in length. In addition to the dry 

docks and piers, Shipyard D is inclusive of 2,500,000 square feet of indoor manufacturing and 

warehouse space. The indoor space is inclusive of machine, welding, pipe, and electrical shops. 

Additionally, Shipyard D operates eight 60-ton capacity gantry cranes on a continuous rail system 

along with four tower cranes for any lifting needs. During the visit to the shipyard, a 

representative from the shipyard stated that the operation typically repairs up to 60 vessels 

annually that range in size from 200 feet to 1000 feet in length. Shipyard D performs repairs on 
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various types of vessels including tugs, barges, cargo ships, research vessels, offshore support 

vessels, military and government vessels, as well as ferries.  

Shipyard D has approximately 380 full time employees along with 30 service companies 

that perform subcontract work on their projects. In total, Shipyard D’s overall workforce including 

subcontractors is approximately 1,100 employees. Because of the immense size of the operation 

and extensive indoor space, many of the buildings on-site are subleased to subcontractors and 

vendors who perform work and provide services on many of Shipyard D’s repair projects. The on-

site shops and departments at Shipyard D include purchasing and materials, hull, pipe, carpentry, 

docking, paint and labor, machinists, rigging, and electrical. Moreover, due to the vast amount of 

resources available at the shipyard, the sequence of work is much different from that of a typical 

ferry maintenance operation and typically involves multiple departments and subcontracted 

vendors completing work simultaneously to reduce repair time. As shown in Figure 2d along with 

the various skilled trades, Shipyard D also employs a management team that includes shipyard 

superintendents, project managers, marketing and sales professionals, a vice president of 

estimation, a vice president of operations, as well as various administrative and executive 

employees. For all repair projects, an estimate is completed by the vice president of estimation 

using Excel spreadsheets. The estimate is inclusive of internal cost codes for each activity, as well 

as an hourly unit cost for each skilled trade, subcontracted labor cost, material cost and quantity, 

and total estimated hours for each activity. Rather than using a formal CMMS for tracking projects, 

Shipyard D uses a mostly internal and less formal method of tracking costs and schedule 

throughout their project based on the completed estimate. Similar to other shipyards, each repair 

project is assigned a project manager who is solely responsible for tracking the project and 

maintaining the schedule.  
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During the site visit, the shipyard representative interviewed stated that the shipyard has 

received multiple grants through the MARAD Small Shipyard Grant program for the purchase of 

newer, more advanced equipment and technologies including a floating dry dock. Of these new 

technologies, it was indicated that the purchase of a plasma cutter and waterjet cutting machine 

had the largest influence on increased labor productivity in the shipyard. Because these machines 

are automated, the process no longer has to be done manually by employees. Moreover, with the 

purchase of this new equipment, the shipyard no longer has to purchase and wait for material to 

arrive. Instead, they have the capability to manufacture these parts on-site, which has played a 

key role in reducing repair time and increasing productivity within the shipyard.  

Along with the new equipment, the shipyard has also implemented and on time focused 

management strategy where each dry dock is planned for a scheduled amount of time and 

productivity in the shipyard is based on the number of vessels in and out that year. Another 

strategy to increase efficiency and productivity within the shipyard include a day with no breaks 

except a lunch break. The “no-break” strategy has worked well in the shipyard due to continual 

communication concerning deadlines and incentives offered to employees for finishing a project 

ahead of schedule. One incentive strategy used in the shipyard is an hourly bonus pool that 

accumulates hours when projects are completed ahead of schedule and with less man-hours than 

estimated. When the bonus pool reaches a certain level, each employee receives a bonus check 

as an incentive for meeting deadlines  

Similar to many industrial operations, Shipyard D has also collaborated with a local 

technical college to develop a specialized apprenticeship program for the shipyard. The program 

is designed to help with employee retention as well as increase the skill level of shipyard 

employees. The apprenticeship program combines traditional classroom work with on-the-job 
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(OTJ) training. The apprentice trades offered by this program are welders, marine painters, marine 

pipefitters, machinists, electricians, riggers, and carpenters. At the conclusion of the program, the 

apprentice will earn a certificate in basic industrial work skills as well as an Associate Degree in 

general technology. Along with the apprenticeship program, Shipyard D also provides 

opportunities for employees already working for the company for advancement and promotion 

as well as opportunities to continue their education or further develop their skill set.  

3.2.5 - Shipyard E  

Although Shipyard E declined the invitation to work as a partner and provide specific 

operational data for this research, the shipyard did agree to a site visit with the research team. 

Shipyard E’s facilities encompass more than 100 acres in total and include approximately 240,000 

square feet of covered buildings. Of the covered area, 115,000 square feet is dedicated to 

shipyard storage and shop/fabrication area. The shipyard has fully yard utility distribution systems 

including steam, compressed air, potable water, cooling water, and electrical power distribution. 

Shipyard E can accommodate vessels up to 875 feet in length, 150 feet in width, with a maximum 

draft of 30 feet. The shipyard is inclusive of three dry docks with a maximum capacity of 15,750 

long tons, a marine railway with a maximum capacity of 1,300 long tons, a marine travelift capable 

of handling 1,0000 metric tons, and several various cranes capable of lifting up to 230 tons. Other 

features of the shipyard include five full service piers, two limited service piers, and two limited 

service wharfs. In addition to in-house repairs, Shipyard E also provides an outsource group that 

performs full service marine repair contracting to other shipyards.  

During an interview with a shipyard employee, the employee stated that the shipyard has 

similar frustrations with manpower as other ship repair facilities. One of the main frustrations is 

a lack of manpower, which the shipyard employee relates primarily to a lack of training and 
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employee retention. Because of this, the shipyard relies heavily on subcontracting to provide the 

necessary labor force required. It was also stated that labor is one of the shipyards primary issues 

with regard to efficiency. By not having the needed manpower, the issue influences downtime 

and in return decreases efficiency and productivity. In addition to subcontracted labor, at any 

given time, the shipyard employs approximately 100 temporary employees in the paint 

department due to the high levels of manpower required. In an attempt to provide a solution to 

the lack of manpower, Shipyard E partnered with a local technical college to develop an 

apprenticeship program. During the program student’s work full time at the shipyard earning 

competitive wages while also completing classwork. While the apprenticeship program is still in 

its early stages, representatives from the shipyard believe the program will be instrumental in 

employee retention moving forward.  

3.2.6 - Planning and Scheduling  

Ferries and their systems are major assets to the NCDOT, NCFS, and the millions of 

passengers who rely on them annually. Therefore, ferry maintenance is critical in order to meet 

the needs and requirements of these passengers. Moreover, the availability and preparedness of 

the ferry fleet is essential to long-term viability of the NCFS. The main objective of ship 

maintenance management is to maintain high availability of assets and the role of maintenance 

is to ensure the ferries are seaworthy and equipped to perform their specified role (Deris et al., 

1999). The availability of ships is dependent on the effectiveness of implementing a preventative 

maintenance system (PMS) and the requirements for availability are met through significant 

investment in maintenance (Deris et al., 1999; Cullum et al., 2018). The role of a PMS is to provide 

standardization to the maintenance process from the planning phase through the execution 

phase and to provide a framework to assist with decision-making at the shipyard. While there are 



58 
 

several components that make up a PMS, maintenance scheduling is considered one of the main 

factors (Deris et al., 1999). However, to understand the importance of maintenance scheduling, 

there must also be discussion pertaining to the maintenance planning process. This is because 

maintenance scheduling is a direct product of the maintenance planning process (De Boer, 

Schutten, & Zijm, 1997). Studies relating to planning efforts in the construction industry also 

include scheduling as a planning tool that is used as a part of the planning process and several 

studies have shown performance improvement with formal pre-project planning (Ghio, Valle, & 

Rischmoller, 1997; Menches, Hanna, Nordheim, & Russell, 2008; Oglesby, Parker, & Howell, 1989).  

 De Boer et al. (1997) developed a system to support decision making at a large ship repair 

and maintenance facility and identified three important elements of a decision support system: 

(1) process planning; (2) aggregate capacity planning; and (3) finite capacity scheduling. These 

elements can be understood as the main phases of the project planning process differentiated by 

the level of detail and objectives of each phase. Process planning is the first phase in the process 

and represents preliminary planning done well in advance of the execution of maintenance 

activities. Process planning determines current shipyard maintenance requirements and what 

maintenance activities or actions must be done (De Boer et al., 1997). Aggregate capacity planning 

is a more detailed, two step planning process undertaken once process planning is complete. As 

opposed to process planning, aggregate capacity planning establishes constraints, resource 

availability, durations, procedures, and project dates (De Boer et al., 1997). The final and most 

detailed phase in the planning process is finite capacity scheduling. During this phase, planning is 

done at the activity level. For each activity, resource requirements are established, activity 

relationships are developed, exact durations are determined, and a maintenance activity schedule 



59 
 

is developed (De Boer et al., 1997). Table 4 summarizes the aforementioned planning process 

phases.  

Table 4: Maintenance Planning Phases 

Planning Phase Level of Detail Planning Objectives 
Process Planning Shipyard • Shipyard Maintenance 

Requirements 
• Establish Maintenance 

Activities/Actions to be done 
Aggregate Capacity Planning Project • Project Constraints 

• Resource Availability  
• Project Durations 
• Procedures 
• Project Dates 

Finite Capacity Scheduling Activity • Activity Resource 
Requirements 

• Activity Relationships 
• Activity Durations 
• Maintenance Schedule 

The planning phases discussed previously are only meant to serve as an example of the 

planning process and to illustrate the changes in planning objectives and level of detail from phase 

to phase. The maintenance planning and scheduling processes are different from organization to 

organization and dependent on their specific needs and management capabilities. Moreover, 

through investigation, it was observed that little to no formal project planning or scheduling takes 

place in the maintenance and repair facilities included in this study. Of the shipyards, only one, 

Shipyard B, uses a formal schedule for their repair projects. Shipyard B uses Microsoft Project to 

develop project schedules with integrated efficiency ratios to assist the project manager in 

maintaining and tracking the schedule. Shipyard D does not perform any formal planning or 

scheduling procedures; conversely, they use an internally developed system along with Microsoft 

Excel to create an estimate that is used by the project manager to track and maintain the 

schedule. The remaining two shipyards, Manns Harbor and Shipyard C, do not perform any formal 
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planning or scheduling and rely solely on the shipyard superintendent to ensure projects are 

completed on time.  

Even without formal planning or scheduling, the majority of shipyards under investigation 

report high levels of performance and on-time project completion. However, regardless of current 

stated performance levels, detailed formal pre-project planning provides several benefits that can 

be realized by improvements to project performance and reduced schedule overruns. Performing 

comprehensive planning prior to the commencement of work provides thorough knowledge and 

understanding of the entire project for those involved. In addition, any potential problems or 

difficulties that may arise on the project can be identified early, and plans to mitigate these 

potential problems can be developed. For example, during the process-planning phase, 

maintenance requirements for the project are identified and any repair activities that may require 

long-lead time parts can be planned for accordingly so that the procurement of materials does 

not cause delays to project. Performing pre-project planning allows all project and resource 

constraints to be identified. In addition to constraints, detailed planning also allows a detailed 

activity list to be developed. The development of a complete activity list aids in determination of 

activity relationships, durations, and sequence of work; which, when combined with constraints, 

provides the background information needed to create a detailed activity schedule for the project. 

The intent of this section is not to discuss the systematic procedures and processes for 

creating a detailed maintenance schedule, nevertheless multiple different strategies for ship 

maintenance scheduling can be found in literature. De Boer et al. (1997) introduced a multi-

project resource-constrained project scheduling system to support detailed ship repair planning. 

Deris et al. (1999) propose a method of ship maintenance scheduling by genetic algorithm and 

constraint-based reasoning. van Dijk et al. (2002) advocate that the critical path method (CPM) of 
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project scheduling has several shortfalls for the ship repair industry and, as an extension of De 

Boer et al. (1997), proposed a multi-project approach with simultaneous consideration of time 

and shipyard capacity. Ahluwalia and Pinha (2014) assert that schedules based on Microsoft Excel 

or Microsoft Project software are stagnant in nature and often result in cost and schedule slippage 

as well as low throughput. As an alternative to these methods, Ahluwalia and Pinha (2014) suggest 

a decision support system aimed at maximizing system throughput and minimizing total project 

cost that is oriented towards day to day decision making and resource constraints. Additionally, 

Cullum et al. (2018) suggest a new risk-based scheduling technique for ship repair facilities that 

consists of two elements; a risk assessment followed by maintenance scheduling.  These 

aforementioned methods are not inclusive of all the potential scheduling methods, they are only 

meant to provide examples of potential methods and to show the multitude of different 

approaches and techniques for developing detailed maintenance project schedules. Each method 

has its own unique set of advantages and limitations; therefore, selecting the best method for 

scheduling at ship maintenance and repair facilities must be done on an individual basis. The 

scheduling method selected for a particular operation must coincide with the organization’s 

structure, goals, abilities, and maintenance objectives in order to be effective.  

While it is easy to see the advantages of detailed planning and scheduling, the main 

drawbacks surrounding planning and scheduling deal with the need for expertise in scheduling 

and additional cost and time to complete these detailed planning measures. To complete detailed 

project pre-planning and scheduling, the organization must supply additional manpower outside 

of normal operations, which increases costs. Moreover, due to the complex nature of project 

scheduling, those involved must have knowledge and expertise in project management and 

scheduling. In addition, to complete intricate plans for maintenance projects a significant amount 
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of time must be dedicated to these processes prior to the start of work. Despite the increased 

staffing requirements and upfront cost of implementing formal planning procedures, the benefits 

of implementing these measures can negate these upfront costs and in some cases even save 

money over the duration of the project. However, more importantly, implementation of formal 

planning and scheduling processes has been shown to improve project performance and to 

prevent cost and time overruns. Detailed plans ensure all aspects of the project are fully 

understood, ultimately resulting in a reduction of project uncertainty and a more accurate 

estimation of duration and cost. Furthermore, the detailed plans and schedules created during 

these planning processes are useful well after the start of the work. Plans and schedules 

developed before the start of the project can be used throughout the duration of work to monitor 

and track the progress of activities as well as make modifications to the original plan if the scope 

of work changes significantly. Lastly, if detailed plans are created, tracked, and updated 

throughout the course of the project, management can use these plans and schedules to build a 

historical database for reference on future projects and as a means of evaluating the performance 

of the facility over time.  

3.3 - Operational Data Collection  

For this research, data was collected directly from each organization participating in the 

study. Data was collected during visits to each shipyard, through interviews with shipyard 

representatives, through email communication with administrative personnel at the participating 

organizations, and from information provided on company websites. In addition to the qualitative 

data concerning shipyard technologies, capacities, organizational structures, and management 

strategies discussed in the previous section, historical vessel maintenance operations data was 

gathered from each shipyard for the purpose of performance and efficiency evaluation through 
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quantitative analysis of shipyard operations by means of Data Envelopment Analysis (DEA). The 

maintenance operational data collected includes physical characteristics of the vessel under 

repair, maintenance and repair activities performed, trades that executed each activity, number 

of personnel working on each vessel, man-hours required to complete the repairs, and total 

refurbishment time in days to complete each repair project. Detailed discussion of specific data 

collected from each shipyard is provided in the following sections of this paper.  

3.3.1 - Manns Harbor 

The data for Manns Harbor was collected during the most recent visit to the shipyard on 

January 24, 2018. The data was downloaded directly from the SAP System using an IW47 

transaction along with the assistance of the Administrative Assistant, the Marine Shipyard 

Superintendent, and the Marine Planner/Scheduler Supervisor. The data collected includes work 

order numbers, activities, trades, start and finish dates, man-hours, and employee identification 

information. An example of the data collected excluding employee names can be seen in Table 5. 

Additionally, prior to the latest visit, data was also collected concerning organizational structure, 

shipyard departments and trades, personnel hourly rates, and current shipyard employees.  

The data provided from the SAP System follows the hierarchy shown below in Figure 3. 

The data starts with the Decision Making Unit, Manns Harbor Shipyard. It is then broken down by 

work order number, which includes vessel identification and date of the work order completion. 

Under each work order number, the data is divided into eight (8) individual work categories. The 

work categories are as follows: (1) Docking, (2) Hull Structure and Inspections, (3) Piping, (4) 

Machinery, Inspections, and Tests, (5) Operation Activities, (6) Electrical, (7) Paint, and (8) 

Technical. Each work category is broken down further into individual activities related to each 

category. All activities are identified by a unique activity code and description. For example, the 
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activities included in Docking are 1000 – Docking, General; 1081 – Defueling Vessel; 1090 – 

Crane/Forklift and other services; 2000 – Hull, General; and 2010 – Dry-Docking. Individual 

activities are broken down by the trades involved in the completion of each activity. The trades 

are then grouped into Cost Centers or Shipyard Departments. The Cost Centers are FER Shipyard, 

FER Mechanics, FER Paint, and FER Welding. Finally, all employees in the Shipyard are grouped 

under the appropriate Cost Center. An example of the break down process from Activity to 

Employees is illustrated in Figure 4.  

 

  Table 5: Manns Harbor Data Example 

 

 

 

 
  Figure 3: Manns Harbor Data Hierarchy 

 

Manns Harbor 
Shipyard

Work Order 
Number Category Activity Trades Cost Center Employees
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Figure 4: Manns Harbor Activity to Employees Hierarchy 

3.3.2 - Shipyard B  

Operational data for Shipyard B was collected following the visit to the shipyard on March 

21, 2018. The data was provided to the researchers by the shipyard’s Project Manager/Estimator 

in Excel spreadsheets through email communication. As previously mentioned, Shipyard B does 

utilize an Oracle-based Integrated Work Management System to track new ship builds, however 

the system is not currently used to track vessel repair projects. For repair projects, the shipyard 

utilizes spreadsheets to estimate as well as track cost and schedule throughout each project in a 

similar fashion to the IWMS procedures. However, unlike other shipyards, Shipyard B does not 

utilize a hierarchy or similar organizing structure to categorize their maintenance activities. 

Alternatively, Shipyard B tracks activities using a four-digit task identification number, therefore 

cost and time are charged directly to each specific task. In addition, Shipyard B also assigns a 

unique job number for each project undertaken. The job number is used to relate specific 

activities with a particular job in order to track schedule, labor, and cost for each project. An 

example of Shipyard B’s project tracking method is shown in Figure 5.  

3150 - Exhaust

7163 - Marine Welder II

151249 - FER Welding

Employees

7304 - Maintenance 
Mechanic III

150536 - FER Shipyard

Employees

7386 - Marine Mechanic II

151247 - FER Mechanics

Employees
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Figure 5: Shipyard B Data Tracking Example 

 
Shipyard B provided the research team operational data ship repair projects similar in size 

and scope to those completed at Manns Harbor. The data collected from Shipyard B was provided 

in two separate parts, the first part being an invoice for each repair project and the second part 

being inclusive of all in-house labor as well as subcontracted labor charged to each project. Data 

provided in invoice spreadsheets is inclusive of the activities to be completed on the vessel with 

a task identification number, a description of the work to be done for each activity, the quantity 

of material required per activity, and a total cost for each activity. An example of the data provided 

in each invoice is shown in Figure 6. Data contained in the labor spreadsheets include the job 

number, four-digit task identification number, task name, date for work on each activity, the type 

of labor working on an activity (i.e. in-house or outsourced), the trade(s) conducting work for an 

activity, and the man-hours charged to the each activity. An example of this is shown in Table 6.  
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Figure 6: Shipyard B Invoice Example 

 
Table 6: Shipyard B Data Example  

 

3.3.3 - Shipyard C  

A visit to Shipyard C was conducted on December 19, 2017. Operational data was 

provided to the research team after the visit was complete. Data was received through email from 

the shipyard’s Bookkeeper. Shipyard C, as previously mentioned, utilizes Intuit QuickBooks to 

track and manage both time and cost for their projects. However, prior to receiving the data, 

Shipyard C’s Bookkeeper exported the operational data into Excel spreadsheet format. 

Operational data at Shipyard C is grouped into two categories, shipyard labor and subcontract 

labor. Because Shipyard C is a relatively small shipyard with a limited number employee and 

3400 Steering Gear
 Disconnect rudder equipment in order to swing rudders full in order to remove propellers and shafts.

Retainer plates were removed in order to remove tailshafts. 
Connect rudder and install retainer plates as original upon completion of installation of the tailshafts 
and propellers. 
Remove (15) bushings from the jockey bar, dead man and tiller arm. Fabricate and install (15) new 
bushings.

Total: 7,521.16$     

JOB# Task ID Task Name Date Trade Description Stime Hrs Otime Hrs Total 
2511053 1610 COMPETENT PERSON 14-Apr-07 DIR.ISL.WELDER/FITTER.OT.B 0 1 1
2511053 1610 COMPETENT PERSON 15-Apr-07 DIR.ISL.WELDER/FITTER.OT.B 0 1 1
2511053 1610 COMPETENT PERSON 15-Apr-07 DIR.ISL.WELDER/FITTER.OT.B 0 1 1
2511053 1610 COMPETENT PERSON 16-Apr-07 DIR.ISL.WELDER/FITTER 1 0 1
2511053 1610 COMPETENT PERSON 16-Apr-07 DIR.ISL.WELDER/FITTER 1 0 1
2511053 1610 COMPETENT PERSON 17-Apr-07 DIR.ISL.WELDER/FITTER 1 0 1
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.ISL.WKG LEADERMAN.OT.B 0 2 2
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.ISL.WELDER/FITTER 3 0 3
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.ISL.WELDER/FITTER 2 0 2
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.ISL.WKG LEADERMAN 2 0 2
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.ISL.MATERIAL PERSON 2 0 2
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.ISL.WELDER/FITTER 3 0 3
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.ISL.MECHANIC 0.5 0 0.5
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.OSL.WELDER/FITTER 2 0 2
2511077 2100 DRY DOCK AND LAUNCH 19-Jun-07 DIR.OSL.WELDER/FITTER 2 0 2
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conducts in-house work only on hull related activities, no further categorization of operational 

data is done.  

Data from Shipyard C was received in three spreadsheets. The first spreadsheet was 

inclusive of personnel information including employee identification and job titles for each 

employee. The second spreadsheet included a list of maintenance and repair activities performed 

at the shipyard. Each activity is represented by a unique activity identification number, a 

description of the activity, and an identifier that represents the type of labor used to complete 

the activity.  An example of this data is shown in Table 7. The third spreadsheet contained 

operational data of work similar in scope to the projects completed by the NCFS. Operational data 

was inclusive of the activities completed on each project, a description of those activities, 

identification of employees who completed work for each activity, the hours worked on each 

activity, and the date the work was completed. A visual example of this data is shown in Table 8. 

Table 7: Shipyard C Activity List Example 

 
 

Activity 

010005 HR HULL JIG

010005 OV HULL JIG

010010 HR Cutting General

010010 OV Cutting General

010011 HR Sandblast and prime

010011 OT Sandblast and prime

020009 HR BURNING HULL

020009 OV BURNING HULL

020010 HR Hull General

020010 OV Hull General

020011 HR EQUIP. OPERATOR

020011 OV EQUIP. OPERATOR

020012 HR Hull Fitting

020012 OV Hull Fitting

020013 HR Hull Welding

020013 OV Hull Welding
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Table 8: Shipyard C Operational Data Example 

 

3.3.4 - Shipyard D  

Data collected from Shipyard D was provided during the visit to the facility conducted on 

May 21, 2018. Projects at Shipyard D are estimated and tracked through utilization of 

spreadsheets. Operational data for Shipyard D was provided to the research team by the 

shipyard’s Sales and Marketing professional. The data was received in the form of a printed hard 

copy of an Excel spreadsheet, which was later manually input into an electronic spreadsheet. The 

data collected includes work order number, vessel characteristics, shipyard departments, 

activities and activity categories, man-hours for each department per activity, subcontractor 

information, and refurbishment cost including in-house labor, subcontracted work, and materials 

cost. An example of the data received from Shipyard D can be seen in Figure 7; however, cost and 

pricing information are omitted at the request of the shipyard.  

 

Date Employee ID Activity Hrs
03/16/2018 19534 020010 HR Hull General (4.75)
01/19/2018 19403 020010 HR Hull General (2.50)
01/19/2018 19422 020016 HR Hull Cleaning (2.00)
01/12/2018 19401 020016 HR Hull Cleaning (1.00)
01/12/2018 011218B 258500 (SUB - PAINTING) (1.00)
01/12/2018 011218B 258500 (SUB - PAINTING) (1.00)
01/10/2018 8333 251000 (SUB - ELECTRIC) (1.00)
01/05/2018 ACH 020010 HR Hull General (1.00)
01/05/2018 010518 258500 (SUB - PAINTING) (1.00)
01/05/2018 010518 258500 (SUB - PAINTING) (1.00)
12/29/2017 19368 020010 HR Hull General (1.25)



70 
 

 

Figure 7: Shipyard D Operational Data Example 

Vessel maintenance and repair projects at Shipyard D are organized, estimated, and 

tracked using a basic hierarchical system shown in Figure 8. The hierarchy begins with a unique 

work order number given to each vessel when it arrives at the shipyard. Each work order is then 

broken into activity or maintenance categories. Activity categories are used to group similar 

activities based on the type of service provided, specific areas of the vessel, or operational 

systems and equipment on the vessel. In total, nine categories are used to group activities. These 

categories include services, docking, propulsion equipment, hull cleaning and coating, hull 

equipment, valves and piping, hull and deck repairs, galley and accommodation spaces, and oil-

fired boilers. Each category is inclusive of all maintenance activities to be done on the vessel 

related to that specific category. Each activity is then tracked in two separate manners, labor (i.e. 

man-hours) and cost. Labor is charged to each activity on an individual shipyard department level 

including subcontracted labor. This allows the shipyard to track the total hours each department 

worked on a particular activity. This can be seen in Figure 7 above. Finally, costs for each activity 

are broken down into three levels, shipyard labor, subcontractors, and materials.  

 

Act. # Activity Hull Elec. Mach. Pipe Carpentry Rig Labor Paint Subtotal 
2 SERVICES 120 28 24 24 80 276

2.1 Gangways 16 16 32
2.2 Shore Power Connection 8 8 16
2.3 Shore Power Consumption
2.4 Temp. Lighting
2.5 Potable Water Connection 8 8
2.6 Potable Water Consumption
2.7 Fire Main 8 8
2.8 Sewage Connection 8 8
2.9 Telephones 4 4

2.10 Garbage
2.11 Oily Bilges 16 16
2.12 Cranage for Waste, Stores and Spares 32 32
2.13 Safe Entry and Safe Working Certificates 32 32
2.14 Docking Plugs 120 120

DEPARTMENT HOURS
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Figure 8: Shipyard D Data Hierarchy  

3.3.5 - Data Organization 

In order to perform the efficiency analysis of shipyard maintenance operations, the data 

collected from each shipyard must be categorized and organized in a similar fashion. To organize 

the data, the hierarchical framework utilized by Manns Harbor Shipyard (Shipyard A) was used as 

a baseline. The data collected from the other participating shipyards was broken down and 

categorized using the activities categories employed by Manns Harbor. The activity categories 

applied include docking, hull, piping, machinery, operation activities, electrical, paint, and 

technical. Organization of data was completed in a two-step process. The first step of the 

organizational process involved developing an activity list for each shipyard. Once an activity list 

was developed for each shipyard, the second step involved grouping the maintenance activities 

under the aforementioned categories. Organization of the data in this manner allowed labor 

production rates for each maintenance category to be developed and compared amongst 

participating shipyards.  

3.4 - Assessment Methods 

The assessment of the productivity and efficiency of Manns Harbor Shipyard was 

completed through utilization of DEA. The data used to complete DEA includes internal and 

Work Order Activity Categories Activites

Labor

Shipyard 
Departments

Subcontractors

Cost

Shipyard Labor 

Subcontractors

Materials
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external variables related to production in the ship repair industry developed through thorough 

investigation of ship repair operations and related literature to identify the factors that affect the 

production process. In addition to the DEA assessment, a qualitative assessment methodology 

was also developed to evaluate qualitative characteristics of ship repair production. Several 

studies related to performance evaluation of ship repair and shipbuilding operations have used a 

qualitative assessment of shipyard operations to either develop a qualitative factor for use in DEA, 

to develop an additional means of operation evaluation for providing performance improvement 

recommendations, or as a means of validation for the results provided by DEA (Alhouli, 2011; 

Guofu et al., 2017; Park et al., 2014; Pires & Lamb, 2008). The purpose of the qualitative evaluation 

in this study is to assess operations based on important realistic factors identified by industry 

experts in order to compare and validate the results presented by DEA and for the development 

of a qualitative performance variable used in the DEA assessment. Once each assessment is 

conducted, the results of each analysis will be compared to determine whether the efficiencies 

represented by DEA match the results of the qualitative analysis. Visual representation of this 

process is shown in Figure 9.  

 

Figure 9: Overview of Assessment Methodology 

DEA 
Assessment 

Qualitative 
Assessment

• Technology
• Management & 

Manpower 
Strategies

Comparison 
of Results 
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3.4.1 - Qualitative Assessment 

Qualitative assessment of shipyard operations was completed using a three-step process. 

The first step of the methodology involved visits to each participating shipyard. During these visits, 

interviews were conducted with industry experts at each shipyard. Interviews with experts 

involved asking questions related to shipyard operations, shipyard productivity, manpower types 

and utilization, as well as efficiency strategies utilized by each shipyard. In conjunction with these 

interviews, the research team also made general observations about each shipyard’s operations 

including technologies, equipment, day-to-day tactical operations, management strategies, 

organizational structure, planning and scheduling measures, and project tracking methods and 

procedures. Once visits and interviews to each shipyard were completed, notes recorded during 

individual visits were compiled in order to categorize observations into qualitative components. 

Summaries of these observations are provided in a succeeding section of this report titled 

Facilities Summaries – Qualitative Review. Two components were developed for the qualitative 

analysis, the first component is Technology and the second component is 

Management/Manpower Strategies. These components were developed based on the most 

important qualitative factors related to shipyard productivity and efficiency identified by industry 

experts.  

The Technology component is inclusive of two subcategories, Advanced Machinery and 

Computerized Maintenance Management System (CMMS). The first category of Technology, 

Advanced Machinery, pertains to evaluation of each shipyard based on the machinery and 

equipment used in their operations. It was observed that some shipyards employ advanced 

technologies, not utilized by most shipyards, which has significantly improved the performance 

of their operations and reduced the amount of time a vessel is dry-docked for repairs. Specifically, 
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these advanced technologies include new robotic paint-blasting slurries, plasma cutters, 

waterjets, and floating dry docks. Assessment of this category is done by determination of the use 

and quantity of advanced technologies utilized by each shipyard. The second subcategory of the 

Technology component, CMMS, is associated with the use of computerized software to manage 

and track repair projects at the shipyard. It is assessed first by determination of use in each 

shipyard. Once the use of a CMMS is determined, the category assesses the CMMS based on the 

level of design and use for ship repair projects specifically. 

The second component of the qualitative assessment, Management/Manpower 

Strategies, is comprised of five subcategories related to strategies employed by the participating 

shipyards aimed at increasing operational performance. The five categories included in the 

Management/Manpower Strategies component are Organizational Structure, Planning and 

Scheduling, Efficiency Strategies, Apprenticeship Program, and Outsourced Labor. The 

Organizational Structure category is related to the use of specialized personnel within the 

organization for project management. Industry experts indicated that the use of a project 

management role within several organizations has significantly improved repair project 

performance, created a single point of responsibility for ensuring projects are completed on time, 

and significantly reduced the management responsibilities of field personnel within the shipyard. 

The second category, Planning and Scheduling, relates to the use of formal procedures for 

planning, estimating, and scheduling ship maintenance and repair projects. This category is 

evaluated based on whether the shipyard has a set of formal procedures as well as the level of 

detail of these procedures. The purpose of this category is to determine if the use of formal 

planning and scheduling procedures influences shipyard performance. Efficiency Strategies, the 

third category, is related to specific strategies implemented by management for the sole purpose 
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of improving efficiency and productivity within the shipyard. It was observed that some of the 

participating shipyards have implemented strategies designed to improve their overall efficiency 

and productivity. These strategies are inclusive of strategies directly related to efficiency 

improvements as well as incentive strategies aimed at increasing the productivity of employees 

by providing incentives for high performance. This category is assessed by evaluating if a shipyard 

employs such strategies and the quantity/detail of strategies implemented. The fourth category, 

Apprenticeship Program, is related to employee retention within a shipyard as well as the skill 

level of the employees. Observation along with information gathered through interviews 

indicated that employee retention is a significant problem within shipyards, and as a means of 

combating this problem, apprenticeship programs have been developed for the purpose of 

employee retention as well as increasing the skill set of employees within the shipyard. This 

category is evaluated by determining if each shipyard utilizes an apprenticeship program and by 

evaluation of the requirements and certifications of the program. The final category of 

Management/Manpower Strategies, Outsourced Labor, assesses the use of outsourced labor 

utilized by each shipyard. Assessment of the Outsourced Labor category is done first by 

determination of the shipyards use of outsourced labor and secondly by evaluation of the 

availability of outsourced labor and the level of which outsource labor is utilized on vessel repair 

projects. Figure 10 is provided as a graphical representation of the categorization of the 

components utilized in qualitative assessment.  
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Figure 10: Qualitative Assessment Components and Subcategorization 

The second step of the qualitative assessment methodology is to develop a matrix to be 

utilized for assigning implementation levels to each shipyard for all qualitative assessment 

components and subcategories. The matrix utilized for assigning the level of implementation for 

each qualitative factor can be seen in Table 5. To score each shipyard, a score was given for each 

shipyard based on the level of implementation for each specific category. A scale system of one 

(1) to five (5), with a score of one (1) being little to no implementation and a score of five (5) being 

high implementation, was utilized to score each shipyard’s level of implementation on a per 

category basis. The ranking given to each shipyard was based on the aforementioned criteria 

discussed for each category quantified using information provided through organization websites 

and information gathered during site visits and interviews.  

For the Advanced Machinery category, the shipyards were scored based on the quantity 

of advanced technologies utilized by the shipyard. Scoring of the CMMS category was done by 
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determining whether the shipyard utilizes such software and to what level the software is 

specialized for ship repair operations. Organizational Structure scoring was determined by the use 

of a project management role within the shipyard and the quantity of project managers utilized 

within the organization. Scoring for Planning and Scheduling was done based on the use of formal 

planning and scheduling procedures and the level of detail in which planning and scheduling is 

done. The Efficiency Strategies category was scored by the quantity of specific efficiency strategies 

utilized by each shipyard as well as incentive strategies implemented by the organization. The 

scoring of shipyards for Apprenticeship Program was determined by the use of a program and the 

specified outcomes of the program. Finally, the scoring for Outsourced Labor evaluated on the 

level of outsourcing used and the availability of subcontracted resources for each shipyard. After 

the completion of assigning scores, a total score for each shipyard was calculated by summing the 

total number of points received by each shipyard. The total score was utilized to rank the 

shipyards from one to five, with one being the lowest ranking and five being the highest ranking 

based on these qualitative factors. The completed matrix for qualitative assessment of the 

shipyards can be seen in Table 9.  

Table 9: Qualitative Assessment Matrix  
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As previously mentioned, in addition to providing analysis of shipyard operations based 

on qualitative factors, the qualitative assessment is also utilized in the development of a 

qualitative shipyard factor variable for use in the DEA quantitative evaluation of shipyard 

operations. In a similar study involving the establishment of performance targets for shipbuilding 

companies, Pires and Lamb (2008) utilize a similar qualitative factor they called Industrial 

Environment as an input to DEA for their analysis. Pires and Lamb (2008) state that in addition to 

physical attributes related to the facility, shipyard performance depends on the industrial 

environment of the facility, which is inclusive of factors related to organizational structure, 

workforce makeup, and strategies implemented within each shipyard. To develop this qualitative 

factor, Pires and Lamb (2008) utilize the Analytical Hierarchy Process to assign weights to each 

component.  

This research will utilize a similar process in the development of a qualitative variable for 

DEA. A ranking system will be developed based on the qualitative information gathered and 

weights will be assigned to each component based on its relative importance to the production 

process of ship repair operations. A pairwise comparison will be used to develop and assign weight 

factors for the qualitative criteria under evaluation. The advantage realized through the utilization 

of this process would be the understanding that the qualitative factors and weightings would 

provide more value for DEA versus a qualitative variable based simply on a summary of scores for 

each shipyard.  Detailed discussion of the process for development of the qualitative variable is 

provided in the Quantitative Assessment section of this paper.  

3.4.2 - Quantitative Assessment  

Quantitative assessment of the maintenance and repair operations at Manns Harbor 

Shipyard was completed by means of Data Envelopment Analysis (DEA). Two separate analyses 
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were completed to assess the repair operations. The first analysis involves an external DEA 

assessment in order to compare Manns Harbor operations with other ship repair facilities. The 

purpose of the external analysis is to determine if Manns Harbor repair operations are efficient 

when compared to similar operations of other shipyards. The external analysis is aimed at 

evaluating efficiency from a holistic approach from the shipyard level on a per work order or dry-

dock basis. In general, the goal of the external analysis is to determine if Manns Harbor Shipyard 

is completing vessel repair work in an efficient manner. The second part of the quantitative 

assessment utilizes DEA to assess the efficiency of internal operations at Manns Harbor. The 

internal analysis is aimed at determining the efficiency with which the Manns Harbor’s trade 

departments complete work on a work order to work order basis. The internal analysis evaluates 

Manns Harbor’s repair operations from a more detailed, departmental level for the purpose of 

determining if the their current planned refurbishment times are realistic in nature and, if not, 

determine a more realistic timeframe for planned refurbishments. Moreover, the internal analysis 

will allow any potential internal inefficiencies to be identified so that recommendations for 

prospective corrective action to increase efficiency of those departments or internal repair 

operations as a whole can be made.   

3.4.2.1 - Computer Support for DEA 

As previously stated, DEA is a non-parametric, linear programming based mathematical 

optimization method used to assess the efficiency of a decision making unit (DMU) (Bröchner, 

2017). Therefore, models can be built in Excel with the utilization the Solver tool to solve many 

various DEA models for a multitude of applications and data sets. However, with large data sets, 

this can become a tedious process because DEA requires a separate linear programming problem 

with different objectives and constraints to be solved for each DMU in the data set (Ozbek, 2007). 
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Moreover, this method requires advanced and in-depth knowledge of linear programming 

languages making the utilization of DEA less intuitive and difficult to understand for non-technical 

audiences. As a result, following the trend of advancement and expanded use of DEA, software 

developers have created software programs that can quickly provide solutions to DEA problems 

regardless of the size of the data set. The creation of these advanced DEA modeling programs 

have made the process of DEA more user friendly and significantly less time consuming.  

While there are many various software programs available to carry out the DEA process, 

the software program utilized in this research is Performance Improvement Management 

Software (PIM-DEA). PIM-DEA was chosen because of its user-friendly interface, its ability to 

handle data sets of varying sizes, and its ability to produce multiple graphical representations of 

the results. PIM-DEA allows data to be either manually input into the software or directly 

imported from Excel. Additionally, PIM-DEA allows for multiple variations of DEA models to be 

developed and carried out simultaneously. This provides several advantages with respect to 

identifying sources of inefficiencies amongst DMUs. Organizations conducting work in the ship 

repair and maintenance industry are essentially service providers, therefore production 

characteristics of these operations are often difficult to determine or unknown all together. The 

utilization of PIM-DEA allows for fast and easy alterations to the DEA model(s) and production 

variables, ultimately allowing the best representation of actual maintenance and repair operation 

to be identified. Accurate representation of the maintenance processes and inclusion of relevant 

factors related to productivity or production are essential to accurately identifying inefficiencies 

and providing recommendations for improvement.  
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3.4.2.2 - External Analysis  

The external analysis to compare the overall efficiency shipyard operations is inclusive of 

data from Manns Harbor as well as data from the three participating shipyards. Due to the data 

available and the limited number of shipyard willing to participate, the analysis could not be 

completed using shipyards as the DMUs. Therefore, to satisfy the requirements of DEA, for this 

analysis, the DMUs under investigation will be individual work orders for dry-dock repairs from 

each shipyard. In total, this analysis will include 15 DMUs. Of the 15 work orders under evaluation, 

nine are from Manns Harbor, four are from Shipyard B, one is from Shipyard C, and one is from 

Shipyard D. The data set for external analysis was limited to the information that each 

participating shipyard was willing to provide. However, despite the limited data set, accurate 

discriminatory power is provided, as there is at least twice the number of DMUs as there are input 

and output variables (Golany & Roll, 1989). Moreover, due to the homogeneity requirement 

amongst DMUs, the assumption is made that similar work was completed on each work order 

using similar equipment and processes. The complete list of DMUs under evaluation in the 

external analysis can be seen in Table 10.  

Table 10: External Analysis DMU List 
DMU (Work Order)  Shipyard  

A1 Manns Harbor 
A2 Manns Harbor  
A3 Manns Harbor  
A4 Manns Harbor 
A5 Manns Harbor 
A6 Manns Harbor 
A7 Manns Harbor 
A8 Manns Harbor 
A9 Manns Harbor 
B1 Shipyard B 
B2 Shipyard B 
B3 Shipyard B 
B4 Shipyard B 
C1 Shipyard C 
D1 Shipyard D 
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The understanding that there are numerous factors, both directly and indirectly related 

to production, that determine productivity is essential when performing studies on service related 

industries. In the traditional sense, productivity measurement has been defined as a method of 

calculating an output to input ratio and comparing this ratio over two or more periods of time 

(Lamartin, 1980). In spite of its seemingly simple nature, productivity measurement and 

performance evaluation of service related industries, such as ship maintenance and repair, is a 

complex process due to the unique characteristics of the production process. Moreover, during a 

visit with Shipyard E, an industry expert emphasized that production parameters are more difficult 

to establish for ship refurbishment projects as oppose to shipbuilding projects because the 

amount of work and the types of repair work are very different from vessel to vessel. In the ship 

repair industry, shipyards provide a service to their customers rather than a product. Likewise, 

productivity is measured by the resources or inputs consumed to provide that service, which, in 

many cases, the main resource consumed to provide these services is man-hours. The problem 

arises when productivity measures are based solely on the labor required to provide vessel repair 

services. This is because productivity measures are partial when based on single indicators 

because they do not take into account the entirety of factors that have an influence on production 

(Rabar, 2015). Additionally, quantification of output is difficult in service industries. Unlike a 

manufacturing setting where output is easily quantifiable, quantifying the amount of service 

provided is not as instinctive. In the ship repair industry, output is generally quantified by the 

number of days required to complete a vessel or some other measure of time. While 

refurbishment time can be used to quantify output, time alone does not provide an adequate 

means of determining productivity.  
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The problem of performance measurement in the ship repair industry is further 

complicated once the discipline is evaluated in its entirety. Like other businesses, the ship repair 

industry is complex field comprised of multiple components, systems, and factors that, either 

individually or when combined with other elements, affect the productivity and performance of 

individual facilities. Additionally, an immense amount of diversity exists across the industry in 

terms of organizational models, shipyard characteristics and capabilities, organizational 

processes, and shipyard output patterns (Pires & Lamb, 2008). This diversity further complicates 

performance measurement because the individual characteristics and capabilities of ship repair 

facilities must be accounted for in these measurements. Consequently, productivity and 

performance of these facilities cannot be evaluated based solely on the physical resources, or 

inputs, required to provide a service, or output but must include general production influencers 

(Pires & Lamb, 2008). For that reason, production parameters used as input and output variables 

in the DEA model for efficiency evaluation of shipyard operations must take into account all 

relevant production influencers in order to provide accurate and effective results. Identification 

of these influencers requires thorough knowledge of the ship repair process and pragmatic 

investigation into realistic operations.  

Input and Output Variables 

To identify all relevant production influencers accurately, the research team conducted 

visits to ship repair facilities, held in-depth interviews with industry professionals, and extensively 

reviewed literature relevant to these operations. The production influencers, or DEA model inputs 

and outputs, for the external analysis are inclusive indices relating to shipyard capacity, shipyard 

employment levels, shipyard technology levels and operational strategies, labor productivity, and 

refurbishment time. These production parameters were selected based on their relevancy to 
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production in the ship repair industry, availability and accessibility of data, measurability, and 

quantification. Moreover, these production characteristics were chosen in a manner to ensure 

that the results of the analysis would provide relevant, understandable, comprehensive, and 

useful information for the NCDOT and NCFS regarding their current operations, performance 

targets, as well as short and long-term planning of staffing and scheduling needs. Input and output 

variables chosen as production parameters for the external analysis can be seen in Table 11. A 

completed table of input and output variables calculated for each shipyard will be presented in 

the results section of this report.  

Table 11: External Analysis Input and Output Variables 

 Variable Description Abbreviation Unit of Measure 

In
pu

ts
 Shipyard Capacity  SYC - 

Number of Employees #EMP - 

Qualitative Factor  QUAL - 

O
ut

pu
ts

 

Labor Productivity  PROD cgt/hr 

Refurbishment Time RTIME 1/days 

Shipyard Capacity  

As previously stated, the physical characteristics related shipyard capacities vary 

significantly from facility to facility. With regard to the shipyards in this study, the size of the 

shipyards as well as the drydocking capabilities vary drastically based on the shipyard size 

classification. Moreover, these characteristics have a direct impact on the quantity and type of 

work a shipyard can undertake which affects shipyard production. During shipyard visits, it was 

evident that size of the shipyard directly correlates with quantity of work and levels of production. 

This is also supported extensively in literature related to performance measurement of shipyards. 

In a report on establishing shipbuilding performance targets, Pires and Lamb (2008) state that 
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shipyard capacity impacts the productivity and building time of shipyards. In their DEA model, 

Pires and Lamb (2008) utilize shipyard capacity, expressed as total erection area, as an input to 

their DEA model. Chudasama (2010) utilized shipyard capacity variables expressed in tons and 

maximum length of vessel as inputs into a DEA efficiency analysis of shipyards stating that these 

variables directly contribute to the operational activities of shipyards. In their study, Guofu et al. 

(2017) indicated that facilities and equipment are input factors that affect the performance of 

shipbuilding entities. Additionally, Ok and Feng (2017) applied total dock length, total area of 

docks, and total weight capacity of docks as inputs into their DEA evaluation of Chinese ship repair 

facilities asserting that these variables have the most direct impact on operational efficiency.  

In this study, shipyard capacity will be expressed as a composite index, comprised of 

maximum drydocking capacity in gross tons, length and width of vessel. The shipyard capacity 

index was calculated by normalizing the shipyard capacity data for each of the capacity categories. 

An average of the three normalized capacities was taken and multiplied by a factor of 1000 to 

develop the shipyard capacity input for each shipyard.  

Number of Employees 

In shipyard operations, the main resource consumed to provide maintenance and repair 

services is employee labor. In other words, labor is a major input utilized to provide repair services 

or produce output in a shipyard. Therefore, the efficiency of a shipyard can be expressed as how 

well employee labor is expended to repair or refurbish a vessel. Consequently, employees have a 

major influence on shipyard productivity and operational efficiency because they are a direct 

input required for production in ship repair facilities (Ok & Feng, 2017).  In literature, number of 

employees has been utilized frequently as an input to DEA models for similar studies. Chudasama 

(2010), Rabar (2015), and Ok and Feng (2017) all utilized number of employees as a direct input 
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into DEA. Pires and Lamb (2008) included number of employees as a part of a productivity index 

utilized as an input for DEA. Guofu et al. (2017) indicate that labor is a direct input of shipyard 

operations as a part of their study on shipbuilding efficiency. Furthermore, in a study on the 

efficiency of Chinese ship repair facilities, Ok and Feng (2017) state that the inclusion of 

employment levels has an effect on the efficiency of shipyards because employment levels vary 

with the size of shipyards.  

Number of employees will be utilized in this study as an input variable because of the 

direct correlation to shipyard production as well as the significant variation in employment levels 

amongst shipyards under evaluation. The number of employees for each shipyard is inclusive of 

only in-house full-time employee labor and is calculated based on the operational data provided 

by each shipyard at the time it was received.  

Qualitative Factor 

As mentioned previously, in addition to factors directly related to the production process, 

productivity and efficiency of any operation is also influenced by various indirect factors. In 

shipyards, levels of technology as well as managerial strategies of the shipyard affect the way 

operations and activities are carried out (Ok & Feng, 2017). Guofu et al. (2017) suggest that 

shipyard production efficiency is the combined effect of all production, technology, and 

management activities. Likewise, Pires and Lamb (2008) indicate that technological and 

managerial capabilities are influential to the competitiveness and productivity of a shipyard. In 

addition, they also state that the industrial environment of a shipyard has an effect on shipyard 

performance. In their study, Pires and Lamb (2008) utilized an industrial environment index as an 

input to DEA to represent the various qualitative factors related technological and managerial 
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aspects of shipyard operation. However, because these factors cannot be easily changed by 

shipyards, industrial environment index was utilized as a nondiscretionary variable for DEA.  

This study will employ a similar index based on the information discussed in the 

qualitative assessment. As discussed previously, the qualitative factor utilized as in input for DEA 

is centered on two main qualitative categories, Technology and Management/Manpower 

Strategies along with their accompanied subcategories. In order to develop a qualitative variable 

from the scores received for each category for the participating shipyards, a pairwise comparison 

was utilized to develop weights for each subcategory. Pairwise comparison allows each category 

to be compared to each of the other categories as a means of determination of which category 

has a greater amount of importance or effect on shipyard productivity. In other words, pairwise 

comparison allows the qualitative variable to more accurately represent the qualitative factors of 

each shipyard based on the relative importance of each qualitative category utilized. To complete 

the pairwise comparison, a survey was sent out to industry professionals in order to evaluate the 

importance of each qualitative category to shipyard production. The experts were asked to rank 

each of the variables from based on level of importance to productivity in the ship repair industry. 

Rankings for each variable were given using an index of one through seven (1 – 7), this index can 

be seen below in Table 12. Ranking provided through the survey were used in the pairwise 

comparison to develop relative weights for each of the qualitative factors under evaluation. A 

qualitative factor for each shipyard was then developed first by multiplying the score the shipyard 

received in each category by the relative weight for that category and then summing the weighted 

scores of each category to develop a total qualitative factor score. The total qualitative factor 

score was then multiplied by 1000 to develop the qualitative factor variable for use as an input to 

DEA. 
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Table 12: Survey Ranking Index 

Numerical Value Description 
1 Least important 
2 Slightly more important 
3 Moderately important 
4 Moderately to strongly important 
5 Strongly important 
6 Very important 
7 Most important 

 

Labor Productivity  

Output of shipyards is typically represented by measures such as number of vessels 

delivered, delivered tonnage, or annual revenue. However, because of limited data availability, 

the inclusion of both public and private shipyards and the variance in shipyard size and scope, 

measures such as this are not feasible. Alternatively, labor productivity has been utilized in similar 

studies to represent shipyard output (Guofu et al., 2017; Pires & Lamb, 2008). Labor productivity 

can be used to represent ship repair output because it is directly related to the output patterns 

of a shipyard (Pires & Lamb, 2008). Moreover, labor productivity is an indicator of shipyard 

operational efficiency (Guofu et al., 2017).  

While labor productivity can be used as a performance indicator, calculation of 

productivity must take into account the size and type of vessels under repair. Therefore, a 

common unit of measurement that includes these factors must be used to calculate labor 

productivity rates. Literature related to labor productivity in shipyards suggests using 

compensated gross tonnage (cgt) as the common unit of measurement (Guofu et al., 2017; Pires 

& Lamb, 2008; Rabar, 2015). CGT is a unit of measurement originally developed for shipbuilding 

activities to provide a common means to quantity the work required for various vessel types 

(OECD, 2017). CGT is calculated using the formula cgt = A * gtB, where A is a factor that represents 
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the type of vessel, gt is the gross tonnage of the vessel, and B is a factor representing the influence 

of ship size (OECD, 2017). Because some of the operational data provided by shipyards involves 

work on vessels other than ferries, cgt was utilized in this study as the unit of measurement to 

provide a means to compare different vessel types.  

Similar to the aforementioned studies, labor productivity in this study will be expressed 

as man-hours per compensated gross ton. Labor productivity is calculated based on the total 

hours worked on each repair project. However, because labor productivity will be utilized as an 

output in the DEA model, the inverse of the calculated productivity rates must be utilized in the 

analysis so that an increase in labor productivity equates with an increase in performance.  

Refurbishment Time 

Refurbishment time or the time the vessel is dry-docked for repairs is a critical factor in 

determining the competitiveness of a shipyard. Moreover, the competitive potential of a shipyard 

is dependent on time to complete repairs, and time for repairs is severely dependent on shipyard 

performance (Pires & Lamb, 2008). This is especially important with regard to Manns Harbor. The 

amount of time a ferry is in the shipyard is crucial the NCDOT and NCFS because of the stringent 

maintenance requirements for these vessels. Each ferry owned and operated by the NCFS must 

be dry-docked two times every five years. Therefore, the refurbishment time is a critical factor for 

their operations and is key indicator of operational performance. However, for this study, it 

should be mentioned that refurbishment times can vary significantly from shipyard to shipyard 

and is related to the capacity, equipment, technology, and processes of each individual shipyard.  

In a similar study, Pires and Lamb (2008) utilized a similar factor to represent the output 

of shipbuilding facilities called building time. Refurbishment time in this study will calculated 

based on the days a vessel was dry-docked from arrival to departure. Similar to labor productivity, 
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because refurbishment time will be utilized as an output for DEA, the inverse of refurbishment 

time must be utilized in the analysis. This is because a reduction of days in the shipyard equates 

to an increase in shipyard performance. Refurbishment time in this study is calculated in days, 

and represents the total time the vessel was dry-docked in the shipyard from the start of work to 

the departure of the vessel.  

DEA Model Selection 

For the external analysis of shipyard operations, DEA will be carried out using both the 

CCR and BCC envelopment models. As discussed in the literature review section of this paper, 

envelopment models are used to establish a best practice frontier or to identify best practice 

DMUs. The difference between the CCR and BCC models relates to the returns-to-scale (RTS) type 

utilized in each model. The CCR model uses a constant returns-to-scale (CRS) and the BCC model 

utilizes a variable returns-to-scale (VRS). The efficient frontier created through use of a CRS is 

linear and assumes changes to inputs result in proportional changes to outputs. Alternatively, the 

efficient frontier created by a VRS is inclusive of three individual elements: the CRS surface, the 

non-increasing RTS surface, and the non-decreasing RTS surface. The significance of utilizing a VRS 

is that there is no assumption of proportionality between inputs and outputs, and changes to 

inputs can result in non-proportional changes in outputs. Both models are utilized for this analysis 

because determination of the appropriate RTS type to use for shipyard performance is unknown 

since the exact production characteristics and output patterns are difficult to determine with 

certainty.  

Use of both the CCR and BCC models also allows scale efficiency (SE) to be calculated. 

Calculation of SE allows the sources of inefficiencies to be better identified. In other words, SE 

allows determination of the cause of inefficiencies to be related to either inefficient operations, 
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disadvantageous shipyard conditions, or both.  SE is expressed as technical efficiency (TE) divided 

by pure technical efficiency (PTE). Efficiency scores produced by the CCR model represent 

technical efficiency (TE) and are based on the assumption of proportionality between inputs and 

outputs. Pure technical efficiency (PTE) is represented by efficiency scores produced by the BCC 

model and take into account that changes in inputs and outputs are not always proportional. If a 

DMU is efficient in the BCC model but is inefficient in the CCR model, then that DMU is said to be 

locally efficient but not globally efficient. In other words, the DMU is efficient when you take into 

account its shipyard conditions but inefficient purely in terms of operations.  

Since an improvement in shipyard performance can be realized by either a reduction in 

inputs while maintaining current output levels or by an increase in output levels while maintaining 

current input levels, both input and output orientation could be used. However, the objective of 

this study is to establish best practice shipyards in terms of current operational conditions. 

Therefore, the input orientation of the DEA model is not appropriate. Hence, output orientation 

is better suited to establish best practice shipyards given current conditions. The output 

orientation of the DEA model aims to maximize output given current input levels. Consequently, 

the external analysis was completed using both an output oriented CCR model and an output-

oriented BCC model.  

3.4.2.3 - Internal Analysis  

The NCFS owns, operates, and maintains a total of 21 ferries, varying in size, geometry, 

capacity, and utilization. The ferries are categorized into three separate classifications based on 

vessel size characteristics as well as passenger and vehicle capacity. The ferry classifications are 

Hatteras Class, River Class, and Sound Class. Hatteras Class ferries have vehicle and passenger 

capacities of 26 and 149, and are 150 feet in length. River Class ferries are 180 feet in length and 
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have the capacity to hold 38 vehicles and 300 passengers. Sound Class ferries, the final ferry 

classification, are the largest vessels operated by the NCFS. Ferries in this class are 220 feet in 

length and have the capability to accommodate up to 50 vehicles and 300 passengers. In terms of 

gross tonnage, the largest vessels in the Hatteras, River, and Sound Classes are 280 tons, 462 tons, 

and 867 tons, respectively. Out of the 21 total ferries, eight are Hatteras Class, nine are River class, 

and four are Sound Class. Despite the differences in size and utilization characteristics, it has been 

observed through investigation of previously completed maintenance work orders that the types 

of maintenance and repair activities carried out on ferries and other vessels along with the skilled 

trades necessary to complete the work are very similar in nature. However, the required 

maintenance levels and the duration of dry-docking vary considerably from vessel to vessel. These 

discrepancies are partially the result of differences in physical characteristics such as length, 

depth, and weight, along with on-board mechanical and electrical systems, vessel utilization and 

classification. Additionally, age of the vessel under repair, environmental conditions, and the type 

of work done by the boat also has an effect on the amount of work to be done and maintenance 

duration.  

Per U.S. Coast Guard regulations, these ferries must be dry-docked for repairs and 

refurbishment twice every five years. Consequently, to meet these requirements, this requires 

the shipyard to complete 21 dry-docks every two and a half years or every 30 months. In order to 

meet these requirements the shipyard would have to complete on average one vessel every 1.43 

months or every 43 days, which equates to approximately 8.39 vessels per year. Currently, dry-

docks times for vessel refurbishment are estimated based on experts opinions. Moreover, the 

shipyards planned length of refurbishment for each vessel regardless of size or age is 90 days. 

Through discussion with shipyard personnel, a 60 day dry-dock period would be ideal and a 120 
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day refurbishment is the worst-case scenario. Despite each refurbishment being planned for 90 

days, historical data from the past 18 months shows that most refurbishments are not completed 

within the scheduled timeframe. Furthermore, there are times when vessels are sent back into 

service without being fully refurbished as a result of these schedule overruns.  

The purpose of the internal analysis is to evaluate the efficiency of Manns Harbor’s 

internal repair operations to identify possible inefficient departments or operations within the 

organization. In addition to evaluation of internal operations, the internal analysis aims to 

determine whether the current planned refurbishment times are a realistic and if not determine 

a more realistic refurbishment schedule based on current operational levels. Data available for 

internal analysis is inclusive of data pertaining to completed dry-dock refurbishments over an 18-

month period from 2015 to 2017. Data was collected directly from the NCDOT’s SAP system during 

a visit to the shipyard. In total, the data is inclusive of nine work orders, eight of which are ferries, 

and the other being one of the state’s crane barges. Of the ferry refurbishments completed, two 

are Hatteras Class, three are Sound Class, and three are River Class. Because of the available data, 

the internal analysis can be carried out in more detail than the external analysis. Internal analysis 

will be carried out in two separate manners, first at the work order level and then at the 

departmental level per work order. A full list of DMUs available for evaluation can be seen in Table 

13. 

Table 13: Internal Analysis DMU List 

 

DMU Ferry Class Year
DMU 1 Hatteras 2015
DMU 2 Sound 2015
DMU 3 Sound 2016
DMU 4 River 2016
DMU 5 River 2016
DMU 6 Crane Barge 2016
DMU 7 Sound 2017
DMU 8 River 2017
DMU 9 Hatteras 2017
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As previously mentioned, there are instances in which ferries are returned to service 

before full refurbishment of the vessel can take place during the dry-docking period due to various 

reasons but, more often than not, these instances are the direct result of schedule overruns in 

the shipyard. Because of this, a significant variance in the amount of work (hours) completed on 

the vessels can be seen in the work orders. Through observation of the internal data, full ferry 

refurbishment during the dry dock period generally require upwards of 10,000 man-hours to 

complete. Moreover, six of the nine internal work orders (DMU 1, DMU 2, DMU 5, DMU 6, DMU 

8, and DMU 9) had more than 10,000 hours, while the remaining three work orders (DMU3, DMU 

4, and DMU 7) were charged less than 10,000 hours. The significance in this is that the three work 

orders with less than 10,000 hours represent instances when ferries were not fully refurbished 

prior to leaving the shipyard and returning to service. Furthermore, DMU 7 was only charged 

4,211 hours while dry-docked, while DMU 3 and DMU 4 were charged roughly 7,000 hours each. 

Because of the inconsistency of hours charged to the internal work orders, the three DMUs that 

were not fully refurbish can be considered outliers in the data and have the potential to skew the 

efficiency scores represented by DEA results. In addition, this introduces an added degree of 

uncertainty into the DEA model because all of the work orders are not full refurbishment projects. 

However, in the case that these DMUs significantly alter the results of DEA, the analysis can be 

altered to exclude the DMUs that are not full refurbishments and reassessed. Moreover, with the 

use of the DEA software package, multiple iterations of the DEA model can be run, and the results 

of each iteration can be contrasted amongst the others. This will allow the potential effects of the 

inclusion and exclusion of the DMUs that are not full refurbishments to be realized in the results 

as well as allow the researchers to present the results and conclusions of the analysis in a more 

accurate manner.  
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Input and Output Variables 

Similar to the external analysis, variables used as input and output variables for the 

internal analysis must be inclusive of relevant factors related to production. Nonetheless, because 

this analysis is inclusive of only Manns Harbor operations, several variables used in the external 

analysis provide no value for the internal analysis. Namely, shipyard capacity and the qualitative 

index are not necessary for the internal analysis because all work was completed at the same 

shipyard. However, number of employees, labor productivity, and refurbishment time all provide 

value for the internal analysis. Each of these variables remain the same as the external analysis 

with the only variation being the levels at which they are calculated. Rather than focusing solely 

on a work order level, number of employees, labor productivity, and refurbishment time will also 

be calculated at the departmental level per work order. In addition to these variables, a new 

variable will also be used in the internal analysis performed at the work order level in order to 

evaluate the feasibility of scheduled refurbishment times. The new variable, schedule delay, will 

be used to calculate the schedule variance from planned refurbishment times to actual 

refurbishment times and will represent the gap between planned and actual work. To calculate 

the schedule delay variable, 90 days will be used as the planned refurbishment time and the 

schedule delay will be calculated as the actual time (days) required to complete the refurbishment 

minus the planned 90 days. The actual time for vessel refurbishment used to calculate schedule 

delay is the duration used in the variable refurbishment time and is calculated the same way as 

described in the external analysis section.  In total, one input and three outputs are used, 

therefore meeting the discriminatory requirements of DEA.  The inputs and outputs used in the 

internal analysis can be seen in Table 14. 
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Table 14: Internal Analysis Inputs and Outputs 

 
Variable Description Abbreviation Unit of 

Measure 

Input Number of Employees #EMP - 

Outputs 

Labor Productivity  PROD cgt/hr 

Schedule Delay SDEL 1/days 

Refurbishment Time RTIME 1/days 

DEA Model Selection 

To complete the internal analysis both the CCR and BCC models will be utilized. Analogous 

with the external analysis an exact RTS type cannot be determined for the internal analysis with 

certainty because exact output patterns and characteristics are not known. Output orientation 

will be utilized for both models. Output orientation is chosen over an input orientation because 

the number of employees in each department is related to employment levels of the shipyard, 

which is relatively uncontrollable by the shipyard, and labor productivity is related to the size of 

the vessel under repair and the amount of work to be completed with are both uncontrollable by 

the shipyard. Additionally, evaluating the internal operation through an output-oriented analysis 

will allow determination of an efficient refurbishment time to be identified. In other words, 

output-orientation allows efficient operations to be identified based on the existing work 

conditions in the shipyard. The outputs used in the analysis, labor productivity, schedule delay 

and refurbishment time all require a reduction to correlate with improved performance. 

Therefore, the inverse of each must be used in the DEA model.  

Internal analysis of Manns Harbor operations will be conducted by two separate DEA 

assessments. The first assessment will evaluate the internal operations from a holistic standpoint 

inclusive of all shipyard departments on a per work order basis. Alternatively, the second 

assessment will evaluate internal operations at an individual departmental level on a per work 
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order basis. More specifically, the first assessment will be conducted in similar fashion to the 

external analysis to evaluate the efficiency with which the shipyard performed work on each work 

order. The second assessment method is aimed at evaluating the efficiency with which individual 

shipyard departments performed work on each work order. Therefore, the DMUs used in the 

second assessment method will not be the work order as a whole; they will be individual 

departments per work order (i.e., DMU1-Docking, DMU2-Docking, DMU3-Docking, etc.). 

Moreover, in the second assessment, the analysis will be carried out for all of the departments 

employed at the shipyard. In other words, a separate analysis will be carried out for each shipyard 

maintenance department including docking, hull, piping, machinery, operation activities, 

electrical, and paint. A visual depiction of the DMUs used in the second assessment can be seen 

in Table 15. While both assessment methods will use the abovementioned input and output 

variables, the level at which they are calculated is not the same. In the first assessment, input and 

output variables will be calculated on a work order basis. Alternatively, the variables will be 

calculated on a departmental level per work order in the second assessment.  

Table 15: Departmental Level DMU Example 

 

Docking Hull Piping Machinery OpAc Electrical Paint
1126 - Docking 1126 - Hull 1126 - Piping 1126 - Machinery 1126 - OpAc 1126 - Electrical 1126 - Paint
1227 - Docking 1227 - Hull 1227 - Piping 1227 - Machinery 1227 - OpAc 1227 - Electrical 1227 - Paint
1157 - Docking 1157 - Hull 1157 - Piping 1157 - Machinery 1157 - OpAc 1157 - Electrical 1157 - Paint
1158 - Docking 1158 - Hull 1158 - Piping 1158 - Machinery 1158 - OpAc 1158 - Electrical 1158 - Paint
1215 - Docking 1215 - Hull 1215 - Piping 1215 - Machinery 1215 - OpAc 1215 - Electrical 1215 - Paint
1861 - Docking 1861 - Hull 1861 - Piping 1861 - Machinery 1861 - OpAc 1861 - Electrical 1861 - Paint
2140 - Docking 2140 - Hull 2140 - Piping 2140 - Machinery 2140 - OpAc 2140 - Electrical 2140 - Paint
3137 - Docking 3137 - Hull 3137 - Piping 3137 - Machinery 3137 - OpAc 3137 - Electrical 3137 - Paint
3138 - Docking 3138 - Hull 3138 - Piping 3138 - Machinery 3138 - OpAc 3138 - Electrical 3138 - Paint

D
M

U
s
 *

Shipyard Departments***

* Each DMU is identified by the last four digits of the work order and the specific shipyard department
*** Each shipyard department will be carried out by a separate iteration of DEA
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3.5 - Research Limitations 

Below is a list of limiting factors related to the scope of this research and the sources of 

possible uncertainty:  

1. While the objective of this research is to develop a framework for use as a management 

tool in ship maintenance and repair facilities to assess the productivity and efficiency 

facility operations, and the steps can be replicated for application at other shipyards, this 

methodology is specifically tailored for the NCDOT and Manns Harbor Shipyard. As a 

result, some of the variables identified in this research are based on the characteristics of 

Manns Harbor Shipyard and the specific targets of this study and therefore, may not apply 

to other facilities. Moreover, Manns Harbor is a state-owned public shipyard; therefore, 

the performance benchmarks set forth in this study may not be applicable in the private 

industry.  

2. Due to the recent implementation of the SAP System for Manns Shipyard, historical 

maintenance data for the shipyard was only available for an 18-month period. 

Additionally, due to the competitiveness of the ship repair industry and the lack of public 

ship repair facilities, a limited number of facilities agreed to participate and provide 

operational data for use in this study. As a result, the efficiency analysis presented in this 

report is dependent on a very limited data set. Moreover, operational data collected for 

comparison in this research was provided by facilities operating in the private sector. The 

comparisons of a public shipyard to private facilities along with the limited data set 

represent the major sources of uncertainty pertaining to this study.  

3. Productivity is difficult to represent in the service industry due to the multitude of factors 

that can affect productivity. Furthermore, no standard production rates are available for 
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reference in the ship repair industry. Therefore, no benchmark or baseline production 

rates were available for comparison to those calculated in this research.  

3.6 - Validation of Results 

As stressed previously, the main downfalls surrounding the results of DEA are that in 

many instances they are subjective in nature because DEA is a non-parametric methodology 

therefore statistical tests are not capable of easily evaluating the validity the results and the 

results provided by DEA are heavily dependent the accuracy of the data used as input and output 

variables in the analysis. As a result, validation of the results presented by DEA is often a challenge 

and understanding that the results are subjective in nature is vital when presenting conclusions 

drawn from DEA. However, despite the challenges and limitations surrounding the validation of 

results provided through DEA, to provide objectivity to the DEA results, two separate methods 

are utilized to provide validation. The first validation method to ensure the accuracy of the DEA 

results is to perform a sensitivity analysis on the input and output variables utilized in both the 

internal and external analyses, as well as the efficiency scores provided by the DEA models. The 

second method of validation is provided by comparison of the results presented in the external 

analysis with the results of the qualitative analysis of shipyards.  

Because DEA results are heavily reliant on the data used as input and output variables, 

understanding the effects of change or error within the data set is important to ensuring 

conclusions drawn from the results are credible. Sensitivity analysis is a methodology that allows 

investigation of these potential changes and errors and their impacts on the conclusions drawn 

from results (Pannell, 1997). One of the major challenges encountered when analyzing the results 

of DEA or any other methodology aimed at developing an optimal solution from a set of inputs 

and outputs is dealing with uncertainty amongst the data set. Uncertainty amongst the data used 
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as inputs and outputs translates into uncertainty in the results produced by the DEA model, 

therefore making decisions or recommendations from the results is further complicated. 

However, one of the primary uses of sensitivity analysis is to deal with uncertainty in data. 

Sensitivity analysis assists decision makers with uncertainty amongst data because the results of 

the analysis provide information concerning the circumstances in which the optimal solution of 

DEA would change based on changes to the input and output variables (Pannell, 1997). Therefore, 

performing sensitivity analysis on the input and output variables used in this study will allow the 

researchers to identify critical values where the optimal solution (efficiency score) in the DEA 

model changes. Additionally, sensitivity analysis also allows identification of sensitive or 

important variables amongst the data set, which allows recommendations provided in this study 

to be flexible in nature and dependent on a specific set of circumstances. This provides a 

significant amount of validation to the results of this study because it will allow identification of 

multiple strategies to improve efficiency within the shipyard while also identifying to what degree 

specific changes to shipyard operations have an effect on the overall efficiency of the shipyard. In 

other words, sensitivity analysis of the input and output variables will allow the researchers to 

identify the most critical variables related to shipyard efficiency and provide recommendations 

based on what changes will provide the most benefit to shipyard operations. Moreover, sensitivity 

analysis of the data will allow the researchers to understand the relationship between input and 

output variables and to determine the robustness of the optimal solution with changes to 

different inputs and outputs (Pannell, 1997).   

In addition to performing sensitivity analysis on the input and output variables, sensitivity 

analysis will also be performed on the efficiency scores produced by the various iterations of the 

DEA models. Because DEA is a nonparametric methodology and efficiency scores are measured 
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relative to an optimal production frontier, the results produced by DEA models cannot be easily 

analyzed by traditional sensitivity analysis methods (Simar & Wilson, 1998). However, initially 

introduced by Efron (1992), the bootstrap method is a tool developed to analyze the sensitivity 

of efficiency scores produced in nonparametric models to sampling variations. The basic notion 

behind the bootstrapping method is based on idea of repeated simulation of the data-generating 

process and applying the original estimator to each simulated sample so that the resulting 

estimates of efficiency represent the distribution of the original data sample (Simar & Wilson, 

1998). The significance in applying the bootstrap method to DEA is realized when comparing the 

performance of one shipyard with the performance of another. When comparing the 

performance of two shipyards solely based on the original scores produced in DEA, the efficiency 

or performance of one shipyard compared to another can show significant differences in 

efficiency scores, which represents that one shipyard’s performance is much higher than another 

shipyard. However, often times the difference in technical efficiency or performance of the 

shipyards is much less dramatic than the original efficiency scores show. This is where the 

utilization of bootstrapping provides a significant benefit when analyzing results. Applying the 

bootstrap method, multiple simulations of the data set are performed and the results provided 

include a bias-estimate, a bias-corrected efficiency estimate, a median of bootstrap estimated 

efficiency scores, and the standard deviation of the efficiency estimates (Simar & Wilson, 1998). 

Calculation of these aforementioned results provides a more robust representation of the 

technical efficiency of the entities under evaluation. Bootstrapping will allow the researchers to 

compare the performance of shipyards against each other in a more objective manner. More 

specifically, sensitivity analysis of the efficiency scores will reveal the sensitivity of the original 

efficiency scores with respect to variations in the original data or in other words, bootstrapping 
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will enable the researchers to more accurately evaluate the efficiency scores produced by the DEA 

model. Thus, offering increased validation to the results and increased understanding of shipyard 

performance with regard to variations of inputs and outputs. Furthermore, the PIM-DEA software 

chosen to perform the analysis has a built-in tool to perform bootstrapping allowing the 

researchers to perform sensitivity analysis of the efficiency scores in an efficient manner. 

Along with sensitivity analysis of inputs and outputs and bootstrapping of DEA efficiency 

scores, validation of the results provided by DEA external analysis will also be done through 

comparison with the results of the qualitative analysis. As stated previously, the purpose of the 

qualitative analysis was to provide a pragmatic evaluation of shipyard operational performance 

based on the opinions and experts of those performing work in the industry. The benefit provided 

by comparison of DEA results to the qualitative results is an additional means of validation to the 

recommendations provided to increase shipyard performance. For instance, if the results 

provided through DEA show that one shipyard in significantly underperforming when compared 

to the others, evaluation of the qualitative results for both the underperforming shipyard as well 

as the high performing shipyard(s) will reveal any significant differences in the technologies used 

or the management strategies utilized between the shipyards. This offers additional information 

to the researchers when providing recommendations for increased performance. Furthermore, 

comparison of the DEA results to the rankings provided through qualitative analysis will enable 

the researchers to determine if a shipyard underperforming purely based on operational 

efficiency or if the underperformance is caused by qualitative factors in the shipyard, or both. For 

example, if a shipyard receives a low efficiency score from DEA and but receives a relatively high 

ranking from the qualitative analysis it can be concluded that the source low performance in the 

shipyard is caused chiefly by inefficient shipyard maintenance operations. On the other hand, if a 
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shipyard receives a low DEA efficiency score and receives a low ranking from the qualitative 

analysis it can be concluded that low performance in the shipyard is caused by both inefficient 

operations as well as qualitative factors in the shipyard. Additionally, comparison between both 

qualitative and quantitative results will allow validation of the recommendations provided to 

increase performance in inefficient shipyards. In particular, if a shipyard is inefficient because of 

labor productivity, comparison of the technology used in the inefficient shipyard with that of an 

efficient shipyard may reveal that the inefficient shipyard has low labor productivity when 

compared to partially because the technology levels in the shipyard are much lower than those 

of the higher performing shipyard. Thus, allowing the researchers to recommend that an increase 

in the level of technology used in the shipyard would result in higher operational efficiency. 
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CHAPTER 4: ANALYSIS OF RESULTS  
 
 

This section presents the results of the qualitative assessment as well as both the external 

and internal quantitative assessments achieved by applying the methodology discussed in the 

Research Methodology chapter. In essence, this section follows the same steps and procedures 

outlined in the Research Methodology chapter. The results from each part of the described 

methodology are demonstrated and a discussion as well as a visual representation of the data 

used to carry out the analyses is presented where applicable.  

The first step of the methodology, Data Collection, is not included in this section as it was 

discussed and the available data was presented in detail earlier in the Research Methodology 

chapter. As previously mentioned however, when appropriate, the data used in the assessments 

will be shown in the associated subsection.  

4.1 - Qualitative Assessment 

As discussed in the methodology, the qualitative assessment of the participating 

shipyards was carried out using a three-step process with the first step being inclusive of visits to 

shipyards and conducting interviews with shipyard representatives. Details of the observations 

made were discussed in the Facilities Summaries – Qualitative Review. However, from these 

observations two separate components were developed for use in the qualitative assessment, 

namely Technology and Management/Manpower Strategies. As shown in Figure 15, each 

component is comprised of subcategories. These subcategories represent important qualitative 

factors related to shipyard performance as identified by industry experts.  

The second step of the qualitative assessment required applying the qualitative factors to 

a matrix format in order for each shipyard to be scored according to their levels of 

implementation. The final step of the qualitative assessment involved summing the scores 
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attained in the matrix and ranking the shipyards based on their qualitative factors. The completed 

matrix along with the associated shipyard rankings can be seen in Table 16.  

Table 16: Qualitative Assessment Results 

Qualitative Assessment Component MH SY B SY C SY D SY E 
Technology            

Advanced Machinery  1.00 3.00 1.00 4.00 1.00 
CMMS 3.00 2.00 1.00 1.00 1.00 

Management/Manpower Strategies           
Organizational Structure 1.00 4.00 1.00 5.00 1.00 
Planning and Scheduling 2.00 5.00 1.00 3.00 1.00 
Efficiency Strategies 1.00 4.00 1.00 3.00 1.00 
Apprenticeship Program 1.00 1.00 1.00 5.00 4.00 
Outsourced Labor  1.00 3.00 3.00 5.00 4.00 

Total Score out of 40:  10.00 22.00 9.00 26.00 13.00 
      

Qualitative Assessment Ranking:  2 4 1 5 3 

The qualitative assessment ranking given to the shipyards was based on a scale of one to 

five with one being the lowest ranking and five being the highest ranking. As shown in Table 16, 

Shipyard D received the highest ranking, while Shipyard C received the lowest overall ranking of 

all shipyards. Moreover, the two shipyards with SYMBA classifications of Medium/Small 

Shipyards, Manns Harbor and Shipyard C, received the lowest rankings amongst all shipyards. 

Alternatively, the three shipyards classified as Repair Yards with Drydock Facilities (Major 

Shipyards) all received higher rankings with Shipyard B and Shipyard D receiving significantly 

higher overall qualitative scores as compared to the other shipyards.  

The higher rankings for Shipyard B and Shipyard D can partially be attributed to size of 

each entity, the scope of their operations, and the vastness of resources available to both 

shipyards especially when compared to the Medium/Small Shipyards. In addition to these factors 

however, Shipyard B and Shipyard D also received much higher rankings due to high levels of 



106 
 

implementation (score of three or greater) for the qualitative factors identified by industry 

experts that are related to overall shipyard performance. Namely, both Shipyard B and Shipyard 

D received high implementation scores for the Advanced Machinery, Organizational Structure, 

Planning and Scheduling, Efficiency Strategies, and Outsourced Labor categories. Additionally, 

Shipyard D received the highest score for the Apprenticeship Program category. On the other 

hand, the remaining three shipyards, Manns Harbor, Shipyard C, and Shipyard E, received a score 

of one (little to no implementation) for at least five of the seven categories. Manns Harbor 

received the highest score for the Computerized Maintenance Management System (CMMS) 

category, while Shipyard C received its highest score in the Outsourced Labor category. Shipyard 

E received a score of one for five of the categories but received a score of four for both 

Apprenticeship Program and Outsourced Labor.  

The results of the qualitative assessment suggest that based on the qualitative factors 

evaluated, Shipyard B and Shipyard D should achieve higher performance than the other three 

shipyards. In other words, based solely on the qualitative factors related to shipyard performance, 

Shipyard B and Shipyard D should represent the “best practice” units or efficient DMUs in the 

External DEA Assessment of quantitative operational data. Based on the results of the External 

Assessment, results of the qualitative assessment can assist in identifying potential causes of poor 

performance or inefficiencies in shipyards and potentially aid in providing recommendations to 

correct these inefficiencies and increase performance. Moreover, if the results presented in the 

external assessment align with those presented by the qualitative assessment, an added layer of 

validation would exist providing increased objectivity to the DEA results. A comparison of the 

results achieved by the qualitative assessment and the results presented in the external 
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quantitative assessment is provided in a later section of this report titled Comparison of 

Qualitative and Quantitative Results.  

As discussed previously, this research also utilizes the information provided in the 

qualitative assessment to develop a Qualitative Factor variable for use in the external DEA 

assessment of shipyard operations. The Qualitative Factor or QUAL input variable was developed 

using the data provided in the qualitative assessment along with a pairwise comparison of the 

various qualitative components. As described in the Research Methodology section, pairwise 

comparison of the qualitative components allows a weight factor to be assigned to each 

component based on the components relative importance to productivity and efficiency in the 

ship repair industry. To perform the pairwise comparison, a survey was sent out to industry 

professionals that asked them to evaluate the level of importance of each qualitative category 

with respect to shipyard productivity. To evaluate the level of importance of the qualitative 

factors, an index of one through seven (1 – 7) was utilized with one (1) being least important and 

seven (7) being most important. A full description of the index can be seen in Table 12 located in 

the Research Methodology chapter. In total, eight industry professionals responded to the survey. 

The participants were inclusive of both internal NCDOT employees as well as experts from the 

external participating shipyards. Table 17 shows a summary of the results provided through the 

survey. The last column in Table 17 represents the sum the scores provided by the survey for each 

qualitative category.  
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Table 17: Qualitative Survey Results 

Qualitative Assessment 
Component 

Response 
1 

Response 
2 

Response 
3 

Response 
4 

Response 
5 

Response 
6 

Response 
7 

Response 
8 

LINE 
TOTALS 

Technology          

Advanced Machinery 5 7 4 6 6 7 7 5 47 

CMMS 1 7 5 6 7 4 3 7 40 

Management/Manpower    
Strategies 

         

Organizational Structure 7 7 7 7 6 7 2 7 50 

Planning and Scheduling 7 7 6 5 6 6 5 7 49 

Efficiency Strategies 6 7 3 4 5 6 7 7 45 

Apprenticeship Program 3 7 2 2 7 7 7 5 40 

Outsourced Labor 5 5 1 4 5 4 1 4 29 

Results of the survey show that of all qualitative categories, the industry professionals 

believe that Organizational Structure (i.e. specialized project manager) is the most important in 

terms of shipyard productivity with an average response of 6.25. Planning and Scheduling was 

considered the second most important with an average response of 6.13 and Advanced 

Machinery represents the third most important qualitative factor with an average response of 

5.88, while Efficiency Strategies are considered the fourth most important factor in shipyard 

productivity with an average response of 5.63. Following these factors, CMMS and Apprenticeship 

Program both received an average response of 5.00, tying them for fifth most important. Finally, 

with an average response of 3.63, Outsourced Labor was considered the least important factor in 

shipyard productivity. Additionally, three of the top four qualitative categories represent 

Management/Manpower Strategies subcategories. This suggests that productivity in a shipyard is 

related to and heavily dependent on the management of the organization and their decisions 

rather than purely labor and operations thus, validating the inclusion of a Qualitative Factor as a 

variable in the external DEA assessment. In addition to providing insight on the relative 
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importance of these qualitative factors to shipyard productivity, the results of the survey also 

assist in validating the choice of qualitative categories by the research team. As shown in the 

survey results, six out of the seven qualitative categories received an average score of 5.00 or 

higher meaning they are considered strongly important to most important relative to the scoring 

index used in the survey. Furthermore, the results of the survey advocate that the qualitative 

categories chosen by the research team accurately represent important qualitative factors related 

to productivity in the ship repair industry.  

To develop relative weights for each qualitative component, the total score for each 

category was summed for use in the pairwise comparison, shown in the right-most column in 

Table 13. The pairwise comparison was carried out by comparing the total score for each category 

to the score of each of the other categories as a means of determining which category has a 

greater amount of importance or effect on shipyard productivity. The category that receives the 

higher total score of the two categories under comparison is considered to “win” that comparison. 

The category that “wins” the comparison is awarded one point while the category that loses the 

comparison is not awarded any points. In a case where two categories received the same overall 

score or “tie”, each category is awarded one-half a point (0.5). For example, if you compare 

Advanced Machinery, with a total score of 47, to Outsourced Labor, with a total score of 29, 

Advanced Machinery would “win” the comparison and be awarded one point. Conversely, if you 

compare CMMS to Apprenticeship Program, both categories received a score of 40 therefore the 

comparison results in a “tie” and each category would receive one-half a point. At the conclusion 

of the pairwise comparison, the category receiving the most points is considered most important 

to shipyard productivity. In other words, the category with the most points receives the highest 

weighting factor of all the qualitative categories. In its entirety, the pairwise comparison required 
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a total of 21 individual comparisons. The qualitative components were all assigned an alphabetical 

identifier as well as a unique color to identify a “win” for that component within the matrix as 

shown below. In the matrix, a “win” of a comparison is shown by the letter and color of the 

winning component. The completed pairwise matrix is shown in Table 18. 

Table 18: Completed Pairwise Comparison Matrix 

 

From the pairwise comparison, the category receiving the most points was Organizational 

Structure with six points. Planning and Scheduling received was the second highest with five 

points and Advanced Machinery won four comparisons to receive four points. Efficiency 

Strategies won three comparisons to amass three points, finishing at fourth overall. The 

categories of CMMS and Apprenticeship program tied for fifth in the pairwise comparison with 

each component winning one comparison and tying in another to receive one and one-half points 

apiece. Outsourced Labor did not win a comparison and received zero points as a result. 

Therefore, it can be said that Organizational Structure is the most important to shipyard 

productivity based on the pairwise comparison and should receive the highest weighting factor 

of all categories in the development of the QUAL variable for DEA. Alternatively, Outsourced Labor 

did not accrue any points from the pairwise comparison and should receive the smallest weighting 

factor for development of the QUAL variable.  

In order to determine weighting factors for each component, a straightforward weighting 

equation was developed using the results of the pairwise comparison. In the weighting equation, 
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the value of one point received during the pairwise equation was represented by the variable “𝑥𝑥”. 

As previously mentioned, 21 individual comparisons were carried out during the pairwise 

comparison therefore in total there were 21 possible points available. For that reason, one side 

of the weighting equation was represented by 21x. It was decided that the weighting factors 

would be assigned from a total of 100 percentage points or a value of one (1.00). Thus, the 

weighting equation would be set to equal 100. As a result, the weighting equation is represented 

by the expression 100 = 21𝑥𝑥. However, because Outsourced Labor received zero points in the 

pairwise comparison, using this equation would result in the category receiving a weighting factor 

of zero. Although marginal at best, the results of the survey show that industry experts believe 

that Outsourced Labor is a factor that affects shipyard productivity in some capacity. Therefore, 

it would be disobliging to assign a weighting factor of zero for Outsourced Labor. Subsequently, 

Outsourced Labor was assigned a weighting factor of one-tenth (1/10) of a percentage point or 

0.001 in decimal form, and the remainder of the weighting factors would result from the 

remaining 99.9 percentage points. Therefore, the final weighting equation is expressed as  99.9 =

21𝑥𝑥. Solving for “𝑥𝑥”, the value of one point in the pairwise comparison is determined to be equal 

to 4.7571 percentage points or 0.04751 in decimal form. The weighting factor for each category 

was determined by the product of points received in the pairwise comparison and the value of 

“𝑥𝑥”. The final weight factors assigned to each category are shown in Table 19. 
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Table 19: Qualitative Component Weighting Factors 

 

Pairwise 
Score 

Weight 
Factor 

Advanced Machinery  4 0.190 

CMMS 1.5 0.071 

Organizational Structure 6 0.285 

Planning and Scheduling 5 0.238 

Efficiency Strategies 3 0.143 

Apprenticeship Program 1.5 0.071 

Outsourced Labor  0 0.001 
 

To develop the Qualitative Factor (QUAL) input variable for use in the external analysis, 

the data from the initial qualitative assessment (shown in Table 16) was used in conjunction with 

the calculated weighting factors (shown in Table 19) established through pairwise comparison. As 

discussed in the Qualitative Factor section of the Research Methodology chapter, the QUAL 

variable for each shipyard was calculated first by multiplying the score the shipyard received for 

each qualitative category by the relative weighting factor for that category and summing the total 

of the weighted scores for the shipyard. The total weighted score was then multiplied by 1000 to 

establish the final QUAL variable for each shipyard. The final calculations and results of the 

Qualitative Factor (QUAL) input variable can be seen in Table 20. It should be noted that Shipyard 

E is not included in Table 20. As previously discussed, Shipyard E agreed to provide qualitative 

data and conduct a site visit with the research team, however the shipyard disinclined to offer 

any operational data for the analysis. Consequently, Shipyard E is not included as a part of the 

QUAL variable calculation and will not be included in the external DEA assessment of shipyard 

operations section of this report.  
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Table 20: Qualitative Factor Input Variable Results 

 Weight MH SY B SY C SY D 

Advanced Machinery 0.190 0.190 0.571 0.190 0.761 

CMMS 0.071 0.214 0.143 0.071 0.071 

Organizational Structure 0.285 0.285 1.142 0.285 1.427 

Planning and Scheduling 0.238 0.476 1.189 0.238 0.714 

Efficiency Strategies 0.143 0.143 0.571 0.143 0.428 

Apprenticeship Program 0.071 0.071 0.071 0.071 0.357 

Outsourced Labor 0.001 0.001 0.003 0.003 0.005 
 Total 1.381 3.690 1.002 3.763 
      

QUAL Variable (Total x 1000) = 1380.57 3689.79 1002.00 3763.14 

The results presented by the QUAL input variable calculation match the results shown in 

the qualitative assessment. Shipyard D received the highest overall score for the QUAL variable 

followed by Shipyard B, Manns Harbor (Shipyard A), and Shipyard C, respectively. Similarly, the 

same results were obtained in the qualitative assessment; however, the inclusion of the weighting 

factors, or each categories’ perceived importance to shipyard productivity and efficiency did have 

an effect on the final results achieved in the QUAL variable calculation. The effect of the weighting 

factors can be seen when looking at the magnitude of differences among the QUAL variable scores 

received by each shipyard compared to the results of the qualitative assessment (Table 16). In the 

qualitative assessment, Shipyard D received a significantly higher score than Shipyard B. 

Conversely, with the inclusion of the weighting factors, the difference in the QUAL variable 

calculated for Shipyard B and Shipyard D is much less significant. Likewise, in the qualitative 

assessment the scores received by Manns Harbor and Shipyard B were separated by only one 

point, however Manns Harbor received a much higher QUAL variable score than Shipyard B. This 

is explained by the differences in the importance (weights) of the various qualitative categories.  
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In essence, the results of both the qualitative assessment and QUAL variable calculation 

suggest that Shipyard B and Shipyard D have advantageous conditions, with respect to qualitative 

factors related to production, as compared to Manns Harbor and Shipyard C. Moreover, as such, 

Shipyard B and Shipyard D should achieve higher operational performance than Manns Harbor 

and Shipyard C. However, the use of the QUAL variable in the external analysis will account for 

the differences in these aforementioned indirect production influencers amongst the shipyards. 

Therefore, the results presented by the external analysis in the next section will embody all factors 

that affect shipyard performance allowing the causes of inefficiencies to be identified as either 

purely operational inefficiency or inefficiency caused by disadvantageous shipyard conditions.  

4.2 - External Quantitative Assessment 

As explained in the Research Methodology chapter of this report, the purpose of the 

external analysis is to evaluate the overall operational efficiency of the participating shipyards 

with an ultimate goal of establishing whether the operations of Manns Harbor Shipyard are 

efficient through means of Data Envelopment Analysis (DEA). The external analysis used a holistic 

approach to evaluate shipyard performance by including both direct production factors as well as 

those indirect qualitative factors that affect shipyard performance. As previously mentioned, the 

data available to carry out the external analysis was limited to the data the participating entities 

were willing to provide and the results presented in this section only apply to the data used by 

this research. The following subsections will describe, present, and explain the process of carrying 

out the external analysis as well as the results achieved through performing the analysis.  

4.2.1 - External Analysis Data 

The first step required to carry out the external analysis is to establish and refine the 

available data in order to determine values for the input and output variables used in the analysis. 
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As stated in the Research Methodology chapter, the decision making units (DMUs) used in the 

external analysis will be represented by individual work orders for dry-dock repairs from each 

shipyard. In total 15 DMUs or work orders are included in the external analysis. The full list of 

DMUs is shown by Table 10 in the Research Methodology chapter. In addition, the external 

analysis uses three input variables (Shipyard Capacity, Number of Employees, and Qualitative 

Factor) and two output variables (Labor Productivity and Refurbishment Time) for five production 

variables total. Detailed description of these variables was presented in the Research 

Methodology chapter. The 15 DMUs and five input/output variables provide adequate 

discriminatory power for the DEA model as outlined in the Literature Review chapter.  

Prior to performing the DEA Assessment, the values for input and output variables must 

be determined for all 15 work orders (DMUs). However, the three input variables utilized by this 

research, Shipyard Capacity (SYC), Number of Employees (#EMP), and Qualitative Factor (QUAL), 

are related to the characteristics of the shipyard from an overall prospective; hence the input 

variables were only calculated four times, once for each shipyard and then applied to the 

appropriate work orders. On the other hand, the two outputs, Labor Productivity (PROD) and 

Refurbishment Time (RTIME) require calculation for each individual work order. The following 

paragraphs detail the calculation of the aforementioned variables.  

As explained in the Research Methodology chapter, the Shipyard Capacity (SYC) variable 

is expressed as a composite index related to the maximum drydocking capacity of each shipyard 

in gross tons, length and width of vessel. The SYC variable was calculated by normalizing the data 

for each representative capacity and averaging the three normalized capacities for each shipyard. 

The average of the normalized capacities was then multiplied by 1000 to develop the final SYC 
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variable. The maximum vessel capacities along with the calculated SYC variable for each shipyard 

are presented in Table 21.  

Table 21: Maximum Shipyard Capacities  
 Maximum Vessel Capacity  

Shipyard Gross Tons Length (ft.) Width (ft.) Shipyard Capacity (SYC) 

Manns Harbor (SYA) 867 220 50 1149 

Shipyard B (SYB) 8100 341 110 1971 

Shipyard C (SYC) 480 200 38 1000 

Shipyard D (SYD) 89600 751 110 3245 

The second input variable used in the external analysis is Number of Employees (#EMP). 

The #EMP variable for each shipyard is established based on the number of full-time in-house 

employees working for each shipyard. The Number of Employees variable does not include 

subcontracted labor utilized by the shipyards because it is difficult to determine with accuracy 

and varies from project to project. Employment data is based on the information provided to the 

research team during the visits conducted with each shipyard as well as the operational data 

received from the shipyards. The Number of Employees (#EMP) for each shipyard is as follows: 

Manns Harbor – 65, Shipyard B – 250, Shipyard C – 25, and Shipyard D – 380.  

The final input variable utilized in the external analysis is a Qualitative Factor (QUAL) 

related to the qualitative characteristics of each shipyard. As discussed previously, productivity 

and efficiency in shipyards are affected by factors indirectly related to the production processes. 

The purpose of the Qualitative Factor is to account for these indirect production influencers within 

the DEA model. The derivation and calculation of the QUAL variable is discussed in detail in the 

Research Methodology Chapter as well as the previous section of this report. However, in 

summary, the QUAL variable encompasses the various technological and managerial strategies 

levels for the shipyards related to shipyard productivity, and combines these scores with 
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weighting factors based on the opinions of experts in the field for the development of a compound 

factor that represents the qualitative environment for each shipyard. The results of the 

Qualitative Factor calculation and the final DEA input QUAL values for each shipyard can be seen 

in Table 20, shown in the qualitative assessment section of this report.  

In combination with these aforementioned input variables, the DEA models in the 

external analysis utilize two output variables to represent shipyard performance. The first of these 

variables is expressed as Labor Productivity (PROD) in units of hours per compensated gross ton 

(CGT). Mentioned in the Research Methodology chapter, Labor Productivity must take into 

account the size and type of vessel under repair. Thus, the common unit of measurement 

compensated gross ton (CGT) was utilized to account for these characteristics in the Labor 

Productivity calculation.  Detailed explanation of the CGT measure and its calculation are provided 

in the Research Methodology chapter, however the calculation includes the gross tonnage of the 

vessel along with factors representing the type of vessel and the influence of ship size to develop 

the unit CGT. The Labor Productivity (PROD) variable expresses a productivity rate for each work 

order (DMU) based on the total hours required to complete the repairs and the CGT of the vessel 

under repair. To compute the PROD variable, the total hours for each work order along with the 

CGT of the vessel under repair were calculated. PROD was then determined by dividing the total 

hours by the CGT of the vessel. Nonetheless, because this research utilizes PROD as an output 

variable, the final PROD variable used in the DEA model must be represented by the inverse of 

CGT per hour. This is because an increase in the PROD variable must represent an improvement 

to performance due to the requirements of DEA or in other words, a reduction in hours per CGT. 

Therefore, the final variable used in the DEA model is expressed in units of CGT per hour, where 
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an increase in the productivity rate represents a reduction in hours per CGT. The calculated Labor 

Productivity (PROD) for each work order is shown in Table 22.  

Table 22: Labor Productivity (PROD) Rates 

 
Total 
Hours CGT Productivity 

(hr/cgt)  
PROD 

(cgt/hr)  
DMU - A1 13617.75 1002.51 13.584 0.074 

DMU - A2 11937.50 2243.05 5.322 0.188 

DMU - A3 6427.40 2068.80 3.107 0.322 

DMU - A4 7040.70 1425.09 4.941 0.202 

DMU - A5 13004.40 1347.14 9.653 0.104 

DMU - A6 13450.60 1424.48 9.442 0.106 

DMU - A7 4211.00 1982.66 2.124 0.471 

DMU - A8 11128.75 1336.95 8.324 0.120 

DMU - A9 18007.10 1078.84 16.691 0.060 

DMU - B1 3651.50 2595.82 1.407 0.711 

DMU - B2 3955.50 943.03 4.194 0.238 

DMU - B3 1590.50 1021.60 1.557 0.642 

DMU - B4 4410.00 1025.28 4.301 0.232 

DMU - C1 5124.25 293.47 17.461 0.057 

DMU - D1 23347.00 47264.33 0.494 2.024 

The final variable used in the external analysis, Refurbishment Time (RTIME) is utilized to 

represent the total number of days a vessel was dry-docked for repairs. As explained in the 

Research Methodology chapter, the time required to complete vessel repairs is a critical factor in 

determining the competitive potential of a shipyard and is directly related to shipyard 

performance. Therefore, RTIME was chosen as an output variable for the DEA model because it is 

a key indicator of operational performance. In this research, RTIME is expressed as the inverse of 

total days (1/days) multiplied by 1000. Similar to the Labor Productivity, RTIME is expressed as 

the inverse of total days because it is utilized as an output variable. Meaning an increase in RTIME 
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must correlate with improved operational performance. In other words, an increase in RTIME 

must represent a reduction in the total days required for repairs. Consequently, the inverse of 

total days is used as the unit of measure for RTIME. The total days for each work order (DMU) 

along with the representative RTIME values are shown in Table 23.  

Table 23: Refurbishment Time (RTIME) per DMU 

 Total Days RTIME   
DMU - A1 156.00 6.410 

DMU - A2 106.00 9.434 

DMU - A3 120.00 8.333 

DMU - A4 106.00 9.434 

DMU - A5 195.00 5.128 

DMU - A6 168.00 5.952 

DMU - A7 78.00 12.821 

DMU - A8 107.00 9.346 

DMU - A9 169.00 5.917 

DMU - B1 22.00 45.455 

DMU - B2 48.00 20.833 

DMU - B3 35.00 28.571 

DMU - B4 47.00 21.277 

DMU - C1 260.00 3.846 

DMU - D1 16.00 62.500 

 

4.2.2 - External Analysis DEA Results 

For the external analysis, DEA was carried out using both the CCR and BCC envelopment 

models in the output-orientation. Detailed discussion of DEA model selection is provided in the 

Research Methodology chapter; however, both models were utilized because a definitive 

determination of the appropriate RTS type was not possible. Additionally, the use of both the CCR 

and BCC models allows scale efficiency to be considered which enables inefficiencies within the 

model to be attributed to either inefficient operations, disadvantageous shipyard conditions, or 
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both. Prior to presentation and discussion of the results achieved by the external analysis, the 

complete data set utilized to carry out the analysis is presented in Table 24. 

Table 24: External Analysis Data Set 

 SYC #EMP QUAL PROD RTIME 

DMU - A1 1149 65 1380.57 0.074 6.410 

DMU - A2 1149 65 1380.57 0.188 9.434 

DMU - A3 1149 65 1380.57 0.322 8.333 

DMU - A4 1149 65 1380.57 0.202 9.434 

DMU - A5 1149 65 1380.57 0.104 5.128 

DMU - A6 1149 65 1380.57 0.106 5.952 

DMU - A7 1149 65 1380.57 0.471 12.821 

DMU - A8 1149 65 1380.57 0.120 9.346 

DMU - A9 1149 65 1380.57 0.060 5.917 

DMU - B1 1971 250 3689.79 0.711 45.455 

DMU - B2 1971 250 3689.79 0.238 20.833 

DMU - B3 1971 250 3689.79 0.642 28.571 

DMU - B4 1971 250 3689.79 0.232 21.277 

DMU - C1 1000 25 1002.00 0.057 3.846 

DMU - D1 2214 380 3763.14 2.024 62.500 
 
The relative efficiency evaluation of the participating shipyards repair operations was 

carried out using the empirical data shown in Table 24 relating to shipyard performance indicators 

for 15 separate work orders. Nine work orders were from Shipyard A (Manns Harbor), four work 

orders were from Shipyard B, and Shipyard C and Shipyard D each provided one work order. The 

results presented by iterations of the DEA model are relative to the abovementioned data set and 

the accompanying limitations described in the Research Limitations section of this report, and 

therefore may not be applicable in all situations. The relative efficiency scores generated by both 

the CCR and BCC models as well as the accompanying scale efficiencies are presented in Table 25. 
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Table 25: External Analysis CCR, BCC, and Scale Efficiency Scores 

DMU CCR Score BCC Score Scale Efficiency  

A1 50.00 50.00 100.00 

A2 73.58 73.58 100.00 

A3 68.37 68.37 100.00 

A4 73.58 73.58 100.00 

A5 40.00 40.00 100.00 

A6 46.42 46.42 100.00 

A7 100.00 100.00 100.00 

A8 72.90 72.90 100.00 

A9 46.15 46.15 100.00 

B1 100.00 100.00 100.00 

B2 45.83 45.83 100.00 

B3 64.52 64.90 99.42 

B4 46.81 46.81 100.00 

C1 77.99 100.00 77.99 

D1 100.00 100.00 100.00 

The results presented in Table 25 show that DMUs A7, B1, and D1 are relatively efficient 

in both the CCR and BCC models, while DMU C1 is relatively efficient only in the BCC model. It is 

interesting to note that all four of the participating shipyards had a work order receive a relative 

efficiency score of 100 in the BCC model. Outside of the aforementioned efficient DMUs, the 

remaining DMUs under evaluation were considered relatively inefficient by both the CCR and BCC 

models. When looking at the scale efficiencies of each DMU, only DMU B3 and DMU C1 received 

scale efficiencies less than 100. As stated previously, SE = CCR/BCC or SE = TE/PTE and a scale 

efficiency of less than 100 represents disadvantageous conditions within the shipyard. Moreover, 

it should be noted that a BCC or pure technical efficiency (PTE) score of less than 100 represents 
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inefficient operations within the shipyard. Therefore, it can be said that DMU C1’s inefficiency is 

caused by disadvantageous shipyard conditions and that in terms of shipyard operations DMU C1 

is operating efficiently. On the other hand, it can be understood that DMU B3’s inefficiency is 

caused by both inefficient operations as well as disadvantageous shipyard conditions. For the 

remaining inefficient DMUs, the sources of inefficiencies represented by the results of the DEA 

models can be attributed purely to inefficient operations.  

As discussed in the Research Methodology chapter, to provide validation and in-depth 

understanding of the results presented by the external DEA evaluation, sensitivity analysis was 

performed on input and output variables used in the external analysis. Sensitivity analysis of the 

input and output variables was performed by evaluating the effects of excluding each variable 

from the DEA model. In other words, multiple iterations of the DEA models were conducted by 

excluding one variable at a time and examining the effects on the overall efficiency scores. Results 

of the sensitivity analysis on the input and output variables of the DEA model show that Number 

of Employees (#EMP) and Refurbishment Time (RTIME) are the most critical variables. Moreover, 

the results of the sensitivity analysis show that the external DEA models are most sensitive to 

#EMP and RTIME. Therefore, it is understood that out of all the variables used #EMP and RTIME 

have the greatest effect on overall efficiency scores. The results of the sensitivity analysis 

performed on the input and output variables are presented in Table 26. As seen in Table 26, 

exclusion of either #EMP or RTIME significantly changes the efficiency scores of the DEA models.  
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Table 26: Sensitivity Analysis of External Analysis Variables 

 Original Scores #EMP Removed RTIME Removed 
DMU CCR Score BCC Score CCR Score BCC Score CCR Score BCC Score 

A1 50.00 50.00 27.96 50.00 15.71 15.71 

A2 73.58 73.58 41.14 73.58 39.92 39.92 

A3 68.37 68.37 43.36 68.37 68.37 68.37 

A4 73.58 73.58 41.14 73.58 42.89 42.89 

A5 40.00 40.00 22.36 40.00 22.08 22.08 

A6 46.42 46.42 25.96 46.42 22.51 22.51 

A7 100.00 100.00 63.43 100.00 100.00 100.00 

A8 72.90 72.90 40.76 72.90 25.48 25.48 

A9 46.15 46.15 25.81 46.15 12.74 12.74 

B1 100.00 100.00 81.69 88.84 50.25 51.41 

B2 45.83 45.83 37.44 40.72 16.82 17.21 

B3 64.52 64.90 51.35 55.84 45.37 46.42 

B4 46.81 46.81 38.24 41.59 16.40 16.77 

C1 77.99 100.00 23.11 100.00 31.46 100.00 

D1 100.00 100.00 100.00 100.00 100.00 100.00 

Although the above results represent the relative efficiencies of all four shipyards, only 

the efficiency scores of Manns Harbor (Shipyard A) will be discussed in detail, as the ultimate goal 

of this research is to provide the NCDOT-FD with analytical results to improve Manns Harbor 

operations and to aid in developing an overall strategic decision-making plan for the shipyard.  

Results presented in Table 25 show that of all completed work orders from Manns Harbor 

only DMU A7 is considered relatively efficient and all other work orders received efficiency scores 

of less than 75 by both the CCR and BCC models. While DMU A7 is considered relatively efficient 

by both models, further investigation into the data provided by Manns Harbor reveals that the 

efficiency score for DMU A7 shown in the DEA models may be misleading. As discussed in the 

Internal Analysis section of the Research Methodology, there are times in which ferries are 

returned to service before the vessel can be fully refurbished. These instances can be caused by 
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various reasons, but the majority of the time it is the direct result of schedule overruns within the 

shipyard. In the case of DMU A7, the problem with the efficiency score indicated by DEA arises 

when you begin to investigate the total hours of maintenance completed on the work order as 

well as the total refurbishment time for the vessel. As shown in Table 22 and Table 23, the total 

hours and the total refurbishment time for work order A7 are significantly less than the other 

work orders provided by Manns Harbor. From examination of the data, it can be inferred that 

work order A7 was an instance when the ferry was sent back into service prior to a full 

refurbishment. Because of these extreme variations in hours and refurbishment time, the results 

presented shown by the original DEA models are skewed.  Consequently, in an attempt to better 

analyze the operational efficiencies of the shipyards, DMU A7 was removed from the data set and 

the DEA models were carried out again. Results of the external DEA assessment with the exclusion 

of DMU A7 are presented in Table 27. 

Table 27: External Analysis Results Excluding DMU A7 

DMU CCR 
Score 

BCC 
Score 

Scale 
Efficiency  

A1 54.24 59.78 90.74 
A2 81.98 87.97 93.19 
A3 93.01 100.00 93.01 
A4 82.73 87.97 94.03 
A5 44.66 47.82 93.39 
A6 51.05 55.50 91.98 
A8 79.08 87.15 90.74 
A9 50.07 55.18 90.74 
B1 100.00 100.00 100.00 
B2 45.83 45.83 100.00 
B3 65.56 65.73 99.74 
B4 46.81 46.81 100.00 
C1 84.61 100.00 84.61 
D1 100.00 100.00 100.00 
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As seen in Table 27, the results of both DEA models as well as scale efficiency are 

significantly different, especially for Manns Harbor, as compared to the results of the original DEA 

models. While the removal of DMU A7 did have an effect on the majority of the resulting 

efficiencies, DMU B1 and DMU D1 both remained best practice units in both models. Likewise, 

DMU C1 remained relatively efficient in the BCC model but the unit’s efficiency score in the CCR 

model increased. Unlike the original DEA model iterations however, the only Manns Harbor’s 

work order receiving an efficiency score of 100 was DMU A3 in the BCC model. DMU A3’s 

efficiency scores from both models rose considerably with the removal of DMU A7. Moreover, 

the efficiency scores of all DMUs rose in both models with the exclusion of DMUs B1, B2, B4, C1, 

and D1. Additionally, the scale efficiencies presented by the DEA models with the exclusion of 

DMU A7 changed noticeably. In the new models, only four of the units under evaluation received 

scale efficiency scores of 100 as opposed to 13 units receiving scale efficiency scores in the original 

models.  

When looking specifically at the results of Manns Harbor, all of the shipyards units 

received relatively inefficient scores in the CCR model and only DMU A3 received a relatively 

efficient score in the BCC model. Overall, four of the eight Manns Harbor work orders received 

efficiency scores of less than 60, while three of the remaining four work orders received efficiency 

scores of less than 90. These low efficiency scores indicate that Manns Harbor is operating at less 

than 60 percent efficiency on half of their work orders and less than 90 percent efficiency on 

nearly 40 percent of their work orders in comparison to the best practice units. A look at the scale 

efficiencies of Manns Harbor reveals that all of the work orders received scale efficiency scores of 

less than 100. This indicates that the conditions of the shipyard are disadvantageous as compared 

to the best practice shipyards, which contributes to the inefficiency shown by the results. In other 
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words, the existing conditions within Manns Harbor (i.e. number of employees, shipyard capacity, 

or qualitative factors) are a contributing factor to the inefficiency.  

Of all Manns Harbor work orders, only DMU A3 was considered efficient in either model. 

DMU A3 received an efficiency score of 100 in the BCC model but an efficiency score of 93.01 in 

the CCR model. This suggests that DMU A3 is locally efficient but not globally efficient. More 

specifically, this means that when shipyard conditions are taken into account DMU A3 is relatively 

efficient, but is only 93.01 percent efficient from a pure operations standpoint as compared to 

the efficient shipyards. For the remaining Manns Harbor work orders, the sources of inefficiency 

are caused by both inefficient operations as well as existing shipyard conditions. This is shown by 

BCC and scale efficiency scores of less than 100. From an overall prospective, the average 

efficiency of all Manns Harbor work orders are 67.10 and 72.67 in the CCR and BCC models 

respectively. This indicates on average Manns Harbor’s operations are 67.10% efficient in terms 

of pure operations and 72.67% efficient with the inclusion of shipyard conditions as compared to 

the best practice units of DMUs B1 and D1.  

Sensitivity analysis of the input and output variables was performed again after DMU A7 

was removed from the analysis. However, results of the second sensitivity analysis produced the 

same results with Number of Employees and Refurbishment Time being identified as the most 

critical variables; therefore, these results are not shown. In addition to the sensitivity analysis 

performed on the input and output variables, the bootstrap method of sensitivity analysis was 

also performed on the efficiency scores produced by DEA. As stated in the Research Methodology 

chapter, bootstrapping is done by performing multiple simulations of the DEA model with changes 

to the input and output variables. Bootstrapping takes into account the effects of variations in the 

data set and their potential effects on overall efficiency scores thus providing an overall better 
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representation of technical efficiency from the DEA model. For this research, bootstrapping was 

carried out by performing 1,000 iterations of the BCC DEA model with various changes to the input 

and output variables. Bootstrapping was only performed on the BCC model because this model 

does not assume proportionality between the inputs and outputs. In other words, the BCC model 

recognizes that increases to the input variables (existing shipyard conditions) do not always result 

in proportional increases to the outputs (i.e. increased productivity and reduction in 

refurbishment time) or vice versa. The results of bootstrapping are shown in Table 28. The results 

of bootstrapping provide a more robust and in-depth presentation of the efficiency scores with 

consideration of variations to the data set. As mentioned in the Research Methodology chapter, 

there are times when the original scores provided by DEA models show large differences in 

efficiency scores amongst the DMUs and the performance of inefficient DMUs compared to best 

practice DMUs is significant. The purpose of bootstrapping is to evaluate the DEA model’s overall 

sensitivity to variations in the data set. The results of bootstrapping often times show less 

dramatic differences in the performance than those of the original model. However, in this 

instance, the results from bootstrapping show that overall the DEA model used in this analysis is 

relatively insensitive to variations of the data set. This is represented by the relatively consistent 

bootstrapped efficiency scores for each DMU, as shown in Table 28, suggesting that the results 

provided by the original DEA models are an accurate representation of overall performance.  
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Table 28: External Analysis Bootstrap Results 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

A1 59.78 57.25 57.99 50.83 59.85 
A2 87.97 82.48 83.16 75.95 88.17 
A3 100.00 100.00 100.00 100.00 100.00 
A4 87.97 80.93 81.16 75.95 88.55 
A5 47.82 44.19 45.03 35.52 47.98 
A6 55.50 52.19 53.08 43.68 55.61 
A8 87.15 83.45 84.32 74.31 87.28 
A9 55.18 52.91 53.62 46.92 55.24 
B1 100.00 100.00 100.00 100.00 100.00 
B2 45.83 41.61 43.03 24.58 45.97 
B3 65.73 54.69 59.38 31.46 66.15 
B4 46.81 42.58 44.06 25.11 46.93 
C1 100.00 100.00 100.00 100.00 100.00 
D1 100.00 100.00 100.00 100.00 100.00 

Overall, the results of the external DEA assessment suggest that on average the 

maintenance operations at Manns Harbor Shipyard are inefficient compared to the best practice 

units by the analysis. As stated previously, Manns Harbor’s inefficiencies are caused by both 

disadvantageous conditions within the shipyard as well as pure inefficient operations. 

Disadvantageous shipyard conditions are represented by the DEA input variables or existing 

operational conditions of the shipyard. Because the DEA model was output-oriented and aimed 

at evaluating current shipyard conditions, optimal targets for these conditions are unable to be 

determined by the results. Further discussion of these disadvantageous conditions is provided in 

the successive Comparison of Qualitative and Quantitative Results section of this report. 

However, of the inputs used in the DEA models, the sensitivity analysis shows that Number of 

Employees has the most significant effect on overall efficiency scores, especially the efficiency 

scores of the CCR model, which represents overall maintenance operation efficiency. The efficient 

frontiers developed by the DEA models considering the Number of Employees input variable 
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specifically compared to both outputs, Labor Productivity and Refurbishment Time, are shown in 

Figure 11 and Figure 12. Work orders from Manns Harbor are shown enclosed by a rectangle in 

both figures. As shown in both Figure 11 and Figure 12, at current employment levels Manns 

Harbor shipyard is under performing for both Labor Productivity and Refurbishment Time. In 

other words, Figure 11 and Figure 12 reveal that Manns Harbor is inefficient because the shipyard 

should have increased productivity and lower refurbishment times at current employment levels.  

 

 

Figure 11: Efficient Frontier - #EMP vs. PROD 
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Figure 12: Efficient Frontier - #EMP vs. RTIME 

In terms of pure maintenance operations, results of the DEA model allow optimal 

performance targets for efficient operations to be determined. From the results of the BCC model, 

with current shipyard conditions, to achieve relative efficiency in comparison to best practice 

units Manns Harbor must improve both Labor Productivity as well as Refurbishment Time on their 

projects. Optimal performance targets for Manns Harbor to become efficient with current 

shipyard conditions are shown in Table 29. The results shown in Table 29 indicate that Manns 

Harbor must achieve a DEA Labor Productivity rate on their projects of 0.24 or an actual 

productivity rate of approximately 4.17 hours per compensated gross ton. Converting from 

compensated gross tons back to gross tonnage for each ferry class, Manns Harbor must achieve 
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a productivity rate of 16.67 hours per gross ton for Hatteras Class Ferries, 12.50 hours per gross 

ton for Sound Class Ferries, and 14.58 hours per gross ton for River Class Ferries. As shown in 

Column 4 of Table 29, in some cases this would require improvements to current productivity 

rates by over 100 percent. However, based on the average productivity rate of all work orders this 

would require an average improvement to productivity of nearly 39 percent. In addition to 

improvements to current productivity rates, with current shipyard conditions, Manns Harbor 

would also have to improve Refurbishment Time on its repair projects. In other words, for the 

current operations at Manns Harbor to become relatively efficient compared to those best 

practice units, the overall time it takes to complete dry-dock repairs must be reduced. As shown 

by the sensitivity analysis results on the DEA input and output variables, Refurbishment Time is a 

critical factor in the efficiency scores produced by the models. Consequently, it can be said that a 

reduction in the Refurbishment Times for Manns Harbor projects would significantly improve the 

efficiency of the work orders. The optimal DEA RTIME target to achieve efficiency is 10.72 or an 

actual dry-docked time of approximately 94 days. The last column in Table 29 shows the 

percentage improvement required to achieve the optimal refurbishment time for each work 

order. From the work orders provided by Manns Harbor, the average time for refurbishment on 

the vessels with the exclusion of DMU A7 was approximately 141 days. Therefore, to achieve 

relative efficient operation, based on the average time of refurbishment Manns Harbor would 

have to reduce the refurbishment time by approximately 33%. In conclusion, the results of the 

external analysis suggest that Manns Harbor would require significant improvements to 

productivity and refurbishment time performance in order to become efficient with the work 

done at best practice shipyards.  

  



132 
 

Table 29: Performance Targets for Manns Harbor 

DMU 
PROD 
Value 

PROD 
Target 

PROD Gain 
(%) 

RTIME 
Value 

RTIME 
Target 

RTIME Gain 
(%) 

A1 0.07 0.24 228.01 6.41 10.72 67.29 
A2 0.19 0.24 29.11 9.43 10.72 13.67 
A3 0.32 0.32 0 8.33 8.33 0 
A4 0.2 0.24 20.16 9.43 10.72 13.67 
A5 0.1 0.24 133.39 5.13 10.72 109.12 
A6 0.11 0.24 128.99 5.95 10.72 80.17 
A8 0.12 0.24 102.27 9.35 10.72 14.74 
A9 0.06 0.24 304.54 5.92 10.72 81.23 

4.3 - Comparison of Qualitative and Quantitative Results 

As a means of validating the results attained in the quantitative DEA assessment and 

investigating the effects of qualitative factors on shipyard performance, a comparison with the 

qualitative assessment results is necessary. In the qualitative assessment, Shipyard D received the 

highest score followed by Shipyard B, Manns Harbor, and Shipyard C. Moreover, both Manns 

Harbor and Shipyard C received significantly lower scores in the qualitative assessment than 

Shipyard B and Shipyard D. From a theoretical standpoint, this suggests that in terms of 

technology and management strategies related to shipyard productivity and efficiency Shipyard 

B and Shipyard D have a significant advantage over Manns Harbor and Shipyard C. In other words, 

the qualitative conditions at Manns Harbor and Shipyard C put them at a performance 

disadvantage compared to the other shipyards. Therefore, it was concluded that based on 

qualitative factors alone, Shipyard B and Shipyard D should perform at a higher level than Manns 

Harbor or Shipyard C.  

The results provided by the external DEA assessment of shipyard operations further 

validate the conclusions drawn from the quantitative assessment. This can be seen by evaluation 

of the sources of inefficiency amongst the underperforming units in the external analysis. The two 

highest performing or best practice DMUs identified in the DEA assessment were DMU B1 and 



133 
 

DMU D1. Only DMU B1 and DMU D1 received relative efficiency in the CCR model results, implying 

these DMUs were the only efficient units under evaluation in terms of technical operational 

efficiency. Furthermore, in the BCC model, when shipyard conditions are considered, both Manns 

Harbor and Shipyard C each had an efficient DMU in the model. Meaning that when the conditions 

in the shipyard are considered, there were instances where Manns Harbor and Shipyard C 

operated efficiently. Therefore, when shipyard conditions are excluded neither Manns Harbor nor 

Shipyard C was determined to be efficient on any work order. However, with the inclusion of their 

disadvantageous conditions, both Manns Harbor and Shipyard C performed efficiently on one 

work order. Thus, it can be said that the two shipyards, Shipyard B and Shipyard D, receiving high 

Qualitative Assessment scores had higher operational performance than Manns Harbor and 

Shipyard C without the inclusion of the disadvantageous conditions that exist within these 

shipyards.  

Additional validation is provided by the qualitative assessment when analyzing the BCC 

efficiency and scale efficiency scores presented in the external analysis. Despite displaying high 

performance by DMU B1, the remaining work orders from Shipyard B were determined to be 

inefficient in the DEA results. However, analysis of the sources of inefficiency for inefficient work 

orders provided by Shipyard B validates the conclusions presented in the qualitative assessment. 

As shown in Table 27, three of the four Shipyard B DMUs received scale efficiency scores of 100 

and the remaining DMU received a scale efficiency score of 99.74. As explained previously, this 

indicates that the cause for the inefficiency for Shipyard B is purely inefficient operations and that 

the conditions of the shipyard are not disadvantageous. Additionally, it can be seen that Shipyard 

B and Shipyard D were the only two shipyards receiving scale efficiency scores of 100. More 

specifically, this indicates that only Shipyard B and Shipyard D did not have existing shipyard 
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conditions that hindered their ability to perform efficiently. The high scale efficiency scores 

received by Shipyard B and Shipyard D provide validation to the qualitative assessment conclusion 

that the existing conditions present in both are advantageous in comparison to the two other 

shipyards.  

Alternative to the DEA efficiency results shown for Shipyard B and Shipyard D, neither 

Manns Harbor nor Shipyard C received efficient scores in the CCR model. However, both shipyards 

did produce an efficient unit in the BCC model. This suggests that without the inclusion of the 

disadvantageous conditions shown by the qualitative assessment results both Manns Harbor and 

Shipyard C are operating inefficiently in comparison to Shipyard B and Shipyard D. This is further 

supported by the scale efficiency scores received by Manns Harbor and Shipyard C. Outside of 

DMU A3, which received an efficient score in the BCC model implying that with consideration of 

shipyard conditions the unit operated efficiently, the remaining work orders provided by Manns 

Harbor were deemed inefficient by both models. In addition, all Manns Harbor work orders 

received scale efficiency scores that were less than 100. This indicates that the inefficiency of 

Manns Harbor Shipyard is caused in part by the disadvantageous conditions that currently exist 

at the shipyard as well as inefficient operations. Similar to Manns Harbor, Shipyard C was consider 

efficient only when existing shipyard conditions were considered in the BCC model. Likewise, 

Shipyard C also received a low scale efficiency score in the DEA results. Unlike Manns Harbor 

however, Shipyard C’s inefficiency can be fully attributed to disadvantageous shipyard conditions.  

The conclusions drawn from the DEA results coincide with the results found in the 

qualitative assessment. The two highest scoring shipyards in the qualitative assessment both 

exemplified best practice units in the DEA assessment, while also receiving relatively high scale 

efficiency scores. Likewise, the two lowest scoring shipyards from the qualitative assessment were 
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determined to be inefficient by the results of DEA and received scale efficiency scores less than 

100. Additionally, the average scale efficiency scores of the DEA assessment for each shipyard 

match the shipyard ranks shown in the results of the qualitative assessment. Shipyard D received 

the highest rank in the qualitative assessment and received the highest scale efficiency scores in 

the external analysis. Likewise, Shipyard C received the second highest qualitative rank and scale 

efficiency scores followed by Manns Harbor and Shipyard C in both measures respectively.  

Looking at the differences amongst qualitative shipyard factors of the high performing 

facilities (Shipyard B and Shipyard D) and those of the low performing shipyards (Manns Harbor 

and Shipyard C) provide insight as to where the possible source of these disadvantages originates. 

Of the qualitative factors, Manns Harbor and Shipyard C received lower overall scores than both 

of the high performing shipyards in the following categories: Advanced Machinery, Organizational 

Structure, Planning and Scheduling, and Efficiency Strategies. As a result, it can be said that 

Shipyard B and Shipyard D receive their advantageous shipyard conditions from these qualitative 

categories. The identified qualitative categories in which Manns Harbor and Shipyard C received 

lower scores than the high performing shipyards correspond with the four most important 

categories as identified by the industry professional in the survey. Therefore, the conclusion can 

be made that Manns Harbor and Shipyard C can improve their shipyard conditions and potentially 

increase their operational performance by making improvements to their technology levels, 

project management, planning and scheduling techniques, and efficiency strategies utilized.   



136 
 

4.4 - Internal Quantitative Assessment 

Discussed extensively in the Research Methodology chapter, the purpose of the internal 

analysis is to utilize DEA as a means of evaluating the efficiency of internal maintenance 

operations at Manns Harbor. The internal analysis of Manns Harbor was carried out by two 

separate DEA assessments. The first DEA assessment was carried out on a holistic work order basis 

in similar fashion to the External Analysis. The second DEA assessment was carried out at a more 

detailed, departmental level per work order basis. The purpose of the DEA assessment at the work 

order basis is to evaluate the efficiency Manns Harbor operations from an overall prospective with 

the ultimate goal of determining a realistic timeframe for refurbishment projects. Additionally, 

the DEA assessment at the work order level will assist in determination of whether the current 

planned maintenance schedule of Manns Harbor is feasible in nature given current shipyard 

conditions. The purpose of the DEA assessment conducted the departmental level is to evaluate 

the efficiency of individual work units from work order to work order. The goal of the 

departmental level assessment is to identify any potential inefficient departments within Manns 

Harbor so that recommendations for prospective corrective action in those departments can be 

made.  

As mentioned in the Research Limitations section of this report, the data for the internal 

analysis is limited to the historical data available in the NCDOT’s SAP System. At the time of this 

research, the SAP System had only been implemented for the past 18 months. Therefore, the 

available data is restricted to nine completed work orders over an 18-month period from 2015 to 

2017. These nine work orders are concurrent with the nine work orders utilized in the external 

analysis for Manns Harbor (DMUs A1-A9) and therefore, are inclusive of the same data. The 

following subsections of this report will present and discuss the results achieved by the internal 
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analysis carried out at both the work order and departmental levels. Explanation of the data used 

in the analyses as well as the process of conducting each analysis is also provided within each 

subsection, where appropriate.  

4.4.1 - Internal Analysis Work Order Basis 

Similar to the external analysis, the first step in conducting the internal analysis at the 

work order basis is to determine the values for the input and output variables used in DEA. In 

total, nine DMUs or work orders are available for conducting the Internal Analysis. As previously 

mentioned, these are the same work orders utilized in the external analysis for Manns Harbor. 

Table 13, provided in the Research Methodology chapter, illustrates the full list of DMUs available 

for the internal analysis and includes the vessel classification and year the work order was 

completed. Prior to conducting the internal analysis at the work order level, the values for the 

inputs and outputs must be calculated for each available DMU.  

As discussed in the Research Methodology chapter, in total, the internal analysis utilizes 

four variables as internal shipyard performance indicators. Of these variables, one variable is used 

as an input variable while the remaining three variables are utilized as outputs in DEA. The lone 

input variable, Number of Employees (#EMP), is the same variable utilized in the external analysis, 

however in the internal analysis it is calculated on an individual work order basis. In other words, 

Number of Employees represents the total number of employees that performed work on each 

work order. The three output variables utilized in the internal analysis include Labor Productivity 

(PROD), Refurbishment Time (RTIME), and Schedule Delay (SDEL). Table 14 in the Research 

Methodology chapter provides a visual summary of the input and output variables employed in 

the internal analysis. Two of the outputs, PROD and RTIME, are included in the external analysis 

and remain unchanged for use in the internal analysis at the work order level.  Detailed discussion 
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of the calculation of both PROD (Table 22) and RTIME (Table 23) was provided in the external 

analysis section, therefore additional discussion of these variables is not provided in this section. 

However, the third output variable, Schedule Delay, is a new variable introduced only in the 

internal analysis at the work order level. The output variable Schedule Delay was introduced to 

this analysis as a means of evaluating the feasibility of the current 90 days planned for vessel 

refurbishment at Manns Harbor. Schedule Delay represents the difference in actual work (time of 

dry-docked repairs in days) compared to the planned 90 day period. Similar to PROD and RTIME, 

because Schedule Delay is utilized as an output variable, the inverse of the variable must be used 

in the DEA assessment. Therefore, Schedule Delay is expressed as the inverse of actual 

refurbishment time minus the planned 90 days multiplied by 1000 or SDEL = [1/(Actual – 90)] x 

1000. The calculation of SDEL for each work order is shown in Table 30. The final data set used to 

carry out the internal analysis on a work order basis is shown in Table 31. 

 
Table 30: Schedule Delay (SDEL) Calculation per Work Order 

DMU Actual Days Schedule 
Delay  SDEL 

DMU1 156.00 66.00 15.15 

DMU2 106.00 16.00 62.50 

DMU3 120.00 30.00 33.33 

DMU4 106.00 16.00 62.50 

DMU5 195.00 105.00 9.52 

DMU6 168.00 78.00 12.82 

DMU7 78.00 -12.00 -83.33 

DMU8 107.00 17.00 58.82 

DMU9 169.00 79.00 12.66 
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Table 31: Internal Analysis – Work Order Basis Data Set  

DMU #EMP PROD SDEL RTIME 

DMU1 61 0.0736 15.152 6.410 
DMU2 66 0.1879 62.500 9.434 
DMU3 57 0.3219 33.333 8.333 
DMU4 58 0.2024 62.500 9.434 
DMU5 63 0.1036 9.524 5.128 
DMU6 60 0.1059 12.821 5.952 
DMU7 55 0.4708 2000.000 12.821 
DMU8 64 0.1201 58.824 9.346 

DMU9 64 0.0599 12.658 5.917 
 

Like the external analysis, DEA for the internal analysis at the work order level was carried 

out using both the CCR and BCC models in the output-orientation. Both the CCR and BCC models 

were used in the internal analysis for the reasons discussed in the Research Methodology chapter. 

Prior to presentation of the results, further discussion of DMU 7 is required. Discussed in the 

internal analysis methodology, and further explained in the results of the external analysis, 

because of various reasons, there are instances at Manns Harbor where vessels are sent back into 

operation prior to full refurbishment. Moreover, as shown in Table 30, DMU7 is an example of 

one of these instances. It can be seen that DMU7 was in the shipyard for a significantly less 

amount of time than the remaining work orders. As discussed in the external analysis, the total 

hours charged to DMU7 were also significantly less than the remaining work orders. Because of 

this, as shown by the initial results of the external analysis, the inclusion of DMU7 skews the 

efficiency scores produced by the DEA models. Therefore, it can be said that DMU7 introduces a 

bias into the DEA models and provides inaccurate results, which represent a false sense of high 

performance. As such, DMU7 is excluded from this DEA assessment as well as the DEA 

assessments carried out at the departmental level in the following section. The exclusion of DMU7 
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enables the researchers to evaluate Manns Harbor’s performance only on complete 

refurbishments and allows more robust conclusions and recommendations to be made. Despite 

the exclusion of DMU7, the data used in the internal analysis still provides adequate 

discriminatory power for the DEA models because the number of DMUs is equal to twice the 

number of input and output variables.  

The relative efficiency scores produced by the DEA models are relative to the empirical 

data in Table 31 and the associated limitations presented in this research. Therefore, the results 

presented in this section are relative to this research and does not apply to any other situations. 

The efficiency scores for the work orders (DMUs) produced by both the CCR and BCC models as 

well as the scale efficiency of each are shown in Table 32.  

Table 32: Internal Analysis - Work Order Basis CCR, BCC, and Scale Efficiency Scores 

DMU CCR Score BCC Score Scale Efficiency 
DMU1 64.60 67.95 95.08 
DMU2 87.88 100.00 87.88 
DMU3 100.00 100.00 100.00 
DMU4 100.00 100.00 100.00 
DMU5 50.04 54.36 92.06 
DMU6 60.99 63.09 96.67 
DMU8 89.78 99.07 90.63 
DMU9 56.84 62.72 90.63 

 
The results presented in Table 32 show that DMU3 and DMU4 are relatively efficient in 

both the CCR and BCC models. In other words, DMU3 and DMU4 represent “best practice” units 

and fall on the efficient frontier in for both models. On the other hand, DMU2 is relatively 

inefficient in the CCR model but relatively efficient in the BCC model. In addition, DMU2 received 

a scale efficiency score of 87.88, indicating that the source of inefficiency within the CCR model 

can be attributed to disadvantageous conditions or the inefficiency is related to the Number of 

Employees utilized to complete the work order.  Therefore, it can be said that in terms of pure 
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operational efficiency, Manns Harbor operated efficiently on work orders DMU2, DMU3, and 

DMU4 or in other words, Manns Harbor operates efficiently on approximately 38 percent of the 

evaluated work orders. Of these efficient DMUs, two work orders (DMU2 and DMU3) were 

conducted on Sound Class ferries and the other efficient work order (DMU4) was conducted on a 

River Class ferry. This indicates that internally, Manns Harbor operates more efficiently on larger 

ferries than on the smaller ferries in the fleet. This is further validated when looking at the pure 

operational efficiency (BCC scores) of each ferry classification’s work orders. The largest ferries, 

Sound Class, had an average BCC score of 100. The mid-sized ferries, River Class, had an average 

pure operational efficiency of 88.48 while, the smallest ferries, Hatteras Class, had an average 

BCC score of only 65.34. The lone Crane Barge included in the analysis had a pure operational 

efficiency of only 63.09.  

Further investigation of the results presented in Table 32 show that outside of the three 

aforementioned work orders, none of the remaining work orders received efficiency scores in 

either model. Furthermore, excluding DMU3 and DMU4, the remaining work orders all received 

scale efficiency scores of less than 100. Therefore, it can be said that the source of these internal 

inefficiencies can be attributed to both disadvantageous conditions and pure inefficient 

operations. In other words, the internal inefficiencies are caused by both the #EMP used on each 

work order as well as purely operating at less than optimal conditions (i.e. low PROD, high SDEL, 

and high RTIME). From an overall prospective, looking at the average of all BCC scores it can be 

said that on average Manns Harbor only operated at 81 percent efficiency over the 18-month 

period under evaluation.  

To investigate the causes of these internal operational inefficiencies further, sensitivity 

analysis was conducted on the data set used to conduct this iteration of the internal analysis. The 
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result of the sensitivity analysis carried out on the data is shown in Table 33. Because #EMP is the 

only input variable used in the DEA models it could not be excluded from the DEA model and 

therefore is not shown in the sensitivity analysis results. From the results of the sensitivity 

analysis, it can be seen that the exclusion of RTIME had the most significant effect on the efficiency 

scores of both models. Consequently, it can be concluded that the DEA models are most sensitive 

to changes in the RTIME variable or in other words, operational efficiency is most affected by 

RTIME. Though not as significant as RTIME, the exclusion of both PROD and SDEL both had an 

effect on the efficiency scores produced by the DEA models. As a result, it can be said that the 

DEA models are less sensitive to changes in PROD and SDEL but very sensitive to changes in RTIME. 

Therefore, it can be concluded that the main cause of inefficient scores on the internal work 

orders can be related to extended refurbishment time.  

Table 33: Sensitivity Analysis Results - Internal Analysis Work Order Basis  
 Original Scores PROD Removed SDEL Removed RTIME Removed 

DMU CCR 
Score 

BCC 
Score 

CCR 
Score 

BCC 
Score 

CCR 
Score 

BCC 
Score 

CCR 
Score 

BCC 
Score 

DMU1 64.60 67.95 64.60 64.60 64.60 64.60 28.04 28.04 

DMU2 87.88 100.00 87.88 87.88 87.88 87.88 87.88 87.88 

DMU3 100.00 100.00 89.88 89.88 100.00 100.00 100.00 100.00 

DMU4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

DMU5 50.04 54.36 50.04 50.04 50.04 50.04 29.22 29.22 

DMU6 60.99 63.09 60.99 60.99 60.99 60.99 32.92 32.92 

DMU8 89.78 99.07 89.78 89.78 89.78 89.78 85.29 85.29 

DMU9 56.84 62.72 56.84 56.84 56.84 56.84 21.96 21.96 

 
In addition to the sensitivity analysis of the output variables, the bootstrapping sensitivity 

analysis method was applied to the BCC DEA model. Bootstrapping was only performed on the 

BCC model because it represents pure technical efficiency or, in this research, pure operational 
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efficiency with the assumption that changes to inputs can result in non-proportional changes to 

outputs. That is, the BCC model accounts for the variations in the number of employees in each 

work order and accepts that changes to the #EMP variable does not always result in proportionate 

changes to the outputs. In other words, the BCC model recognizes that an increase to #EMP does 

not always result in a proportional increase to PROD or decrease to SDEL and RTIME or vice versa.  

Discussed extensively in previous sections of this report, bootstrapping performs multiple 

iterations of the DEA model while simulating changes in the original data set to illustrate the 

effects on the efficiency scores or the sensitivity of the model to changes in the variables. The 

results of the bootstrapping sensitivity analysis performed on the BCC model are presented in 

Table 34.  

Table 34: Bootstrapping Results – Internal Analysis Work Order Basis 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

DMU1 67.95 63.83 65.18 50.82 68.10 

DMU2 100.00 100.00 100.00 100.00 100.00 

DMU3 100.00 100.00 100.00 100.00 100.00 

DMU4 100.00 100.00 100.00 100.00 100.00 

DMU5 54.36 50.63 51.59 40.82 54.51 

DMU6 63.09 57.72 59.56 41.28 63.27 

DMU8 99.07 98.18 98.13 98.13 99.31 

DMU9 62.72 60.62 61.28 54.64 62.79 

Overall, the results presented in Table 34 suggest that the DEA model is relatively 

insensitive to changes in the data set. This is shown by the relatively small differences between 

the original efficiency scores and the bootstrap mean and median scores. Moreover, this provides 

confirmation that the original efficiency scores are an accurate representation of each unit’s 

performance. However, it should be noted that the bootstrapped mean and median scores for 
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the inefficient DMUs are lower than the original efficiency scores produced by the model. 

Furthermore, the original efficiency scores for each inefficient DMU are all bordering on the upper 

bound of the bootstrapping results. This suggests that the original DEA scores are representative 

of the best-case scenario for each work order, which shows that the efficiency of each inefficient 

unit may actually be slightly less than originally indicated. Stated previously, the results of 

bootstrapping often times show that the variances in performance amongst DMUs are much less 

significant than displayed by the original efficiency scores. This statement holds mostly true for 

the results presented in Table 34. For example, the original efficiency scores suggest that DMU6 

is more efficient than DMU9. Conversely, the bootstrap mean and median efficiency scores 

indicate that DMU9 is more efficient than DMU6. On the other hand, the results of bootstrapping 

also indicate that the difference in efficiency between DMU1 and DMU6 is actually greater than 

originally suggested. Ultimately, the bootstrapping results show that the results presented in the 

analysis are indicative of actual performance.   

The overall objectives of the internal analysis conducted at the work order basis are to 

determine if the current planned 90-day refurbishment time for vessels at Manns Harbor is 

realistic in nature and if the shipyard can meet the current maintenance requirements with the 

current shipyard operational conditions. In order to investigate these circumstances as well as 

improve efficiency within the shipyard, the optimal performance targets for efficient operations 

produced by DEA must be considered. As shown in the sensitivity analysis of the data set, 

refurbishment time (RTIME) had the most significant effect on efficiency; however, productivity 

(PROD) and schedule delay (SDEL) each play a role in efficient operations as well. Optimal 

performance targets for each variable are shown in Table 35. The efficient frontiers shown in 
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Figure 13, Figure 14, and Figure 15 indicate that performance improvements are required in each 

of these areas for Manns Harbor to operate efficiently from an internal standpoint. 

Table 35: Internal Analysis WO Performance Targets 
 PROD SDEL RTIME 

DMU Value Target Gain (%) Value Target Gain 
(%) Value Target Gain 

(%) 
DMU1 0.07 0.20 172.97 15.15 62.50 312.49 6.41 9.43 47.18 

DMU2 0.19 0.20 7.45 62.50 62.50 0.00 9.43 9.43 0.00 

DMU3 0.32 0.32 0.00 33.33 33.33 0.00 8.33 8.33 0.00 

DMU4 0.20 0.20 0.00 62.50 62.50 0.00 9.43 9.43 0.00 

DMU5 0.10 0.20 94.23 9.52 62.50 556.24 5.13 9.43 83.97 

DMU6 0.11 0.20 90.57 12.82 62.50 387.48 5.95 9.43 58.50 

DMU8 0.12 0.20 68.19 58.82 62.50 6.25 9.35 9.43 0.94 

DMU9 0.06 0.20 237.23 12.66 62.50 393.76 5.92 9.43 59.44 
 

 

 
Figure 13: Internal Analysis WO Efficient Frontier - #EMP vs. PROD 
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Figure 14: Internal Analysis WO Efficient Frontier - #EMP vs. SDEL 

 

 
Figure 15: Internal Analysis WO Efficient Frontier - #EMP vs. RTIME 
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Looking at the results presented in Table 35 as well as Figure 13, Figure 14, and Figure 15 

it can be seen that in order to become internally efficient significant performance improvements 

are required on most work orders for productivity, schedule delay, and refurbishment time. Figure 

13 illustrates that in terms of labor productivity (PROD) only DMU3 was identified as a best 

practice unit. However, regarding the PROD performance targets shown in Table 35 neither DMU3 

nor DMU4 require improvement to their productivity rates. This is explained by the scale 

efficiency scores shown in the model; only DMU3 and DMU 4 received scale efficiency scores of 

100. Thus, taking into account the variations in labor used on each work order (#EMP), the 

productivity level achieved by DMU4 becomes efficient. Alternatively, as illustrated in Figure 14 

and Figure 15, DMU2, DMU3, and DMU4 represent best practice units in terms of schedule delay 

(SDEL) and refurbishment time (RTIME). As a result, these DMUs do not require improvements to 

SDEL or RTIME as shown in Table 35. As such, all three received efficiency scores of 100 in the BCC 

model and DMU2’s inefficiency in the CCR model can be attributed to low productivity with regard 

to the labor used on the work order (i.e. disadvantageous conditions or number of employees 

caused low productivity, as shown by its scale efficiency score of 87.88).  

From Table 35 it can be concluded that DMU3 represents best practice internal 

operations for Manns Harbor. As such, it achieved higher performance for all three outputs as 

compared to the remaining DMUs. Moreover, DMU3 was the only Manns Harbor work order to 

receive an efficiency score of 100 in the External Analysis. However, taking into account variances 

in labor used on each work order, optimal internal performance targets for Manns Harbor to 

achieve efficiency on the remaining work orders are actually lower than those achieved by DMU3. 

To become internally efficient, Manns Harbor’s performance target for productivity is a DEA PROD 

value of 0.20 or an actual labor productivity rate of approximately 5.00 hours per compensated 
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gross ton. Converting compensated gross tons back to gross tonnage, Manns Harbor’s 

productivity targets for Hatteras Class ferries, River Class ferries, and Sound Class ferries are 20.00, 

17.50, and 15.00 hours per gross ton respectively. The productivity targets identified by the 

Internal Analysis are very similar to the productivity target identified for Manns Harbor in the 

External Analysis of 4.16 hours per compensated gross ton. In terms of schedule delay (SDEL), to 

become internally efficient Manns Harbor’s optimal performance target for SDEL is a DEA value 

of 62.50. This translates to a schedule delay of 16 days. Likewise, Manns Harbor’s internal 

performance target for refurbishment (RTIME) is a DEA value of 9.43 or a total refurbishment time 

of approximately 106 days. The total of 106 days represents a schedule delay of 16 days from the 

planned 90 days, which matches the target schedule delay determined through the analysis. 

Similar to productivity, Manns Harbor’s internal performance target for refurbishment time is 

very close to the 10.72 or 94 days identified in the External Analysis.  

Results from both the internal analysis at the work order along with the external analysis, 

suggest that there are inefficiencies within Manns Harbor in terms of productivity and 

refurbishment times on their maintenance and repair projects. However, the RTIME performance 

targets for Manns Harbor to become efficient in either analysis shows that the current planned 

90-day refurbishment time is not realistic in nature with the current shipyard conditions. The 

results of the internal analysis and external analysis suggest that a more realistic time frame for 

planned refurbishments would be closer to 100 days, if the shipyard could operate with 100 

percent efficiency. Furthermore, assuming the shipyard can complete two projects concurrently, 

the shipyard would only be capable of completing two refurbishment projects every 100 days. 

This equates to approximately 7.3 vessels per year. As stated in the internal analysis section of 

the Research Methodology chapter, current maintenance requirements require approximately 
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8.43 vessels per year to be refurbished. To meet current maintenance requirements with a 

planned 100-day refurbishment time, the shipyard would have to complete approximately 2.40 

vessels every 100 days. Additionally, evaluation of the work orders used in the analysis shows that 

with the exclusion of DMU7 the average time of refurbishment for each vessel is 140 days. This 

would require significant improvements to performance by reducing the current average time of 

refurbishment by nearly 30 percent. With a more realistic 100-day planned refurbishment time 

with optimal efficiency, it can be concluded that it is fundamentally infeasible to meet the ferry 

maintenance requirements with the current operating conditions at Manns Harbor.  

4.4.2 - Internal Analysis Department Level  

Stated numerous times, the objective of the internal analysis carried out at the 

departmental level is to identify potential inefficient trade departments within Manns Harbor. 

Identification of any inefficient trade departments will allow the research team to make robust 

recommendations concerning productivity and efficiency improvements at Manns Harbor. 

Consequently, unlike the previous sections, the results in this section will be presented in a 

different manner. Results of the internal analysis at the departmental level will be presented in 

aggregate. The results of this analysis are presented in aggregate for two primary reasons. The 

first being that the level or amount of work for each department varies from work order to work 

order depending a multitude of factors related to the vessel under repair (i.e. age of vessel, vessel 

condition, etc.). Therefore, establishing performance targets at a departmental level from the 

analysis is not logical. Secondly, detailed evaluation of individual departments on a per work order 

basis does not provide value to this research because of the vast amount of uncertainty regarding 

the variations in quantity of work between work orders. Furthermore, defining optimal 
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performance targets for Manns Harbor departments is not within the scope of this research and 

therefore will not be investigated.  

Similar to the two previous DEA assessments, the first step in conducting the analysis at 

the departmental level is to refine the available data and establish the values for the input and 

output variables. The internal analysis at the departmental level utilizes three measures as input 

and output variables for DEA. Number of Employees (#EMP) is utilized as the lone input variable, 

while Labor Productivity (PROD) and Refurbishment Time (RTIME) are both utilized as output 

variables in DEA. Unlike the internal analysis conducted at the work order level, the Schedule 

Delay (SDEL) variable is not used in this analysis because planned times for execution of work in 

each department are not known. The input and output variables utilized in the departmental level 

analysis, #EMP, PROD, and RTIME are the same variables used in both the external analysis and 

the internal analysis on a work order basis with the same units of measure. Therefore, detailed 

discussion of the input and outputs are not necessary. The only difference amongst the variables 

used in the departmental analysis is the level at which they are calculated. Meaning, #EMP is 

determined by the number of employees per department conducting work on a specific work 

order and likewise, PROD and RTIME are representative of the productivity rates and 

refurbishment times of each department per work order. Because of the immense amount of data 

used in this particular analysis, only the final variables used in DEA are shown in Tables 36 and 37. 

However, the raw data and detailed calculations of the variables for each department are included 

in the Appendix of this report.  
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Table 36: Internal Analysis – Departmental Level Data Set #1 

 Docking Hull Piping Machinery 

DMU #EMP PROD RTIME #EMP PROD RTIME #EMP PROD RTIME #EMP PROD RTIME 

DMU1 6 8.085 58.824 14 0.710 12.658 5 2.029 33.333 25 0.393 7.092 

DMU2 7 12.884 58.824 17 3.959 27.027 5 16.603 83.333 21 0.886 11.905 

DMU3 6 14.620 83.333 10 3.801 20.833 3 11.004 40.000 12 9.578 52.632 

DMU4 6 7.346 43.478 10 11.073 66.667 7 5.589 43.478 15 4.188 47.619 

DMU5 6 5.499 31.250 11 2.987 26.316 4 3.454 30.303 18 0.778 12.346 

DMU6 6 6.331 38.462 18 0.567 15.625 8 3.420 33.333 14 1.653 24.390 

DMU8 9 8.054 52.632 13 1.016 17.857 5 2.490 31.250 20 1.019 13.889 

DMU9 6 6.659 41.667 11 0.713 12.821 7 1.425 16.393 26 0.320 7.246 

 

Table 37: Internal Analysis – Departmental Level Data Set #2 
 Operational Activities Electrical Paint Technical 

DMU #EMP PROD RTIME #EMP PROD RTIME #EMP PROD RTIME #EMP PROD RTIME 

DMU1 14 1.258 16.393 6 7.509 58.824 32 0.175 9.804 23 0.421 8.772 

DMU2 13 3.166 18.868 6 14.323 55.556 38 0.409 9.901 22 1.030 9.804 

DMU3 13 4.362 25.000 7 17.240 43.478 27 0.752 10.989 22 1.038 8.475 

DMU4 18 2.404 25.000 5 32.761 58.824 33 0.350 15.152 23 1.008 11.905 

DMU5 24 0.850 11.494 7 6.385 30.303 31 0.218 5.917 23 0.609 5.988 

DMU6 22 1.471 17.544 4 28.777 66.667 29 0.220 7.353 16 0.736 6.452 

DMU8 11 2.686 22.727 7 4.524 30.303 33 0.258 10.000 23 0.734 10.101 

DMU9 18 0.589 8.621 8 6.261 47.619 32 0.153 6.536 27 0.341 6.410 
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Tables 36 and 37 show the final input and output variables for each department per work 

order utilized in carrying out this analysis at the departmental level. For the same reasons 

mentioned in prior sections of this report, this analysis also excludes DMU7 because of its 

potential to skew the efficiency scores produced by the DEA models. Like both of the previous 

quantitative assessments, the internal analysis at the departmental level uses both the CCR and 

BCC DEA models along with the scale efficiency calculation. Results of the relative efficiency scores 

achieved by the departmental level Internal Analysis are shown in Tables 38 and 39. Unlike the 

previous DEA assessments, a sensitivity analysis of the input and output variables used in the 

departmental evaluation was not conducted. Because the primary purpose of the sensitivity 

analysis of variables is to identify critical variables that influence efficiency, conducting such an 

analysis is not necessary in this instance because optimal performance targets at the 

departmental level are not being identified. Despite the exclusion of the sensitivity analysis on 

the variables, bootstrapping was applied to the BCC model utilized in this analysis. Bootstrapping 

was included in this analysis because it analyzes the DEA models sensitivity to changes in the data 

set and in turn provides a more encompassing representation of departmental efficiency. Results 

of bootstrapping will be discussed in the following paragraphs, however presentation of the 

empirical results is provided in the Appendix of this report.  
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Table 38: Internal Analysis – Departmental Level Results #1 

 Docking Hull Piping Machinery 

DMU CCR BCC SE CCR BCC SE CCR BCC SE CCR BCC SE 

DMU1 70.59 70.59 100.00 13.56 18.99 71.43 40.00 40.00 100.00 6.47 13.47 48.00 

DMU2 75.54 88.13 85.71 23.85 40.54 58.82 100.00 100.00 100.00 12.93 22.62 57.14 

DMU3 100.00 100.00 100.00 34.33 34.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

DMU4 52.17 52.17 100.00 100.00 100.00 100.00 37.27 52.17 71.43 72.38 90.48 80.00 

DMU5 37.61 37.61 100.00 35.89 39.47 90.91 45.45 49.14 92.50 15.64 23.46 66.67 

DMU6 46.15 46.15 100.00 13.02 23.44 55.56 25.00 40.00 62.50 39.72 46.34 85.71 

DMU8 42.11 63.16 66.67 20.60 26.79 76.92 37.50 37.50 100.00 15.83 26.39 60.00 

DMU9 50.00 50.00 100.00 17.48 19.23 90.91 14.05 19.67 71.43 6.35 13.77 46.15 

Avg. Score 59.27 63.48 94.05 32.34 37.85 80.57 49.91 54.81 87.23 33.67 42.07 67.96 

 

Table 39: Internal Analysis – Departmental Level Results #2 

 Operational Activities Electrical Paint Technical 

DMU CCR BCC SE CCR BCC SE CCR BCC SE CCR BCC SE 

DMU1 56.67 65.57 86.43 66.67 88.24 58.82 66.73 67.81 98.40 73.68 73.68 100.00 

DMU2 74.85 75.47 99.18 66.67 83.33 55.56 59.67 75.29 79.25 100.00 100.00 100.00 

DMU3 100.00 100.00 100.00 57.14 65.22 37.27 100.00 100.00 100.00 100.00 100.00 100.00 

DMU4 67.22 100.00 67.22 91.08 100.00 91.08 100.00 100.00 100.00 100.00 100.00 100.00 

DMU5 23.18 45.98 50.42 57.14 45.45 25.97 43.19 43.54 99.19 57.08 59.30 96.26 

DMU6 38.60 70.18 55.00 100.00 100.00 100.00 56.29 59.41 94.74 97.83 100.00 97.83 

DMU8 100.00 100.00 100.00 57.14 45.45 25.97 66.50 67.49 98.54 84.85 84.85 100.00 

DMU9 23.18 34.48 67.22 50.00 71.43 35.71 44.52 45.21 98.49 45.87 53.84 85.19 

Avg. Score 60.46 73.96 78.18 68.23 74.89 53.80 67.11 69.84 96.08 82.41 83.96 97.41 
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As discussed previously, the intent of this analysis is not to provide specific performance 

targets at the departmental level but to evaluate the efficiency with which each of the various 

individual departments within Manns Harbor operate. Therefore, the results achieved by the DEA 

models shown in Table 38 and Table 39 will be discussed predominantly by the overall average 

for the department shown in the last row of each table. Prior to in-depth discussion, it should be 

noted that the results of bootstrapping (shown in the Appendix) imply that the original efficiency 

scores shown in Tables 38 and 39 are closer to the best-case scenario. This is because the 

bootstrap mean and median scores for each department are all lower than shown by the original 

efficiency scores. Moreover, the results of bootstrapping show that the DEA models utilized in the 

departmental level analysis are quite sensitive to changes in the data set and slight variations to 

the original values can cause significant changes to the efficiency scores as represented by the 

upper and lower bounds. As a result, the efficiency scores shown in this analysis are subject to a 

great deal of uncertainty and therefore are subjective in nature unlike the results of the previous 

DEA assessments.  

Looking at the above results it can be concluded that on average all of Manns Harbor’s 

internal departments operate inefficiently to some degree. However, the sources of inefficiency 

amongst the departments vary depending on the particular department. For instance, looking 

solely at the Docking department it can be said that on average the department operates at 

approximately 63 percent efficiency. Furthermore, the Docking department’s average scale 

efficiency score was 94.05, therefore it can be said that the majority of the department’s 

inefficiency can be attributed primarily to inefficient operations. The same conclusions can be 

made for the Piping department, the Paint department, and the Technical department because 

they all received scale efficiency scores of over of 87.00 or above. On the other hand, the Hull, 
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Machinery, Operational Activities, and Electrical departments all received inefficient DEA scores 

on average as well as scale efficiency scores of 80.57 or less. Thus, the inefficiencies within these 

departments can be attributed to both inefficient operations as well as disadvantageous 

conditions (number of employees) that exist within the departments. The Electrical department 

received the lowest scale efficiency score of all departments at 53.80, indicating that 

disadvantageous conditions contribute the most to its inefficiency.  

Overall, looking at the average pure operational efficiencies (BCC scores) of the internal 

departments, the Technical department operates at the highest level of efficiency within the 

shipyard at nearly 84 percent. Both the Electrical department and the Operational Activities 

department operate at approximately 74 percent efficiency. The Paint, Docking, and Piping 

departments operate at approximately 70 percent, 64 percent, and 55 percent respectively. The 

two least efficient internal departments at Manns Harbor are the Machinery department and the 

Hull department. On average, the Machinery department completes their work with roughly 42 

percent efficiency, while the Hull department only completes their work with around 38 percent 

efficiency. The Machinery department received an average scale efficiency score of 67.96, which 

indicates disadvantages exist among employment numbers causing the department to be 

inefficient. The same can be said for the Hull department. However, with an average scale 

efficiency score of 80.57, the disadvantageous conditions within the Hull department contribute 

less to the inefficiency than in the Machinery department and as seen by the BCC scores, 

inefficient operations can be primarily attributed to the Hull departments less than ideal 

performance.  

From the results of the departmental level internal analysis, it can be concluded that 

inefficiencies within Manns Harbor work orders can be attributed to inefficiencies amongst all of 
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the internal departments. Moreover, it can be said that on all of the work orders under evaluation, 

two or more individual departments operated inefficiently on all work orders and in some cases, 

all of the departments operated inefficiently. Therefore, it can be concluded that no single 

department was responsible for the inefficiencies shown on the work orders in the internal 

analysis performed on a work order basis. The inefficiencies shown in the analysis at the work 

order level can be attributed to inefficient operations amidst various combinations of individual 

shipyard departments. However, it can be concluded that the Hull department and the Machinery 

department are the least efficient operations at Manns Harbor. As a result, it can be said that 

significant improvements are required within these departments in order to increase the overall 

performance of Manns Harbor. Additionally, results show that improvements to conditions within 

the Hull department and the Machinery department as well as improvements to operations are 

necessary. In conclusion, the results of this analysis show that while improvements are needed in 

each individual department, the primary focus of initial improvements at the internal level should 

be focused specifically toward improving the performance of both the Hull and Machinery 

departments.  

  



157 
 

CHAPTER 5: CONCLUSIONS 
 
 
 This chapter is inclusive of an overall assessment of the research project, the results 

presented by this research, and the recommendations provided to the NCDOT and Manns Harbor 

shipyard.  First, a summary of this this research project and its objectives are presented. Following 

the research summary, the specific findings of this research are presented and recommendations 

for improvement at Manns Harbor related to the research objectives are provided. This chapter 

is concluded by discussing the specific contributions to the body of knowledge provided by this 

research.  

5.1 – Research Summary 

 Manns Harbor shipyard is the largest state-operated shipyard in the U.S., and is 

responsible for maintaining the 21 ferries in the NCFS fleet as well as the NCDOT’s support vessels. 

The shipyard self performs all preventative maintenance, emergency maintenance, and scheduled 

overhauls for all of the above-mentioned vessels. However, in recent years, the shipyard has 

experienced increased maintenance levels due to augmented ridership, continually aging vessels, 

and ever-deteriorating channel conditions. These increased maintenance levels in turn affect 

staffing needs, maintenance scheduling, and resource requirements in the shipyard. Despite the 

increase to maintenance levels, the shipyard has experienced a decrease in staffing levels.  

 Maintaining these assets is a critical factor to ensuring these services are provided to the 

millions of passengers on the state’s east coast. Currently, all estimates for vessel refurbishment 

are based on the opinion of experts within the shipyard. All refurbishments are currently planned 

for 90 days regardless of vessel type, size, or age. However, with current employment levels and 

operating conditions, the shipyard is experiencing delays and frequent schedule overruns. The 

purpose of this research is to utilize DEA as a means of evaluating the current productivity and 
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efficiency of the shipyard with an overall objective of developing methodology that can be used 

by the NCDOT as a tool for benchmarking and forecasting, as well as strategic, operational, and 

tactical planning. Specifically, this research attempts to answer the following research questions:  

1. Is Manns Harbor shipyard efficient or inefficient compared to other ship repair facilities? 
 

2. Is the current refurbishment time of 90 days realistic in nature? If not, what is a more realistic 
timeframe and why?  
 

3. Can Manns Harbor meet the required maintenance levels given the number of vessels and 
the twice per five-year drydocking requirement?  

In addition to answering the aforementioned research questions, this research also aims 

to provide performance targets or benchmarks to the shipyard for efficient operation. To do so, 

this research utilizes the results provided through DEA in conjunction with the results of a 

pragmatic qualitative assessment of various shipyard operations in an effort to provide specific 

recommendations for performance improvement at Manns Harbor. The Qualitative Assessment 

of the participating shipyards was also used to provide a validation and objectivity to the efficiency 

scores resulting from the DEA evaluation of shipyard operations and to identify important factors 

related to productivity and efficiency in shipyards as identified by industry experts. The formal 

process and methodology for execution of this research is detailed in Chapter 3 titled Research 

Methodology.  

From an overall perspective, this research utilizes the combination of DEA, from an 

internal and external prospective, and a qualitative analysis of relevant shipyard factors to analyze 

the current operations at Manns Harbor shipyard. The combination of these assessments provides 

in-depth insight into these operations by including both direct and indirect factors related to 

productivity and efficiency within these facilities. The investigation of these qualitative factors not 

directly related to the production process and acknowledgement of their potential effects on 
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productivity and efficiency is a critical factor in accurately assessing Manns Harbor operations as 

well as providing robust conclusions and recommendations from the findings of this research. As 

such, the following section summarizes the findings of applying the research framework outlined 

in Chapter 3 to the real operational data collected from shipyards and details the associated 

recommendations for performance improvement at Manns Harbor.  

5.2 – Research Findings and Recommendations 

 As discussed in the prior section, after development of a replicable framework for 

assessing productivity and efficiency in ship maintenance and repair facilities, the framework was 

applied to the real data collected from Manns Harbor and the additional three participating 

shipyards. The framework of this research was divided in to three separate assessments (as 

delineated in Chapter 3), the qualitative assessment of participating shipyards, the external DEA 

assessment, and the internal DEA assessment. The individual results from each of these 

assessments were presented and considered in detail in the previous chapter of this report. 

Therefore, the successive paragraphs of this section are intended to summarize the findings of 

each assessment and the implications to Manns Harbor shipyard including recommendations for 

potential action to improve performance at the facility.  

 The results of the qualitative assessment indicate that Manns Harbor, in comparison to 

other shipyards participating in this study, rank relatively low in terms of qualitative factors that 

influence operational productivity and efficiency. Specifically, Manns Harbor received the second 

worst overall score out of the five shipyards evaluated. In total, Manns Harbor only received 10 

points out of a possible 40 points in the assessment, whereas the two highest scoring shipyards 

Shipyard D and Shipyard B received 26 and 22 points, respectively. The significant difference in 

scores received by Manns Harbor compared to those of the best two shipyards can partially be 
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attributed to the variation in size of the entities, the scope of operations, and resource availability 

amongst the shipyards. However, Manns Harbor’s low qualitative score also indicates that the 

current technology levels and management strategies at the shipyard are inferior compared to 

other ship repair facilities. In the survey sent out to industry professionals, organizational 

structure, planning and scheduling, advanced machinery, and efficiency strategies were identified 

as being the four most important qualitative factors that affect shipyard productivity and 

efficiency. Consequently, Manns Harbor received low scores in each of these qualitative 

categories. Likewise, the high scoring shipyards both received high scores for these categories 

implying that the major qualitative differences between these shipyards can be attributed to 

these factors. Therefore, in order to achieve conditions nearer to those attained by the top two 

facilities, Manns Harbor must improve in each of these categories. Additionally, it can be 

concluded the existing qualitative conditions at Manns Harbor have an effect on the operational 

performance of the shipyard. Further discussion of the effect of these conditions on performance 

is provided later in this section.  

 Comparing the existing conditions of Manns Harbor to those of Shipyard B and Shipyard 

D reveals the specific areas in which recommendations for improvement related to qualitative 

factors affecting shipyard performance can be made. In terms of organizational structure, with 

reference to Section 3.1 and the organizational charts shown by Figure 3a, Figure 3b, and Figure 

3d, the most significant difference recognized is that both Shipyard B and Shipyard D both utilize 

specialized project managers within their organizations and Manns Harbor does not. Both 

Shipyard B and Shipyard D expressed the importance of utilizing to project managers to track 

progress and maintain schedule on their projects and allowing the superintendents to focus on 

overseeing field operations. Alternatively, at Manns Harbor the shipyard superintendent is 



161 
 

responsible for project management activities as well as oversight of field operations. There is 

also a noticeable difference in planning and scheduling between Manns Harbor and Shipyard B. 

Unlike Manns Harbor, Shipyard B has detailed formal procedures in place regarding planning, 

estimating, and scheduling based on the quantity of work to be done in both time and materials. 

However, the main difference between Manns Harbor and Shipyard B with regard to planning and 

scheduling is that at direct line of communication (i.e. the project manager) exists between 

management and field personnel to ensure the schedule is maintained. Furthermore, Shipyard B 

and Shipyard D both use advanced technologies within their shipyard for the purpose of 

increasing productivity and efficiency. Shipyard B utilizes a robotic-paint blasting method for 

preparation and paint removal, which is significantly faster than the manual method used at 

Manns Harbor. Shipyard D utilizes both a plasma cutter and water-jet cutting machine for 

preparing metal for hull repair and producing small parts, and because of these machines are 

automated the shipyard has seen improvements to labor productivity. Lastly, in contrast to Manns 

Harbor, both Shipyard B and Shipyard D have specific efficiency strategies in place within their 

organizations. Shipyard B utilizes a lean operational strategy, while Shipyard D focuses on on-time 

delivery and offers employees bonuses for early completion. Nonetheless, it can be said that the 

addition of a project management role, changes to planning and scheduling procedures, 

implementation of newer technologies, and employment of efficiency strategies has the potential 

to provide significant benefits and improvements to Manns Harbor.  

 Following the qualitative assessment, the first DEA iteration was conducted in the 

external analysis. The goal of the external analysis was to compare the operations of Manns 

Harbor with other facilities in order to answer the first research question posed in the previous 

section. The results of the external analysis indicated that overall, Manns Harbor was inefficient 
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on seven out of eight work orders in comparison to the work orders of the other shipyards. Based 

purely on operational efficiency, the results indicated that on average Manns Harbor only 

operates at approximately 73 percent efficiency with regard to the best practice operations. 

Similar to the results of the qualitative assessment, both Shipyard B and Shipyard D represented 

best practice units in the external analysis of shipyard operations by receiving efficiencies of 100 

in both the CCR and BCC models. Evaluation of the efficiency scores from Manns Harbor showed 

that the shipyard’s inefficiencies were caused by both inefficient operations and disadvantageous 

shipyard conditions. Additionally, it should be noted that while Shipyard B did achieve a best 

practice unit, three of its four work orders were determined to be inefficient in both the CCR and 

BCC models. However, unlike Manns Harbor, Shipyard B’s inefficiency was only caused by 

inefficient operations as indicated by the scale efficiency scores it received. Additionally, Shipyard 

B and Shipyard D were the only two shipyards to receive scale efficiency scores of 100, indicating 

that the existing conditions within the shipyard do not hinder their performance; which matches 

the results in the qualitative analysis that indicated these shipyards have higher levels of 

technology and management strategies. Because the DEA models used in this analysis were 

output-oriented, disadvantageous conditions shown in the efficiency scores are related to the 

inputs used in the analysis. Therefore, because the qualitative characteristics of the shipyards 

were used as an input variable to DEA, it can be concluded that the existing qualitative conditions 

within Manns Harbor discussed previously have a negative effect on the shipyards operational 

performance. This further indicates that improvements need to be made in these areas. 

Additionally, sensitivity analysis indicated that the employment level of shipyards has a significant 

effect on efficiency scores in the DEA models. Thus, it must also be noted that employment levels 

at Manns Harbor potentially play a role in the disadvantageous conditions observed for Manns 
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Harbor, as well.  However, because outsourced labor employment was not included in this 

analysis due to unavailability of data from the shipyards, recommendations to changes in 

employment levels at Manns Harbor cannot be made with accuracy. To understand the effects of 

changes to employment levels, further investigation into Manns Harbor operations would be 

required.  

 In addition to disadvantageous conditions, Manns Harbor’s inefficiency in the external 

analysis also results from inefficient operation as shown by the inefficiency in the BCC model. 

Manns Harbor’s inefficient operations can be attributed to both low labor productivity and 

extended refurbishment times as indicated by the results of the analysis. As stated numerous 

times, one major benefit of DEA is that the methodology allows performance benchmarks or 

targets to be identified for efficient operations. As a result, optimal targets for labor productivity 

and refurbishment times were established in order for Manns Harbor to operate efficiently in 

comparison to the other facilities. The results of the external analysis indicated that Manns 

Harbor’s performance targets for labor productivity and refurbishment time were 4.17 hours per 

compensated gross ton and 94 days respectively. More specifically, Manns Harbor would have to 

achieve labor productivity rates of 16.67 hours per ton for Hatteras Class ferries, 14.58 hours per 

ton for River Class ferries, and 12.50 hours per ton for Sound Class ferries in order to be 

operationally efficient in comparison to the best practice shipyards. On average, this would 

require the Manns Harbor to reduce its current labor productivity rate by nearly 40 percent. 

Likewise, with an average refurbishment time of 141 days, to achieve operational efficiency in 

comparison to the other shipyards, Manns Harbor would have to reduce current time by nearly 

33 percent. Improvements of this magnitude would require significant changes to current 

shipyard conditions and operational processes. For these reasons, it can be concluded that Manns 
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Harbor is inefficient compared to other ship repair facilities because of current shipyard 

conditions and less than optimal operations. In other words, to operate efficiently in comparison 

to other facilities, Manns Harbor would have to make significant changes to the shipyard 

conditions (i.e. qualitative conditions, employment level) while also reducing the hours and days 

required to refurbish a vessel.  

 The final step in this methodology involved a second DEA assessment of the internal 

operations of Manns Harbor. The objectives of the internal analysis were to evaluate internal 

operational efficiency and to identify any potential inefficient departments within Manns Harbor. 

Moreover, the results of the internal analysis combined with the results of the external analysis 

were utilized to answer the remaining two research questions. The internal analysis of Manns 

Harbor was first conducted at the work order level. The results of this iteration of DEA indicated, 

from a purely operational standpoint (BCC score), Manns Harbor was internally efficient on three 

of the eight work orders under evaluation. This indicates that over an 18-month period Manns 

Harbor only completed approximately 38 percent of the work orders with internal efficiency and 

the remaining refurbishments were completed inefficiently. Additionally, only two of the internal 

work orders received scale efficiency scores of 100, indicating that inefficiency on the remaining 

work orders can be partially attributed to disadvantageous conditions. From an internal 

standpoint, this indicates that the variation in the number of employees utilized to complete work 

orders caused inefficiency. In other words, the work order receiving scale efficiency scores of less 

than 100 achieved lower performance despite using additional resources.  

 Further analysis of the internal analysis results reveals that Manns Harbor performs most 

efficiently on the larger Sound Class ferries than on the smaller Hatteras Class ferries. Further 

proof of this is provided when looking only at the average times of refurbishment for the 
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respective classes. Despite being the smallest vessels, Hatteras Class average refurbishment time 

was the highest of all classes and the largest Sound Class ferries was the least. On average, Manns 

Harbor completed work on Hatteras Class ferries with only 65 percent efficiency. Outside of the 

three internal work orders that received pure operational efficiency scores (BCC scores) of 100, 

the inefficiency in the remaining work orders can be attributed to inefficient operations with 

regard to labor productivity, refurbishment time, and schedule delay.  To further investigate the 

causes of these inefficient internal operations the DEA was performed a second time at the 

departmental level. The results of the departmental level analysis revealed that on average all of 

the internal departments at Manns Harbor operated inefficiently to some degree. However, the 

results indicated that out of all internal departments the Hull Department and the Machinery 

Department operate with the lowest efficiencies. Looking at the average of all work orders, the 

Hull Department operates with only 38 percent efficiency while the Machinery Department 

operates with roughly 42 percent efficiency. This suggests that any initial improvements within 

Manns Harbor should be directed towards these departments because of their low efficiency. 

Likewise, it is worth noting that the advanced machinery implemented by the other shipyards to 

increase productivity is directly related to the work performed by these departments.  

 Like the external analysis, the results of the internal analysis were used to determine 

performance benchmarks for Manns Harbor’s internal operations. The results of the internal 

analysis established performance targets for efficient internal operation as a labor productivity 

rate of 5.00 hours per compensated gross ton and a refurbishment time of approximately 106 

days. The performance target for refurbishment time was further validated by the 16-day target 

established for schedule delay. The internal target for labor productivity translates to a labor 

productivity of 20.00 hours per ton for Hatteras Class ferries, 17.50 hours per ton for River Class 
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ferries, and 15.00 hours per ton for Sound Classes ferries. The values determined for internal 

performance targets for labor productivity and refurbishment time were very close to those 

identified by the external analysis.  

 Analysis of the performance targets for operational efficiency at Manns Harbor identified 

by both the internal and external analysis results indicate that with current shipyard conditions 

the current planned 90-day refurbishment time is not realistic in nature even under the best 

circumstances. If the shipyard operated efficiently with current conditions, the external analysis 

suggests that a more realistic time for planned refurbishment would be 94 days, while the internal 

analysis suggest a refurbishment time of 106 days equating to an average of 100 days overall. 

However, these refurbishment times assume that the shipyard is operating with 100 percent 

efficiency at the benchmark labor productivity rates further suggesting that the 90-day planned 

refurbishment time is an unrealistic goal. Assuming the shipyard could operate with 80 percent 

efficiency on average, a realistic goal for planned refurbishment time would be closer to 120 days, 

which is still approximately 20 days less than the average time of refurbishment over the 18-

month period evaluated.  

 Moreover, as stated in Chapter 3, current Coast Guard regulations require that each ferry 

be dry-docked for repairs at minimum twice every five years. Accordingly with the 21 total ferries, 

on average, to meet this requirement Manns Harbor would have to complete one dry-dock per 

43 days or approximately 8.4 vessels per year. Assuming the shipyard can accommodate two 

projects at once, with full efficiency, and a planned refurbishment time of 100 days, this would 

only equate to roughly 7.3 completed dry-docks per year, meaning the shipyard would be 

approximately one vessel per year short of meeting the requirement. At a 100-day refurbishment 

time, the shipyard would have to complete nearly 2.5 dry-docks per 100 days to meet the 
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requirements. Furthermore, assuming 80 percent average operational efficiency, a 120-day 

planned refurbishment time, and two concurrent projects, the shipyard would only be able to 

complete roughly 6.00 dry-docks per year. To meet the maintenance requirements at a 120-day 

refurbishment time, the shipyard would have to complete on average 2.8 vessels every 120 days. 

Therefore, from both the internal analysis and external analysis results that with current 

operating conditions, operating at 100 percent efficiency, Manns Harbor cannot accommodate 

the current maintenance levels.  

 Overall the results of presented by both iterations of DEA, suggest that current operations 

at Manns Harbor are inefficient. The inefficiency found within Manns Harbor can be attributed to 

existing conditions in the shipyard as well as inefficient processes related to performing 

refurbishment of vessels. Likewise, potential causes of these inefficiencies were identified and 

recommendations for potential means of improving performance were provided. Additionally, 

performance targets were established for Manns Harbor to achieve efficiency at both the internal 

and external levels. In addition to providing benchmarks for operational efficiency, these targets 

can also be used in future project planning and tracking to serve as early warning signs of low 

performance at Manns Harbor. As such, the framework outlined by this research can be used as 

an analytical tool to assist future planning for the NCDOT and Manns Harbor.   

 Lastly, all of the results, findings, and recommendations presented in this research are 

based on the results of the DEA models used and the qualitative information gathered concerning 

the participating shipyards. While the various benefits of utilizing DEA models were discussed, it 

is imperative to realize that results of DEA are heavily dependent on the data set used and 

variables defined in the methodology, therefore the results are relative in nature. As a result, it is 

essential to understand that the information in this report be understood and treated as such, 
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and not taken as definite conclusions. In spite of the findings of this research, officials concerned 

with performance improvements and future planning at Manns Harbor should investigate current 

operations as well as the operations of other similar facilities in depth prior to making any 

absolute conclusions.  

5.3 – Contributions to the Body of Knowledge 

In recent history, DEA has been applied to evaluate the efficiency of many various 

industries both public and private. However, very few pieces of literature focus on the maritime 

industry or specifically on the ship maintenance and repair industry. Given the significance of this 

topic to the NCDOT as well as other private entities, improvements in the industry are vital for 

long-term success and competitiveness of all businesses conducting this type of work. Evaluating 

the performance of shipyards from a holistic approach provides invaluable information related to 

organizational improvement. This research provides a foundation for future studies related to 

performance improvement in the ship repair industry. As discussed in the research limitations 

there are a limited number of private shipyards that exist in the United States. Therefore, the 

opportunity exists for future research to improve upon this foundation and further evaluate the 

ship repair and maintenance industry at the public level.  

The methodology and framework outlined in this could be implemented by other state 

transportation agencies as well as private ship repair entities as a mean of evaluating current 

performance and establishing benchmarks for future planning and continual improvement. 

However, it is important to note that the performance variables identified in this research were 

tailored specifically for the NCDOT and the scope of this research. Replication of this study for 

other entities for similar objectives should be done with caution and performance indicators must 

be defined specifically for the conditions and desired outcomes of that entity.  
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Lastly, an additional important outcome of this study is an overall improvement to the 

efficiency of North Carolina’s state shipyard and ferry operations as a whole. The findings of this 

research will assist in concentrating the efforts required to improve the performance of Manns 

Harbor resulting in more effective and efficient utilization of resources for the NCDOT. Thus, 

leading to potential cost and time savings for the state, all while providing enhanced services to 

the millions of passengers annually who utilize the services provided by the NCFS.  

5.4 – Significant Contributions to the NCDOT 

 The following list is provided as a summary of the key findings and recommendations 

found by this research as they pertain to Manns Harbor and the NCDOT operations.  

• Overall, Manns Harbor is inefficient compared to other shipyards performing similar 

types of work. The inefficiency of Manns Harbor can be attributed to inferior 

technology levels and management strategies, as well as inefficient maintenance and 

repair operations.  

• The current planned 90-day refurbishment time at Manns Harbor is unrealistic in 

nature with consideration of current shipyard and operational conditions. Based on 

the results of the research, a more realistic timeframe for planned refurbishment 

would be nearer to 120 days.  

• At current operational levels, the results of the research indicate that Manns Harbor 

cannot currently meet the dry-docking requirements set forth by the US Coast Guard. 

Therefore, this implies that Manns Harbor cannot meet the current maintenance 

schedule requirements for the ferry fleet.  

• From an internal operational standpoint, the Hull and Machinery departments 

operate at the least efficiency of all Manns Harbor departments and contribute the 
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most to the inefficiency of the shipyard. However, results show that a minimum of 

two departments operate inefficiently on each work order examined over the 18-

month period.  

• From both an internal and external perspective, the main causes of Manns Harbors 

low operational efficiency is due to low labor productivity and extended 

refurbishment times. On average, to operate efficiently, Manns Harbor would have 

reduce the total hours and time of refurbishment on work orders by approximately 

30%.  

• Based on the results of the research along with investigation of qualitative factors 

related to productivity and efficiency in high performing ship repair facilities, the 

following list provides potential recommendations for improvement in the overall 

efficiency and performance of Manns Harbor:  

1. Improvements to technology levels in the Hull and Machinery departments 

aimed at reducing the amount of manual labor required to carry out the tasks 

associated with these departments.  

2. Changes to management strategies and organizational structure of the 

shipyard including:  

• Implementation of a Project Management/Project Manager role  

• Development of formal planning and scheduling procedures 

• Development and employment of strategies aimed to increase the 

performance within the shipyard such as changes to work processes 

and/or incentives for employees to complete projects early. 
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3. In-depth analysis of current staffing levels to evaluate the potential for 

improvements associated with increasing employment in the shipyard and/or 

utilization of outsourcing in conjunction with in-house labor to complete 

refurbishment projects in a more efficient manner.  
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APPENDIX: INTERNAL ANALYSIS – DEPARTMENTAL LEVEL DATA AND CALCULATIONS 
 
 

Table A1: Number of Employees per Department 
 Docking Hull Piping Machinery OpAc Electrical Paint Technical 

DMU1 6 14 5 25 14 6 32 23 
DMU2 7 17 5 21 13 6 38 22 
DMU3 6 10 3 12 13 7 27 22 
DMU4 6 10 7 15 18 5 33 23 
DMU5 6 11 4 18 24 7 31 23 
DMU6 6 18 8 14 22 4 29 16 
DMU8 9 13 5 20 11 7 33 23 
DMU9 6 11 7 26 18 8 32 27 

 

Table A2: Total Hours per Department 
 Docking Hull Piping Machinery OpAc Electrical Paint Technical 

DMU1 124 1411.9 494 2553.8 796.6 133.5 5724.75 2379.2 
DMU2 174.1 566.5 135.1 2530.6 708.4 156.6 5488.5 2177.7 
DMU3 141.5 544.3 188 216 474.3 120 2749.3 1994 
DMU4 194 128.7 255 340.3 592.8 43.5 4072 1414.4 
DMU5 245 451 390 1731.4 1585 211 6177.5 2213.5 
DMU6 225 2510.9 416.5 861.5 968.5 49.5 6482 1936.7 
DMU8 166 1316.05 537 1312.5 497.7 295.5 5183 1821 
DMU9 162 1512.7 757 3369.7 1832.8 172.3 7033.3 3167.3 

 

Table A3: Productivity (hr/cgt) per Department 
 CGT Docking Hull Piping Machinery OpAc Electrical Paint Technical 

DMU1 1002.51 0.124 1.408 0.493 2.547 0.795 0.133 5.710 2.373 

DMU2 2243.05 0.078 0.253 0.060 1.128 0.316 0.070 2.447 0.971 

DMU3 2068.80 0.068 0.263 0.091 0.104 0.229 0.058 1.329 0.964 

DMU4 1425.09 0.136 0.090 0.179 0.239 0.416 0.031 2.857 0.992 

DMU5 1347.14 0.182 0.335 0.290 1.285 1.177 0.157 4.586 1.643 

DMU6 1424.48 0.158 1.763 0.292 0.605 0.680 0.035 4.550 1.360 

DMU8 1336.95 0.124 0.984 0.402 0.982 0.372 0.221 3.877 1.362 

DMU9 1078.84 0.150 1.402 0.702 3.123 1.699 0.160 6.519 2.936 
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Table A4: Total Days per Department 
 Docking Hull Piping Machinery OpAc Electrical Paint Technical 

DMU1 17 79 30 141 61 17 102 114 

DMU2 17 37 12 84 53 18 101 102 

DMU3 12 48 25 19 40 23 91 118 

DMU4 23 15 23 21 40 17 66 84 

DMU5 32 38 33 81 87 33 169 167 

DMU6 26 64 30 41 57 15 136 155 

DMU8 19 56 32 72 44 33 100 99 

DMU9 24 78 61 138 116 21 153 156 

 

Table A5: Bootstrap Results – Docking 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

DMU1 70.59 60.27 63.54 41.18 70.97 

DMU2 88.13 79.15 76.54 76.25 89.09 

DMU3 100.00 100.00 100.00 100.00 100.00 

DMU4 52.17 41.64 44.66 16.31 52.73 

DMU5 37.61 28.97 31.19 9.35 38.11 

DMU6 46.15 37.44 40.23 16.00 46.56 

DMU8 63.16 54.76 57.46 31.55 63.47 

DMU9 50.00 41.04 44.02 18.00 50.37 

 

Table A6: Bootstrap Results – Hull 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

DMU1 18.99 5.80 9.69 -18.40 19.34 

DMU2 40.54 2.93 -5.75 -18.92 42.26 

DMU3 34.33 -10.87 -19.57 -31.35 35.95 

DMU4 100.00 100.00 100.00 100.00 100.00 

DMU5 39.47 1.11 -4.86 -21.05 41.09 

DMU6 23.44 8.96 15.04 -21.22 23.72 

DMU8 26.79 6.80 10.96 -28.48 27.44 

DMU9 19.23 0.49 -0.23 -27.85 19.65 
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Table A7: Bootstrap Results – Piping 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

DMU1 40.00 22.70 26.66 -12.96 40.43 
DMU2 100.00 100.00 100.00 100.00 100.00 
DMU3 100.00 100.00 100.00 100.00 100.00 
DMU4 52.17 29.00 31.26 4.35 53.12 
DMU5 49.14 25.55 29.04 -1.72 51.24 
DMU6 40.00 26.09 29.79 -3.97 40.61 
DMU8 37.50 20.26 23.65 -12.94 38.13 

DMU9 19.67 13.49 15.26 -1.64 19.96 

 

Table A8: Bootstrap Results – Machinery 

DMU Efficiency 
Bootstrap 

Mean 
Bootstrap 

Median 
Bootstrap 

Lbound 
Bootstrap 
Ubound 

DMU1 13.47 7.99 10.00 -13.02 13.59 

DMU2 22.62 11.13 14.72 -25.17 22.97 

DMU3 100.00 100.00 100.00 100.00 100.00 

DMU4 90.48 81.34 80.95 80.95 92.62 

DMU5 23.46 10.80 14.46 -27.05 23.81 

DMU6 46.34 13.25 13.37 -7.32 47.62 

DMU8 26.39 12.89 17.20 -29.24 26.80 

DMU9 13.77 8.37 10.46 -13.30 13.87 

 

Table A9: Bootstrap Results – Operational Activity 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

DMU1 65.57 57.21 58.74 38.01 65.88 

DMU2 75.47 61.92 62.89 50.94 75.92 

DMU3 100.00 100.00 100.00 100.00 100.00 

DMU4 100.00 100.00 100.00 100.00 100.00 

DMU5 45.98 42.79 43.58 34.72 46.06 

DMU6 70.18 64.78 65.81 52.88 70.36 

DMU8 100.00 100.00 100.00 100.00 100.00 

DMU9 34.48 31.65 32.16 24.89 34.57 
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Table A10: Bootstrap Results – Electrical 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

DMU1 88.24 81.51 81.57 76.47 88.44 

DMU2 83.33 74.95 75.47 66.67 83.59 

DMU3 65.22 55.81 57.67 32.29 65.54 

DMU4 100.00 100.00 100.00 100.00 100.00 

DMU5 45.45 42.11 42.88 34.57 45.56 

DMU6 100.00 100.00 100.00 100.00 100.00 

DMU8 45.45 42.53 43.30 35.41 45.54 

DMU9 71.43 67.26 68.59 55.95 71.53 

 

Table A11: Bootstrap Results – Paint 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

DMU1 67.81 57.48 60.19 35.62 68.27 

DMU2 75.29 61.38 61.59 50.58 76.13 

DMU3 100.00 100.00 100.00 100.00 100.00 

DMU4 100.00 100.00 100.00 100.00 100.00 

DMU5 43.54 32.90 33.83 17.15 44.09 

DMU6 59.41 44.84 46.75 21.36 60.29 

DMU8 67.49 55.40 57.53 34.97 68.29 

DMU9 45.21 37.71 39.51 22.78 45.80 

 

Table A12: Bootstrap Results – Technical 

DMU Efficiency Bootstrap 
Mean 

Bootstrap 
Median 

Bootstrap 
Lbound 

Bootstrap 
Ubound 

DMU1 73.68 69.03 70.53 54.83 73.81 
DMU2 100.00 100.00 100.00 100.00 100.00 
DMU3 100.00 100.00 100.00 100.00 100.00 
DMU4 100.00 100.00 100.00 100.00 100.00 
DMU5 59.30 55.28 56.21 45.18 59.62 
DMU6 100.00 100.00 100.00 100.00 100.00 
DMU8 84.85 78.41 79.81 69.69 85.03 
DMU9 53.84 51.15 51.91 42.47 53.93 
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