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ABSTRACT

Linman Sun. Nonparametric Pricing Kernel Models.
(Under the direction of DR. ZONGWU CAI)

The capital asset pricing model (CAPM) and the arbitrage asset pricing

theory (APT) have been the cornerstone in theoretical and empirical finance for the

recent few decades. The classical CAPM usually assumes a simple and stable linear

relationship between an asset’s systematic risk and its expected return. However,

this simple relationship assumption has been challenged and rejected by several

recent studies based on empirical evidences of time variation in betas and expected

returns.

It is well documented that large pricing errors could be due to the linear ap-

proach used in a nonlinear model and treating a non-linear relationship as a linear

could lead to serious prediction problems in estimation. To overcome these problems,

in the first part of this dissertation I would like to investigate a general nonpara-

metric asset pricing model to avoid functional form misspecification of betas, risk

premia, and the stochastic discount factor by considering estimating unknown func-

tional involved in the nonparametric pricing kernel. To estimate the nonparametric

functionals, I propose a new nonparametric estimation procedure, termed as non-

parametric generalized estimation equations (NPGEE), which combines the local

linear fitting and the generalized estimation equations. I establish the asymptotic

properties of the resulting estimator. Also, as a rule of thumb, I propose a data-

driven method to select the bandwidth and provide a consistent estimate of the

asymptotic variance.

The nonparametric method may provide a useful insight for further parametric

fitting, while parametric models for time-varying betas can be most efficient if the

underlying betas are specified. However, a misspecification may cause serious bias
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and model constraints may distort the betas in local area. Hence, to test whether the

pricing kernel model has some specific parametric form becomes essentially impor-

tant. In the second part of this dissertation, I propose a consistent nonparametric

testing procedure to test whether the model is correctly specified and I establish the

asymptotic properties of the test statistic using a U-statistic technique.

Finite sample results are investigated using Monte Carlo simulation studies

in order to show the usefulness of the estimation method and the test statistics.

The empirical applications using CRSP monthly returns are also implemented to

illustrate our proposed models and methods.
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CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

The capital asset pricing (CAP) model and the arbitrage asset pricing theory

(APT) have been the cornerstone in theoretical and empirical finance for the recent

few decades. The classical CAPM usually assumes a simple and stable linear rela-

tionship between an asset’s systematic risk and its expected return; see the books by

Campbell, Lo and MacKinlay (1997) and Cochrane (2001) for details. However, this

simple relationship assumption has been challenged and rejected by several recent

studies based on empirical evidences of time variation in betas and expected returns

(as well as return volatilities). As with other models, one considers the conditional

CAP or nonlinear APT models with time-varying betas to characterize the time

variation in betas and risk premia.

The recent work, to name just a few, includes Bansal, Hsieh and Viswanathan

(1993), Bansal and Viswanathan (1993), Cochrane (1996), Jaganathan and Wang

(1996, 2002), Reyes (1999), Ferson and Harvey (1991, 1993, 1998, 1999), Cho and

Engle (2000), Wang (2002, 2003), Akdeniz, Altay-Salih and Caner (2003), Ang and

Liu (2004), Fraser, Hamelink, Hoesli and MacGregor (2004), and the references

therein. In particular, Fama and French (1992, 1993, 1995) used some instrumen-

tal (fundamental) variables like book-to-market equity ratio and market equity, as

proxies for some unidentified risk factors to explain the time variation in returns,

whereas Ferson (1989), Harvey (1989), Ferson and Harvey (1991, 1993, 1998, 1999),

Ferson and Korajczyk (1995), and Jaganathan and Wang (1996) concluded that

beta and market risk premium vary over time. Therefore, a static CAPM should
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incorporate time variation in beta in the model.

Although there is a vast amount of empirical evidences on time variation in betas

and risk premia, there is no theoretical guidance on how betas and risk premia vary

with time or variables that represent conditioning information.

Many recent studies focus on modelling the variation in betas using continuous

approximation and under the theoretical framework of the conditional CAPM; see,

for example, Cochrane (1996), Jaganathan and Wang (1996, 2002), Wang (2002,

2003) and Ang and Liu (2004) and the references therein. Recently, Ghysels (1998)

discussed the problem in detail and stressed the impact of misspecification of beta

risk dynamics on inference and estimation. Also, he argued that betas change

through time very slowly and linear factor models like the conditional CAPM may

have a tendency to overstate the time variation. Furthermore, he showed that among

several well-known time-varying beta models, a serious misspecification produces

time variation in beta that is highly volatile and leads to large pricing errors. Finally,

he concluded that it is better to use a static CAPM in pricing when one does not

have a proper model to capture time variation in betas correctly.

It is well documented that large pricing errors may be due to the linear approach

used in a nonlinear model and treating a nonlinear relationship as a linear can lead

to serious prediction problems in estimation.

To overcome these problems, some nonlinear models have been considered in

the recent literature. For example, Bansal, Hsieh and Viswanathan (1993) and

Bansal and Viswanathan (1993) were the first to advocate the idea of a flexible

stochastic discount factor (SDF) model in empirical asset pricing and they focused

on nonlinear arbitrage pricing theory models by assuming that the SDF is a nonlinear

function of a few of state variables. Also, Akdeniz, Altay-Salih and Caner (2003)

tested for the existence of significant evidence of nonlinearity in the time series

relationship of industry returns with market returns using the heteroskedasticity
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consistent Lagrange multiplier test of Hansen (1996) under the framework of the

threshold model and they found that there exists statistically significant nonlinearity

in this relationship with respect to real interest rates. Furthermore, under the mean-

covariance efficiency framework, Wang (2002, 2003) explored a nonparametric form

of the SDF model and conducted a simple test based on the nonparametric pricing

errors.

Gourieroux and Monfort (2007) considered a class of nonlinear parametric and

semiparametric SDF models for derivative pricing by assuming that the stochastic

discount factors are exponential-affine functions of underlying state variable. In

particular, they discussed the conditionally Gaussian framework and introduced

semiparametric pricing methods for models with path dependent drift and volatility.

A nonparametric modeling is appealing in these situations. One of the advan-

tages for nonparametric modeling is that no or little restrictive prior information

on betas and pricing kernel is needed. Moreover, it may provide useful insight for

further parametric fitting. Parametric models for time-varying betas and nonlinear

pricing kernel can be most efficient if the underlying models are correctly speci-

fied. However, a misspecification may cause serious bias and model constraints may

distort the betas in local area.

In the following section, I give a brief introduction for famous asset pricing

models.

1.2 Asset Pricing Models

Over the past decades, many studies have been conducted to examine the perfor-

mance of SDF approach for econometric evaluation of asset-pricing models and CAP

models in expected returns. As Jagannathan and Wang (2002) demonstrated, a clas-

sical beta method or CAPM can be expressed as a SDF form. Also, as Cochrane

(2001) pointed out, a SDF method is sufficiently general that it can be used for
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analysis of linear as well as nonlinear asset-pricing models, including pricing models

for derivative securities. Now I give a brief review about the CAP model and SDF

form.

1.2.1 CAP Model

The basic theorem of capital asset pricing model (CAPM) and portfolio selection

problem were proposed by Markovitz (1959). Investors would optimally hold a mean-

variance efficient portfolio which is a portfolio with the highest expected return

for a given level of variance. It was shown by Sharper (1964) and Lintner (1965a,

1965b) that without market frictions, if all investors have homogeneous expectations

and optimally hold mean-variance efficient portfolio, then the market portfolio also

becomes a mean-variance efficient portfolio.

The Sharpe-Lintner version of the CAPM can be expressed as the following

statistical model:

E(Ri) = Rf + βim(E(Rm)−Rf ); βim =
Cov(Ri, Rm)

V ar(Rm)
, 1 ≤ i ≤ N,

where Ri is the ith asset return and Rm is the market portfolio return. Also, one can

express CAPM model in terms of excess returns ri = Ri − Rf and rm = Rm − Rf ,

where Rf is the return on the risk-free asset,

E(ri) =
E(rm)

V ar(rm)
Cov(ri, rm). (1.1)

Efficient-set mathematics plays an important role in the analysis of pricing models.

Portfolio p is the minimum-variance portfolio of all portfolios with means re-

turn µp if its portfolio weight vector is the solution to the following constrained

optimization:

min
ω

ω′Ωω
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subject to ω′µ = µp and ω′ι = 1, where µ and Ω is the mean and covariance matrix

of the N risky assets and ω is the vector of portfolio weights summing to unity.

For any risky portfolio Rp, one can calculate its Sharpe ratio defined as the

mean excess return divided by the standard deviation of return

srp =
µp −Rf

σp

.

Testing the mean-variance efficiency of a given portfolio can also be tested as whether

Sharpe ratio of that portfolio is the maximum of the set of Sharpe ratios of all

possible portfolios.

Empirical test of Sharpe-Litner CAPM usually focuses on the following impli-

cations: (1) The intercept is zero and the regression intercepts may be viewed as the

pricing errors; (2) β captures the cross-sectional variation of expected excess returns;

and (3) The market risk premium E(rm) is positive. The key testable implication

of the CAPM is the first one which means the market portfolio of risky assets is a

mean-variance efficient portfolio. One can run N time-series regressions:

Rit = αi + βimRmt + eit, i = 1, · · · , N, 1, · · · , T,

where Rit is the ith risky asset and Rmt is the market portfolio. By using t-test, one

can check whether the pricing error αi is zero individually, and also one can use the

following Wald-type χ2 test discussed by Cochrane (2001) to test the pricing errors

αi are jointly aero,

T

[
1 + (

µ̂m

σ̂m

)2

]−1

α̂′Σ̂−1α̂ ∼ χ2
N ,

where Σ̂ is the residual covariance matrix, and µ̂m and σm are the mean and the

standard deviation of Rmt, respectively. Under the normality assumption, a finite-
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sample F−test for the hypothesis that the pricing errors αi are jointly zero:

T −N − 1

N

[
1 + (

µ̂m

σ̂m

)2

]−1

α̂′Σ̂−1α̂ ∼ FN,T−N−1.

Consider excess returns model of Sharpe and Lintner

E(ri) = βimλ, and E(rm) = βimλ,

where λ is the factor risk premium with only factor without intercept in the cross-

sectional regression. Then, one could test whether all pricing errors are zero with

the test statistic:

α̂′V ar(α̂)−1α̂ ∼ χ2
N−K .

In the early years, CAPM was largely positive reporting the evidence of mean-

variance efficiency of the market portfolio. However, in anomalies literature, less

favorable evidence for the CAPM started to appear. Contrary to the prediction of

the CAPM, the firm characteristics such as size, earning yield effect, leverage, ratio

of a firm’s book value of equity to its market value and ratio of earning to price are

very important to predicting the asset return.

1.2.2 Valuation Theory

It is common in the literature to use a stochastic process to measure the prob-

ability of risky events which might occur over time. Meanwhile, financial security

payoffs are functions of these events. Valuation theory or asset pricing theory de-

scribes how uncertainty evolves over time and try to figure out today’s value of

future, uncertain cash flows; see Duffie (1996). There are two general approaches

to the valuation problem, no-arbitrage approach and equilibrium approach being

complementary. SDF itself is a very nice equilibrium pricing approach.
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1.2.3 Stochastic Discount Factor

In modern finance and economics, the stochastic discount factor model is rapidly

emerging as the most popular way to price assets. Most existing asset pricing meth-

ods can be shown to be specific versions of SDF. For example, CAPM and the

general equilibrium consumption-based inter-temporal capital asset pricing model

(CCAPM) of Rubinsteain (1976) and Lucas (1978). Pricing kernel can be viewed as

a mathematical term which represents an operator. The purpose of stochastic dis-

count factor is to include adjustments for financial risk. Notice that the connection

between SDF and pricing kernel is very strong and that two concepts are often used

interchangeably.

SDF is a very nice equilibrium pricing approach. In financial economics, risk is

measured by covariances. CAPM is the most obvious example, while SDF is much

more general than CAPM. SDF essentially defines what risk is. Formulating term-

structure models in terms of the SDF proves particularly useful when one wants to

model interest-rate dynamics in the actual world.

The SDF asset pricing model is based on the following simple idea

Pt = Et

T−t∑
s=1

[mt,t+sδt+s] ,

where Pt is the price of the asset in period t, δt+s is the pay-off of the asset in period

t + s, mt+s is the discount factor for period t + s (0 ≤ mt+s ≤ 1). By the valuation

theorem, Pt is essentially the current value of the period t + s income δt+s which is

in general a random variable. The discount factor is a stochastic variable and is also

called the pricing kernel. By no-arbitrage condition, one can derive the recursive

representation mt,t+2 = mt,t+1mt+1,t+2. To be more generally, one has

mt,t+s = Πs
k=1mt+k−1,t+k
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Moreover, by iterated exsections,

Pt = Et[mt+1(Pt+1 + δt+1)], mt+1 ≡ mt,t+1

In term of the asset’s gross return Rt+1 = Pt+1+δt+1

Pt
, one has

E[mt+1 Rt+1 |Ωt] = 1. (1.2)

Suppose there are several assets, i = 1, 2, · · · , I, by subtracting the risk-free return

Rf,t, one can get

E[mt+1 ri,t+1 |Ωt] = 0, (1.3)

where Ωt denotes the information set at time t, mt+1 is the SDF or the marginal rate

of substitution (MRS) or the pricing kernel, and ri,t = Ri,t−Rf,t is the excess return

on the i-th asset or portfolio. This very simplified version of the SDF framework is

universal and admits a basic pricing representation such as Sharper-Lintner CAPM.

As Et(mt+1)Et(ri,t+1) = −Covt(mt+1, ri,t+1), it is easy to see from the above equation

that assets with returns whose covariance is positive with the SDF will pay a negative

risk premium.

There are lots of nice properties for SDF. For example, one can do capital

budgeting and pricing using SDF. If a project pays a random amount δt+1 and costs

Pt, the investment return thus is (1 + rt+1 = δt+1/Pt). By no-arbitrage assumption.

Et[mt+1(rt+1 − rt)] = 0 ⇒ Et(rt+1) = rt − Covt(mt+1, rt+1)/Et(mt+1).

Thus, the expected return can be defined based on the investment as 1 + Etrt+1 ≡
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Etδt+1/Pt. The project is therefore priced as the expected discounted present value

Pt =
Et(δt+1)

1 + rt − Covt(rt+1, mt+1)/Et(mt+1)
.

In real world, since risk-aversion investors hope to be compensated for taking on risk,

people use nonnegative risk premium to measure this. Risk premium essentially is

extra return over the risk-free rate equals to the price of risk multiplied by the

quantity of risk. If market portfolio is taken as the benchmark risky portfolio, one

has

E(Rj − rf )

E(Rm − rf )
=

Cov(m, rj)

Cov(m,Rm)
≡ βj → E(Rj − rf ) = βjE(Rm − rf ).

If pricing kernel m(rm) has a linear form as m(rm) = a + brm through the β-

representation, one can derive CAPM

βj = Cov(Rm, Rj)/V ar(Rm); ERj = rf + βjE(Rm − rf ),

where βj measures the quantity of risk in asset j and the excess return E(Rm − rf )

is the market price of risk.

1.2.4 Conditional Asset Pricing Models

In empirical finance, different models impose different constraints on the SDF.

Particularly, the SDF is usually assumed to be a linear function of factors in various

applications. Furthermore, when the SDF is fully parameterized such as linear

form, the general method of moments (GMM) of Hansen (1982) can be used to

estimate parameters and test the model; see Campbell, Lo and MacKinlay (1997)

and Cochrane (2001) for details.

Because of different purposes in applications, different forms of (1.3) have been

imposed in the finance literature. For example, Bansal, Hsieh and Viswanathan

(1993) and Bansal and Viswanathan (1993) were the pioneers to propose nonlinear
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APT models in empirical asset pricing by assuming that the SDF or MRS is a

nonlinear function of a few of state variables. Under some assumptions, Bansal,

Hsieh and Viswanathan (1993) re-expressed (1.3) as

E

[
s∏

r=1

G(pb
t+r)Xi(t, t + s) |Ωt

]
= π(Xi(t, t + s)); (1.4)

see (8) in Bansal, Hsieh and Viswanathan (1993), where pb
t+1 is the low-dimensional

ex post payoffs or prices at t + 1 that do not contain non-factor risk, G(·) is an

unknown function, and Xi(t, t + s) is the payoff of the ith asset at time t + s that

has price π(Xi(t, t+s)) at time t (the maturity of the i-th payoff is s periods ahead).

Here, the low-dimensional function G(pb
t+r) is the relevant pricing kernel implied by

the nonlinear APT. In contrast to most APT models, as pointed out by Bansal and

Viswanathan (1993), this pricing kernel can price dynamic trading strategies.

Indeed, equation (1.4) can be derived recursively by using

E
[
G(P b

t+1)Xi(t, t + 1)|Ωt

]
= π(Xi(t, t + 1))

along with the law of iterated expectations; see (7) in Bansal, Hsieh and Viswanathan

(1993). Moreover, equation (1.4) leads to a nonlinear arbitrage pricing kernel with

nonnegativity restriction on the pricing kernel. To estimate the nonlinear model,

Bansal, Hsieh and Visvanathan (1993) did not impose the no-arbitrage condition,

however, they proposed the orthogonality conditions by the payoffs in the nonlinear

APT as follows

E

[(
s∏

r=1

G(pb
t+r)Xi(t, t + s)− 1

)
Zt

]
= 0, (1.5)

where Zt is an instrument that belongs to the information set Ωt; see (7) in Bansal

and Viswanathan (1993) or (14) in Bansal, Hsieh and Viswanathan (1993). While

Bansal, Hsieh and Viswanathan (1993) suggested using the polynomial expansion
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to approximate it and then applied the GMM of Hansen (1982) for estimating and

testing, Bansal and Viswanathan (1993) used neural networks to approximate the

unknown pricing kernel. In addition to estimating the nonlinear model, Bansal,

Hsieh and Viswanathan (1993) estimated the following conditional linear model

which is not nested in the nonlinear model,

E

[(
s∏

r=1

ηT
t+rp

b
t+r+1

)
Xi(t, t + s)Zt − Zt

]
= 0, (1.6)

and they suggested estimating the conditional weights {ηkt} in the above equation

using a nonparametric method. As suggested by Bansal, Hsieh and Viswanathan

(1993), the conditional weights, ηkt, are nonparametrically estimated by ηkt =

ηk(Z1t) = λT
k Z1t =

L∑
l=1

λklZ1tl, where Z1t might be exactly the same conditioning

variables that are used as instruments; here, L is the number of instruments used

in estimation. As the number of conditioning variables increases to infinity, we use

all the relevant conditional information and this estimate of the conditional weight

converges to the true conditional weight. Thus, this approach provides asymptoti-

cally consistent estimates without imposing the usual restrictive parametrization on

the conditional mean process and the conditional covariance process of the (factor)

payoffs.

As pointed out by Wang (2003), although the aforementioned approach is intu-

itive and general, one of shortcomings is that it is difficult to obtain the distribution

theory and the effective assessment of finite sample performance. Instead of con-

sidering the nonparametric pricing kernel, Harvey (1991) focused on the nonlinear

parametric model for conditional CAPM and used a set of moment conditions suit-

able for GMM estimation of parameters involved. More precisely, Harvey (1991)

used conditional asset pricing restrictions that conditionally expected return on an

asset is proportional to its covariance with the market portfolio, see Sharpe (1964)
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and Lintner (1965),

E[rj,t+1|Ωt] =
E[rm,t+1|Ωt]

Var(rm,t+1)
Cov(rj,t+1, rm,t+1|Ωt), (1.7)

where rj,t is the return on jth equity from time t to t + 1 in excess of a risk-free

return and rm,t+1 is the excess return on the market portfolio. Equation (1.7) is the

so-called mean-variance efficient condition. Also, Hervey (1991) specified the model

for the first conditional moments by assuming that

E[rj,t+1|Zt] = δ>j Zt, j = 1, · · · , N, and m, (1.8)

where N is the number of assets, and Hervey (1991) showed that by plugging equa-

tion (1.8) to (1.7) and rewriting (1.7), one can obtain a set of moment conditions

suitable for GMM estimation of δ> = (δ1, · · · , δN) and δm as follows:

E




rt+1 − δZt

rm,t+1 − δ>mZt

u2
m,t+1δZt − um,t+1ut+1δ

T
mZt

⊗ Zt




= 0, (1.9)

where uj,t+1 = rj,t+1 − δ>j Zt, ut+1 = (u1,t+1, · · · , uN,t+1)
>, and ⊗ is the Kronecker

product of two matrices. Furthermore, Ferson and Harvey (1993) suggested another

similar specification for the conditional CAPM, assuming time-varying betas as

βit = β>icZt, then the moment conditions become

E




rt+1 − δZt

rm,t+1 − δ>mZt

δZt − βcZtZ
>
t δm

⊗ Zt




= 0. (1.10)

Moreover, Jagannathan and Wang (1996) examined the ability of the conditional
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CAPM to explain the cross-sectional variation in average returns on a large collection

of stock portfolios,

E[Ri,t+1|Ωt] = γ0,t + γ1,tβi,t, (1.11)

where βi,t is the conditional beta of asset i, defined as

βi,t = Cov(Ri,t+1, Rm,t+1|Ωt)/Var(Rm,t+1|Ωt), (1.12)

where Ri,t is the gross (one plus the rate of) return on asset i in period t, Rm,t is

the gross return on the aggregate wealth portfolio of all assets in the economy in

period t, γ0,t is the conditional expected return on a “zero-beta” portfolio, and γ1,t

is the conditional market risk premium; see equations (2) and (3) in Jagannathan

and Wang (1996). As pointed out by Hansen and Richard (1987) and Jagannathan

and Wang (1996, 2002), the conditional CAPM given in (1.11) can be rewritten in

terms of the conditional stochastic discount factor representation,

E[Ri,t+1mt+1|Ωt] = 1;

see (26) in Jagannathan and Wang (1996), where mt+1 is generally referred to as

SDF, defined as

mt+1 = κ0,t + κ1,tRm,t+1

with

κ0,t =
1

γ0,t

+

[
γ1,t

γ0,tVar(Rm,t+1|Ωt)

]
E(Rm,t+1|Ωt), and κ1,t = − γ1,t

γ0,tVar(rm,t+1|Ωt)
.

Clearly, both κ0,t and κ1,t are a nonlinear function of state (conditioning) variables.

Furthermore, Ghysels (1998) tried to detect whether the beta risk is inherently

misspecified and he found that pricing errors with constant traditional beta models
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are smaller than those with conditional CAPM. Therefore, Ghysels (1998) argued

that based on evaluation of conditional asset pricing models, misidentification of

functional forms is of first-order importance. To deal with this problem, Wang

(2003) studied the nonparametric conditional CAPM and gave an explicit expression

for the nonparametric form of conditional CAPM for the excess return. First, Wang

(2003) started from the following mean-variance efficient model

E(ri,t+1|Ωt) = E(rp,t+1|Ωt)
Cov(ri,t+1, rp,t+1|Ωt)

Var(rp,t+1|Ωt)
(1.13)

⇐⇒ E(ri,t+1|Ωt)− E(rp,t+1|Ωt)
E(ri,t+1rp,t+1|Ωt)

E(r2
p,t+1|Ωt)

= E(mt+1ri,t+1|Ωt), (1.14)

where mt+1 = 1−b(Zt) rp,t+1, Zt is an L×1 vector of conditioning variables from Ωt,

b(z) = E(rp,t+1|Zt = z)/E(r2
p,t+1|Zt = z) is an unknown function, and rp,t+1 is the

return on the market portfolio in excess of the riskless rate. Equation (1.13) is the

CAPM beta-pricing equation which leads to so called “cross-moment” representation

in equation (1.14). Since the functional form of b(·) is unknown, Wang (2003)

suggested estimating b(·) by using the Nadaraya-Watson method to two regression

functions E(rp,t+1|Zt = z) and E(r2
p,t+1|Zt = z), respectively. Also, he conducted

a simple nonparametric test about the pricing error. Furthermore, Wang (2003)

extended this setting to multifactor models by allowing b(·) to change over time;

that is, b(Zt) = b(t).

1.2.5 Flexible SDF Models

Recently, some more flexible SDF models have been studied by several authors.

For example, Gourieroux and Monfort (2007) considered the problem of derivative

pricing when the stochastic discount factors can be written under an exponential-

affine form

mt+1 = exp(α>t rt+1 + βt), (1.15)
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where coefficients αt and βt are a function of history of rt+1 = (r1,t+1, ...rN,t+1)
>,

which is a vector of geometric returns of the N risky assets. Clearly, the SDF

specified in (1.15) is a nonlinear function of conditioning variables. Also, they

suggested that the conditional historical distribution of the return is defined by

means of its Laplace transform as

E[exp(u>rt+1)|rt] = exp(ψt(u; θ))

for some ψt(u; θ), which is indeed the conditional historical log-Laplace transforma-

tion (moment generating function). See Table 1 in Gourieroux and Monfort (2007)

for the explicit expression of ψt(u; θ) for some specific examples. Thus, one can get

N + 1 restrictions on the SDF and historical distribution as follows





E(mt+1|rt) = 1

E[mt+1
pj,t+1

pj,t
|rt] = E[mt+1 exp(rj,t+1)|rt] = 1, j = 1, . . . , N,

where pj,t is the price of asset j and rj,t = log(pj,t/pj,t−1) is the log return of asset j,

⇐⇒





E[exp(α>t rt+1 + βt)|rt] = 1

E[exp(α>t rt+1 + e>j rt+1 + βt)|rt] = 1, j = 1, . . . , N,

where ej = (0, · · · , 0, 1, 0, · · · , 0)>, with 1 as component of order j. Then, the

system of N + 1 equations generally admits a unique solution:

⇐⇒





βt = −ψt(αt; θ)

ψt(αt + ej; θ)− ψt(αt; θ) = 0, j = 1, . . . , N.

For details, see Section 3.2 in Gourieroux and Monfort (2007). Furthermore, Gourier-

oux and Monfort (2007) provided some examples of stochastic discount factors which
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are exponential-affine functions of underlying state variables. One of those examples

is consumption based CAPM at equilibrium,

pt = Et

[
pt+1

qt

qt+1

δ
dU
dc

(Ct+1)
dU
dc

(Ct)

]
,

where U(·) is the utility function, δ is the infratemporal psychological discount

rate, pt is the vector of prices of financial assets, qt is the price of the consumption

good, and Ct is the quantity consumed at data t. Clearly, different choice of the

utility function produces a different SDF. For example, for a power utility function

U(c) = cγ+1/(γ + 1), the SDF based on CAPM has the following form

mt+1 =
qt

qt+1

δ

(
Ct+1

Ct

)γ

= exp [log(δ)− log(qt+1/qt) + γ log(Ct+1/Ct)] ,

which is actually an exponential-affine function of parameters γ, and log(δ). For the

constant absolute risk aversion (CARA) utility function U(c) = − exp(−Ac)/A, the

SDF is

mt+1 = exp [log(δ)− log(qt+1/qt)− A(Ct+1 − Ct)] ,

which is an exponential-affine form. Thus, the foregoing examples imply that the

choice of a power or CARA utility function is equivalent to the selection of an

appropriate (parameter free) transformation of the consumption as state variable.

For more examples, see Gourieroux and Monfort (2007).

1.3 Overview

In the first part of this dissertation, Chapter 2, I first describe a general non-

parametric asset pricing model to avoid functional form misspecification of betas,

risk premia, and the stochastic discount factor. I propose a new nonparametric

estimation procedure to estimate unknown functional involved in the pricing ker-

nel and derive the asymptotic properties of the proposed nonparametric estimator.
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Furthermore, a simple bandwidth selector is suggested and a consistent estimate of

the asymptotic variance is provided. Results based on the Monte Carlo simulation

study and a real example are reported in Section 2.5 to illustrate the finite sample

performance.

The nonparametric method may provide a useful insight for further paramet-

ric fitting. Parametric models for time-varying betas can be most efficient if the

underlying betas are specified. Hence, to test whether the SDF model has a linear

structure and whether some parametric form is correct is essentially important. In

the second part of this dissertation, Chapter 3 I propose a consistent nonparametric

testing procedure to test whether the model is correctly specified under a U-statistic

framework. I adopt general GMM (Hansen 1982) method to estimate the assumed

functional form inside SDF. Under fairly general stationarity, continuity, and the mo-

ment condition that the expectations of the pricing errors delivered by SDF equal

to zero, the estimate inside SDF is consistent. An efficient and feasible estimation

procedure is suggested and its asymptotic behavior is studied. Furthermore, to test

a misspecification of functional forms, in Section 3.2, a nonparametric consistent

test is proposed to test the pricing error using a U-statistic technique. Also, I es-

tablish the asymptotic properties of the test statistic. Finally, in Section 3.4, finite

sample properties of the proposed estimators and testing procedures are investigated

under both null and alternative hypothesis by the Monte Carlo simulations and the

empirical examples.



CHAPTER 2: NONPARAMETRIC ASSET PRICING MODELS

In this chapter, first, I consider a general nonlinear pricing kernel model and

propose a new nonparametric estimation procedure by combining local polynomial

estimation technique and generalized estimation equations, termed as nonparametric

generalized estimation equations (NPGEE). Secondly, I establish the asymptotic

consistency and normality of the proposed nonparametric estimator. Moreover, I

propose a rule of thumb method based on data-driven fashion to select a bandwidth

and provide a consistent estimate for the asymptotic variance. Finally, finite sample

properties of the proposed estimators are investigated by Monte Carlo simulation

study and an empirical study.

2.1 The Model

To combine the models studied by Bansal, Hsieh and Viswanathan (1993),

Bansal and Viswanathan (1993), Ghysels (1998), Jagannathan and Wang (1996,

2002), Wang (2002, 2003), and some other models in the finance literature under

a very general framework, I assume that the nonlinear pricing kernel has the form

as mt+1 = 1 − m(Zt)rp,t+1, where m(·) is unspecified. My approach focuses on

estimating the following nonparametric APT model

E[{1−m(Zt) rp,t+1} ri,t+1 |Ωt] = 0, (2.1)

where m(·) is an unknown function of Zt, Zt is an L × 1 vector of conditioning

variables from Ωt, ri,t+1 is the return on the asset of portfolio in excess of the risk

free rate, and rp,t+1 is the excess return on benchmark portfolio. Indeed, (2.1) can be
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regarded as a conditional moment (orthogonal) condition, and it, unlike Wang (2002,

2003) and others, is unnecessary to require the mean-variance efficiency. Hence, our

interest is to identify and to estimate the nonlinear function m(z). Clearly, an

alternative expression for (2.1) when m(·) is a scalar function

m(Zt) =
E(ri,t+1|Zt)

E(rp,t+1ri,t+1|Zt)
, (2.2)

and under the mean-variance efficiency, m(Zt) reduces to

b(Zt) ≡ E(rp,t+1|Zt)/E(r2
p,t+1|Zt)

which was discussed by Wang (2002, 2003) in detail; see (1.14). Therefore, m(Zt) =

b(Zt) is equivalent to the mean-variance efficiency. In other words, testing the mean-

variance efficiency is equivalent to testing the hypothesis H0 : m(·) = b(·).

Remark 1: (Extension to multiple market portfolios and multifactor models). It

is easy to extend the model in (2.1) to cover multiple market portfolios. In such a

case, the rp,t+1 should be a vector. Then, the model (2.1) becomes

E[{1−m(Zt)
> rp,t+1} ri,t+1 |Ωt] = 0. (2.3)

Moreover our model can be used in the case that a parametric structure is

proposed for excess returns on the benchmark portfolio in terms of important factors.

For example, in the famous Fama and French (1993)’s three-factor model, rp,t+1 can
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be expressed as

rp,t+1 = MKTt+1 + θ1SMBt+1 + θ2HMLt+1

=




1

θ1

θ2




> 


MKTt+1

SMBt+1

HMLt+1



≡ θ>rmf,t+1.

Then, the model becomes

E[{1−m∗(Zt)
> rmf,t+1} ri,t+1 |Ωt] = 0, (2.4)

where m∗(Zt) = m(Zt) ∗ θ(t). In our model θ is then allowed to vary over time and

can be fully nonparametric.

The modeling procedure and its econometric theory developed in the next two

sections for a single market portfolio in the model (2.1) continue to hold for the

models in (2.3) and (2.4), and the details are omitted due to the similarity. Notice

that unfortunately, the simple expression for the nonparametric pricing kernel in

(2.2) does not hold for these cases.

2.2 Nonparametric Estimation Procedure

To ease notation, our focus in this section is only on the model (2.1) with a

single market portfolio. Let It be a q × 1 (q ≥ L) vector of conditioning variables

from Ωt, including Zt, satisfying the following orthogonal condition

E[{1−m(Zt)rp,t+1} ri,t+1 | It] = 0, (2.5)

which can be regarded as an approximation of (2.1). It follows from the orthogonality

condition in (2.5) that, for any vector function Q(It) ≡ Qt with a dimension dq
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specified later, we have

E [Qt {1−m(Zt)rp,t+1} ri,t+1 | It] = 0, (2.6)

and its sample version is

1

T

T∑
t=1

Qt {1−m(Zt)rp,t+1} ri,t+1 = 0. (2.7)

Therefore, this provides an estimation approach similar to the generalized method

of moment of Hansen (1982) for parametric models and the estimation equations in

Cai (2003) for nonparametric models. I propose a new nonparametric estimation

procedure to combine the orthogonality conditions given in (2.5) with the local linear

fitting scheme of Fan and Gijbels (1996) to estimate the unknown function m(·).
This nonparametric estimation approach is termed as the nonparametric generalized

estimation equations (NPGEE).

It is well known in the literature (see, e.g., Fan and Gijbels, 1996) that local

linear fitting has several nice properties, over the classical Nadaraya-Watson (local

constant) method, such as high statistical efficiency in an asymptotic minimax sense,

design-adaptation, and automatic edge correction. I estimate m(·) using local linear

fitting from observations {(ri,t+1, rp,t+1, Zt)}T
t=1. I assume throughout that m(·)

is twice continuously differentiable. Then, for a given point z0 and for {Zt} in a

neighborhood of z0, by the Taylor expansion, m(Zt) is approximated by a linear

function a + b> (Zt − z0) with a = m(z0) and b = m′(z0) (the derivative of m(z)),

so that model (2.2) is approximated by the working orthogonality condition

E[Qt {1− (a + b> (Zt − z0))rp,t+1} ri,t+1 |Zt] ≈ 0. (2.8)

Therefore, for {Zt} in a neighborhood of z0, the orthogonality conditions in (2.5)
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can be approximated by the following locally weighted orthogonality conditions

T∑
t=1

Qt [1− (a + b> (Zt − z0))rp.t+1] ri,t+1 Kh(Zt − z0) = 0, (2.9)

where Kh(·) = h−LK(·/h), K(·) is a kernel function in RL, and h = hT > 0 is a

bandwidth, which controls the amount of smoothing used in the estimation. (2.9)

can be viewed as a generalization of the nonparametric estimation equations in Cai

(2003) and the locally weighted version of (9.2.29) in Hamilton (1994, p.243) or

(14.2.20) in Hamilton (1994, p.419) for parametric IV models. To ensure that the

equations in (2.9) have a unique solution, the dimension of Q(·) must satisfy that

dq ≥ L + 1 since the number of parameters in (2.9) is L + 1. Therefore, solving the

above equations leads to the NPGEE estimate of m(z0), denoted by m̂(z0), and the

NPGEE estimate of m′(z0), denoted by m̂′(z0); that is,




m̂(z0)

m̂′(z0)


 =




â

b̂


 = (S>T ST )−1 S>T LT , (2.10)

where with Q∗
t =




1

Zt − z0


,

ST =
1

T

T∑
t=1

Qt Q
∗
t
> rp,t+1Kh(Zt−z0) ri,t+1 and LT =

1

T

T∑
t=1

Qt Kh(Zt−z0) ri,t+1.

When dq = L + 1 and ST is nonsingular,




m̂(z0)

m̂′(z0)


 becomes S−1

T LT . Clearly,

(2.10) provides a formula for computational implementation, which can be carried

out by any standard statistical package.

I now turn to the choice of Q(Zt) in (2.9). Motivated by the estimation equations
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in Cai (2003) and following a similar idea in Cai and Li (2008), I choose Qt as

Qt = Q∗
t ; (2.11)

see Remark 5 later for more discussion. Then,




m̂(z0)

m̂′(z0)


 becomes S−1

T LT . Finally,

notice that the method proposed in Cai (2003) can be regarded as a special case of

the aforementioned NPGEE estimation procedure.

2.3 Distribution Theory

In this subsection, I discuss the large sample theory for the proposed estimator

based on the nonparametric generalized estimation equations. Let et = ei,t+1 =

mt+1 ri,t+1 = [1 −m(Zt)rp,t+1] ri,t+1, which is called the pricing error in the finance

literature.

2.3.1 Assumption

Assumption A:

A1. {Zt, ri,t+1, rp,t+1, et} is a strictly stationary α-mixing process with the mixing

coefficient satisfying α(t) = O(t−τ ), where τ = (2+δ)(1+δ)/δ, for some δ > 0.

Also, assume that E(rp,t+1) < ∞, E(ri,t+1) < ∞, and E(r2
i,t+1r

2
p,t+1) < ∞.

A2. (i) Assume that for each t and s, and supz1,z2
|E(et es|Zs = z1, Zt = z2)| < ∞.

(ii) Define M(z) = E(rp,t+1ri,t+1|Zt = z) and σ2
0(z) = E(e2

t |Zt = z). Assume

that m(·) and M(·) are twice differentiable, and σ2
0(·) is continuous. Fur-

thermore, assume that σ2
0(z) and M(z) are positive for all z.

(iii) σ2
0(z) satisfy Lipschitz conditions. There exists some δ > 0, there exists

some δ > 0 such that E{|et|2+δ|Zt = z} is continuous at z0.

(iv) Assume that for all τ , fτ (·, ·) exists and satisfies the Lipschitz condition,

where fτ (·, ·) is the joint probability density function of Z1 and Zτ . Also,
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assume that the marginal density function f(z) of Zt is continuous.

A3. The kernel K(·) is symmetric, bounded and compactly supported.

A4. h → 0 and ThL →∞ as T →∞.

A5. ThL[1+2/(1+δ)] →∞.

Remark 2: (Discussion of conditions). A similar discussion of the foregoing as-

sumptions has been given by Cai (2003) and Cai and Li (2008). Assumption A1

requires that observations are stationary, which is a standard assumption in the

literature. α-mixing condition is one of the weakest mixing conditions for weakly

dependent stochastic processes. Many stationary time series or Markov chains, in-

cluding many financial time series fulfilling certain (mild) conditions are α-mixing

with exponentially decaying coefficients; see Cai (2002), Carrasco and Chen (2002)

and Chen and Tang (2005) for additional examples. Assumption A1 also gives some

standard moment conditions. Assumption A2 includes some smoothness conditions

on functionals involved. The requirement in A3 that K(·) be compactly supported

is imposed for the sake of brevity of proofs and can be removed at the cost of

lengthier arguments. In particular, the Gaussian kernel is allowed. Assumption

A4 is a standard condition for a nonparametric kernel smoothing. Finally, notice

that A5 is not restrictive; e.g., if one considers the optimal bandwidth such that

hopt = O(T−1/(L+4)) (see Remark 4 later), then A5 is satisfied when δ > L/2 − 1.

Therefore, the conditions imposed here are quite mild and standard.

2.3.2 Large Sample Theory

Before I derive the asymptotic distribution of NPGEE estimate, I list some no-

tations. To this effect, define µ2(K) =
∫

uu>K(u)du and ν0(K) =
∫

K2(u)du.

Set H = diag{1, h2IL}, where IL is an L × L identity matrix. Finally, define

S(z) = M(z)diag{1, µ2(K)} and S∗(z) = diag{ν0(k), h2µ2(K
2)}σ2

0(z). The asymp-
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totic normality of the NPGEE estimator is established in Theorem 2.1 with detailed

proof given in Section 2.6.

Theorem 2.1. Under Assumptions A(1) - A(5), for any grid point z0, then,

√
ThL


H








m̂(z0)

m̂′(z0)


−




m(z0)

m′(z0)







−B(z0)


 → N(0, ∆m(z0)), (2.12)

where the asymptotic bias term is B(z0) = h2/2




tr(µ2(K)m′′(z0))

0


 and the

asymptotic variance is ∆m(z) = f(z)−1S−1(z)S∗(z)S−1(z), Particularly,

√
ThL

[
m̂(z0)−m(z0)− h2

2
tr(µ2(K)m′′(z0))

]
→ N(0, σ2

m(z0)), (2.13)

where σ2
m(z0) = ν0(K) σ2

0(z0)f
−1(z0)M

−2(z0).

Remark 3: (Consistent estimate of asymptotic variance). The first consequence

of Theorem 2.1 is to provide an easy way to obtain a consistent estimator for the

asymptotic variance σ2
m(z). After estimating the nonparametric pricing kernel, one

can obtain the estimated pricing error as êt = [1−m̂(Zt)rp,t+1] ri,t+1. Then, any non-

parametric kernel smoothing method, say the local linear technique, can be applied

to obtaining a consistent estimate for σ2
0(z), f(z), and M(z), and one can apply

some existing optimal bandwidth selectors, like plugging in, cross-validation, gener-

alized cross-validation, nonparametric the Akaike information criterion, and others.

Therefore, a consistent estimate for σ2
m(z) is σ̂2

m(z) = ν0(K) σ̂2
0(z)f̂−1(z)M̂−2(z).

Thus, a 95% pointwise confidence interval with bias ignored can be constructed as

m̂(z)± 1.96× σ̂m(z)√
ThL

, (2.14)

which will be used in computing the confidence interval for the real example pre-
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sented in Section 2.5.

Remark 4: (A rule of thumb for bandwidth selection). It is well known that the

bandwidth plays an essential role in the trade-off between reducing bias and vari-

ance. To the best of our knowledge, almost nothing has been done about selecting

the bandwidth in the context of nonparametric estimation equations method. In

many applications, one would like to have a quick idea on how large the amount

of smoothing should be. A rule of thumb is very appealing for such a case. Such

a rule is meant to be somewhat crude, but possesses simplicity and requires little

programming effort that other methods can not compete with. Toward this end,

one can see easily from Theorem 2.1 that the weighted integrated asymptotic mean

squared error (AMSE) is given by

AMSE =

∫ [
Var + (Bias)2

]2
f(z0)dz0 =

C1

ThL
+

h4

4
C2,

where C1 =
∫

σ2
m(z0)f(z0)dz0 = E [σ2

m(Zt)] and C2 =
∫

[tr(µ2(K)m′′(z0))] f(z0)dz0 =

E [tr(µ2(K)m′′(Zt))]. By minimizing AMSE with respect to h, one obtains the op-

timal theoretical bandwidth

hopt =

(
LC1

C2

)1/(L+4)

T−1/(L+4) ≡ C3T
−1/(L+4). (2.15)

With the above choice of hopt, it is easily seen that the optimal AMSE has the order of

O(T−4/(L+4). Clearly, the formulation in (2.15) provides an easy way to find a data-

driven fashion bandwidth selection method, say a plugging in method. Toward this

end, one needs to estimate C3 consistently, which can be done as follows. First, take

a pilot bandwidth h0 which is much smaller than T−1/(L+4), say hσ = 0.1×T−1/(L+4)

or smaller. Using this pilot bandwidth, one can estimate σ2
m(z0), so that one obtains

Ĉ1 using the average. To estimate m′′(z0) consistently and easily, one can use a
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simple way to do so. That is to fit a multivariate polynomial of certain order Lm

(say Lm = log(T ) or larger) globally to m(z), leading to a parametric fit. Other

global parametric approaches, including series and spline methods, can be used too.

Then, the generalized method of moment (GMM) of Hansen (1982) can be used for

estimating the parameters. The choice of a global fit results in a derivative function

m̂′′(z) which is a multivariate polynomial of order Lm − 2. Thus, Ĉ2 is obtained by

average. Hence, one has Ĉ3 and ĥopt = Ĉ3T
−1/(L+4).

Remark 5: (Choice of instruments). After establishing the asymptotic property of

the estimator, I now turn to the choice of Q(Zt). At this moment, I assume that

Q(Zt) =




Q0(Zt)

Q0(Zt)(Zt − z0)


, where Q0(Zt) is an unknown scale function. By

following the same proofs used in the proof of Theorem 2.1, one can show that

the asymptotic normality in (2.1) holds true for this situation with the asymptotic

variance

4m,0(z0) = f−1(z0)S
−1
1 (z0)S

∗
1(z0)S

−1
1 (z0),

where S1(z) = Q0(z)S(z) and S∗1(z) = Q2
0(z)S∗(z). It is clearly that the asymptotic

variance 4m,0(z) = 4m(z), which is not related to the choice of Q0(·). Hence, I

assume Q(·) has the form given in (2.11).

2.4 Model Extension

Theoretically, for a valid SDF, equation (2.1) is supposed to hold all the assets

in the market. In reality, asset pricing models are at best approximations. This

implies no stochastic discount factor proxies can price portfolios perfectly in general.

Therefore, it is important to conduct a measure of pricing errors produced by SDFs

so that we are able to compare and evaluate SDFs. For this purpose, Hansen

and Jagannathan (1997) introduced the Hansen-Jagannathan distance method (HJ-

distance) which is a measure that is widely used for diagnosis and estimation of asset



28

pricing models. This method gained tremendous popularity in the empirical asset

pricing literature by many researchers. The measure is in the quadratic form of the

pricing errors weighted by the inverse of the second moment matrix of returns

HJ =
√

E[et]>E(r>t+1rt+1)−1E[et], (2.16)

where et is the pricing error.

To have some intuition idea, one may provide a geometric interpretation of HJ-

distance in terms of the minimum-variance frontiers of the test assets. Actually, the

HJ-distance is a special form of generalized method of moments (GMM) of Hansen

(1982). Thus, the estimation procedure can be conducted in the framework of GMM.

Nagel and Singleton (2008) attempted to provide an improved understanding

of the HJ-distance by focusing on the conditional version of HJ distance. It has a

similar econometric interpretation comparing to the unconditional one. However, it

measures the pricing error on the condition of current information set

HJc =
√

E[et|Ωt]>E(r>t+1rt+1|Ωt)−1E[et|Ωt]. (2.17)

The conditional HJ-distance has more advantage than the unconditional one. In the

case that the two different SDFs may generate the same unconditional HJ-distance

statistically, the conditional measure makes it possible to discriminate them.

In this chapter, I attempt to provide an improved understanding of the HJ-

distance by focusing on the case of conditional pricing models and combining local

linear technique. The conditional HJ-distance will serve as an extension of the

model. Still, I assume m(·) is twice continuously differentiable. By the Taylor

expansion, one has the same locally weighted orthogonality condition as (2.9).
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Define

AT (β(z)) =
1

T

T∑
t=1

Qt{1− [m(z) +∇m(z)>(Zt − z)]rp,t+1}ri,t+1Kh(Zt − z), (2.18)

εt = Qt(1−m(Zt)rp,t+1)ri,t+1Kh(Zt − z), (2.19)

and

β(z) =




m(z)

∇m(z)


 =




a(z)

b(z)
.




For local estimation purpose, we may need some additional assumption for the

model.

2.4.1 Distribution Theorem

During the initial estimation, we might choose different Λ0 as the weighting

matrix. ΛT is a consistent estimate of certain finite positive definite matrix Λ0.

Different choice of weighting matrix ΛT would result in different asymptotic property

in the estimation of β(z).

Assumption B:

B1. For all β(z) ∈ θ(z), E[‖εt(β(z))‖2|Zt = z], Λ0 is the weighting matrix. Let

ΛT be a finite positive definite matrix for all T, as is Λ0 = plimT→∞ΛT .

E[QtQ
>
t rp,t+1ri,t+1f(z)|Zt = z] and Var(QtQ

>
t rp,t+1ri,t+1f(z)|Zt = z) are finite

and continuous at z.

B2. E[εt(β(z))] is finite and twice differentiable in the vector β(z) for all β(z) in

some compact set θ(z).

Firstly, in Theorem (2.2), we would like to show the asymptotic distribution of β(z)

under different weighting matrix ΛT .
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If we estimate β(z) by minimizing the square conditional HJ-distance, the esti-

mation can be conducted in the framework of local nonparametric GMM.

The proposed local estimator is

β̂(z) = arginfβ(z)∈Θ(z)AT (β(z))>ΛT AT (β(z)), (2.20)

By taking derivative with respect to β(z) and solving for β(z), one obtain

β̂(z) = (S>T ΛT ST )−1S>T ΛT LT . (2.21)

Under some assumptions, the distribution of the sample HJ-distance estimator is

presented in the following theorem.

Theorem 2.2. Under Assumptions A(1) - A(5), B(1) - B(2), ΛT is consistent

matrix of Λ0(z) for any grid point z, we have,

√
ThL

[
H (β̂(z)− β(z))−B1(z)

]
→ N(0, ∆∆m(z)), (2.22)

where the asymptotic bias term is

B1(z) = (S>(z)Λ0S(z))−1S>(z)Λ0M(z)B(z)

and the asymptotic variance is

∆∆m(z) = [S(z)>Λ0(z)S(z)]−1S(z)>Λ0(z)S(z)∗Λ0(z)S(z)[S(z)>Λ0(z)S(z)]−1.

For practical purpose, in the standard two step GMM procedure. We would

like to choose the weighting matrix ΛT to be the inverse of the sample variance of
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εt, where Λ0 = (Var(εt))
−1, ΛT

p→ Λ0.

In the first step to get an consistent estimate of Var(εt), one needs an initial esti-

mate of β(z). An initial estimate of β(z) is obtained by minimizing AT (β(z))>AT (β(z))

with identity weighting matrix. By taking derivative with respect to β(z) and solv-

ing for β(z), one obtain

β̂0(z) = (S>T ST )−1S>T LT , (2.23)

which coincides with (2.10). β̂0(z) is then used to produce a weighting matrix as

Λ̂T = [(ThL)AT (β̂0(z))A>
T (β̂0(z))]−1.

Hence, the final estimate is given by

β̂1(z) = (S>T Λ̂T ST )−1S>T Λ̂T LT . (2.24)

The following theorem gives the asymptotic property of β̂1(z). It is interesting that,

if the weighting matrix ΛT is chosen to be consistent estimate of Var−1(εt), the

asymptomatic distribution is the same as Theorem 2.1; see (2.12).

Theorem 2.3. Under Assumptions A(1) - A(5), B(1) - B(2), for any grid point z,

we have,
√

ThL
[
H (β̂1(z)− β(z))−B2(z)

]
→ N(0, ∆m(z)),

where the asymptotic bias is B2(z) = [S>(z)(S∗)−1S(z)]−1S>(z)(S∗)−1M(z)B(z) =

B(z) and the asymptotic variance is ∆m(z) = f(z)−1[S(z)(S∗(z))−1S(z)]−1, Partic-

ularly,

√
ThL

[
m̂(z)−m(z)− h2

2
tr(µ2(K)m′′(z0))

]
→ N(0, σ2

m(z0)),

where σ2
m(z0) = ν0(K) σ2

0(z0)f
−1(z0)M

−2(z0).
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Remark 6: (Discussion of iteration estimation). This estimation process can be

iterated until β̂j(z) ≈ β̂j+1(z), though the estimate based on a single iteration β1(z)

has the same asymptotic distribution as that based on an arbitrarily large number

of iterations. Iterating offers the practical advantage that the final estimates are

invariant with respect to the scale of the data and to the initial weighting matrix.

2.5 Empirical Examples

In this section, I use three simulated examples and two real examples to illus-

trate the proposed model and its nonparametric estimation procedure. Among the

simulated examples, the first two examples are for one-dimensional case and the last

one is for two-dimensional setting. Notice that the Gaussian kernel is used.

2.5.1 Simulated Examples

Example 1: For simplicity of implementation, I first choose only one covariate Zt

following an autoregressive (AR) model as

Zt = 0.2 Zt−1 + εt,1, (2.25)

where εt,1 is standard normally distributed. To illustrate the proposed methods,

I consider simulated examples under mean-variance efficient condition as in Wang

(2002) for the portfolio. The conditional mean of rp,t+1 takes the form rp,t+1 =

g(Zt)+0.05 εt,2, where g(Zt) = 0.1+0.1 Z2
t and εt,2 is standard normally distributed.

In order to generate m(Zt) to satisfy mean-variance efficiency in (1.14), I choose

m(Zt) = E(rp,t+1|Zt)/E(r2
p,t+1|Zt) = g(Zt)/[(0.05)2 + g(Zt)

2]. (2.26)

Then ri,t+1 is determined by (2.1) as ri,t+1 = et/ [1−m(Zt)rp,t+1], where

et = 0.05 et−1 + vt, (2.27)
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and vt is also standard normal. Next I choose three sample sizes: T = 300, 500, and

1000. The performance of the proposed nonparametric estimators is evaluated by

the mean absolute deviation error (MADE), defined as

Em =
1

n0

n0∑

k=1

|m̂(zk)−m(zk)|,

where {zk}n0
k=1 are grid points. For each sample size, I compute the mean absolute

deviation errors and the experiment is repeated 500 times.

The 500 Em values are computed and plotted in the form of box-plots in Figure

2.1(b), from which, one can see clearly that the median of the MADE 500 values

is decreasing when the sample size gets larger. This implies that the estimation

becomes stable when sample size becomes larger. This supports the asymptotic

theory that the proposed estimator is consistent. Furthermore, I choose a typical

sample to show how close the nonparametric estimate m̂(z) is to its true curve. The

typical sample is selected in such a way that its MADE value is equal to the median

in the 500 MADE values. The true curve (solid line) of m(z) defined in (2.26) is

plotted in Figure 2.1(a) together with its nonparametric estimated curve (dotted

line) for sample size T = 500 based on the typical sample. One can observe that the

nonparametric estimate for m(·) is very close to its true curve, and m̂(·) performs

fairly well.

Example 2: I now consider a new model without imposing the mean-variance effi-

cient condition. Here I assume that only the general orthogonal condition (2.1) is

satisfied. Zt is generated in as in (2.25), ri,t+1 = et/{1 −m(Zt)rp,t+1}, where et is

the same as in Example 1 (see (2.27)) and m(Zt) is given by

m(Zt) =
0.1 exp(Zt) + Zt

0.01 exp(2Zt) + 0.1 exp(Zt) Zt + 0.0025Z2
t

,
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Figure 2.1: (a) The true curve of m(z) and its nonparametric estimate for sample
size T = 500. (b) The boxplots of MADE500 for three sample sizes.
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Figure 2.2: (a) The true curve of m(z) and its nonparametric estimate for sample
size T = 500. (b) The boxplots of MADE500 for three sample sizes.
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and rp,t+1 = 0.1 exp(Zt) + 0.05 Zt εt,3, where εt,3 is standard normally distributed.

Clearly, equation (2.1) or (2.2) is satisfied but m(Zt) 6= E(rp,t+1|Zt)/E(r2
p,t+1|Zt), so

that the mean-variance efficient condition (1.14) is not satisfied. Similar to Example

1, I compute the 500 MADE values and the nonparametric estimate for a typical

sample. Figure 2.2(a) shows the true curve of m·) and its nonparametric estimate

based on the typical sample when T = 500 and boxplots for 500 MADE values are

reported in Figure 2.2(b) for three sample sizes T = 300, 500 and 1000. Obviously,

the same conclusion similar to that in Example 1 can be made.

Example 3: In the foregoing examples, I only consider the case where Zt is a

scalar. To gain a further insight, I consider the multivariate situation. The scenario

is similar to the one dimensional case. I first generate the model under mean-variance

efficient condition. That is, Zt is generated from the following two AR models:

Z1t = 2 + 0.5 Z1t−1 + ηt,1, Z2t = 2 + 0.3 Z2t−1 + ηt,2, and ηt,2 = 0.1 ηt,1 + 0.1 ut,

(2.28)

where ηt,1 and ut are standard normally distributed. Clearly, Z1t and Z2t is corre-

lated. Similar to Example 1, rp,t+1 = g(Zt) + 0.05 εt,2, where g(Zt) = 1 + 0.1 Z2
1t +

0.1 Z2
2t and εt,2 is the same as in Example 1.

By equation (1.14),

m(Zt) = E(rp,t+1|Zt)/E(r2
p,t+1|Zt) = g(Zt)/[0.0025 + g(Zt)

2].

Then, ri,t+1 is determined by ri,t+1 = et/ [1−m(Zt)rp,t+1], where et is the same as

in Example 1 (see (2.27)).

I still choose three sample sizes: T = 300, 500, and 1000. For each sample size,

I replicate the design 500 times, and the boxplots of the MADE 500 are presented
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Figure 2.3: The boxplots of MADE500 for three sample sizes T = 300, T = 500,
T = 1000. (a) under mean-covariance efficiency; (b) without mean-covariance effi-
ciency.
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in Figure 2.3(a). The two dimensional mean absolute deviation error is defined as

Em =
1

n2
0

n0∑

k1=1,k2=1

|m̂(z1k1 , z2k2)−m(z1k1 , z2k2)|

where {(z1k1 , z2k2)} are grid points. I choose the kernel function to be the product

kernel as K(u, v) = K(u)K(v), where K(·) is the standard normal density function.

From Figure 2.3(a), it is evident that when sample size increases, the performance

of nonparametric estimator becomes better.

Finally, I consider an example with two covariates without imposing the mean-

covariance efficiency. The model is generated as follows. ri,t+1 is generated by the

orthogonal condition (2.1) as ri,t+1 = et/ [1−m(Z1t, Z2t)rp,t+1], where et is the same

as in Example 1 (see (2.27)), rp,t+1 = 0.1 exp(Z1t) + εt,4, and

m(Z1t, Z2t) =
0.1 exp(Z1t) + Z2t

0.01 exp(2 Z1t) + 0.1 exp(Z1t) Z2t + 0.0025
.

Here, εt,4 ∼ N(0, 1) and (Z1t, Z2t) is generated based on (2.28). I again choose three

sample sizes: T = 300, 500, and 1000 and replicate the experiment 500 times for

each sample size. The boxplots of MADE 500 are reported in Figure 2.3(b). It

can be seen obviously from Figure 2.3(b) that the same conclusion similar to the

foregoing case.

2.5.2 A Real Example

Example 4: I now apply the proposed nonparametric method to estimate m(·)
for a real example. The data are monthly excess returns from January 31, 1966 to

December 29, 2006, which are downloaded from CRSP. For the benchmark portfolio,

I use NYSE value-weighted (including dividend) as rp,t+1 and the value-weighted

NYSE size decile 1 (SZ1) is used as asset ri,t+1. The covariates are chosen to be the

logarithm of dividend-price ratio (DPR), the logarithm of default premium (DEF),



38

the logarithm of the one month treasury bill rate (RTB), and the excess return on

NYSE equally weighted index (EWR). DPR is the dividend yield (in percent) on

the NYSE value-weighted index, DEF is the difference between Baa-rated corporate

bond yield and Aaa-rated bond yield, and RTB is the 1-month T-bill yield; see

Wang (2002) for details. The choice of kernel is the same as in the simulation study

and the bandwidth is selected based on the rule of thumb described in Remark 4.

Similar to the simulation, I now begin with the one dimensional estimation.

Each time I use only one variable as the covariate; that is m(z) is estimated as a

univariate function. I also obtain the 95% confidence intervals for the estimates of

m(z) with the bias ignored; see (2.14) in Remark 3. The result is presented in Figure

2.4(a) for DPR, 2.4(b) for DEF, 2.4(c) for RTB and 2.4(d) for EWR. The dashed

curves represent the 95% confidence interval and the solid line is the nonparametric

estimator of m(·).

From these graphs, it is obvious that the estimates are noisy in some cases.

Thus it is very hard to give a clear conclusion for these patterns, but these graphs

do suggest the nonlinearity of m(·). Since I do not assume any functional form of

m(·), presence of the nonparametric estimation method is advantageous if m(·) is

nonlinear.

Remark 7: In Wang (2002), he gives an estimate of conditional betas using non-

parametric way where b(Zt) = E(rp,t+1|Zt)

E(r2
p,t+1|Zt)

. E(rp,t+1|Zt) and E(r2
p,t+1|Zt) is estimated

by Nadaraya-Watson regression. Also, Wang presents plots of conditional betas by

focusing on ”one-dimensional snap shots”. While betas are estimated as multivari-

ate functions, he plots the univariate functions by conditioning on one variable and

keeping all the other conditioning variables at their means. Plots of conditional

betas serve as an interesting way to illustrate nonlinearity in the time-varying be-
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Figure 2.4: The one dimensional nonparametric estimate of m(·). (a) Zt is DPR;
(b) Zt is DEF; (c) Zt is RTB; (d) Zt is EWR.

tas. Moreover, under mean-variance efficiency, m(Zt) reduces to b(Zt) = E(rp,t+1|Zt)

E(r2
p,t+1|Zt)

.

Therefore, m(Zt) = b(Zt) is equivalent to the mean-variance efficiency. While under

general orthogonal condition (2.5), when m(Zt) is a scalar function, has expression

as m(Zt) =
E(ri,t+1|Zt)

E(ri,t+1rp,t+1|Zt)
.

Finally, in this example I apply the proposed method to estimate m(Zt) un-
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Figure 2.5: The two dimensional nonparametric estimate of m(·). (a) Zt =(DPR,
DEF); (b) Zt =(DPR, RTB); (c) Zt =(DPR, EWR); (d) Zt =(DEF, RTB).

der the multidimensional setting. To simplify computation, each time I take two

variables as covariates. The kernel is the product kernel mentioned in simulation

examples. The results are summarized in Figure 2.5 which shows the surfaces of

m(·) versus bivariate covariant.

One can observe an unstable and nonlinear curved surfaces from Figure 2.5.
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This is similar to the finding in Ghysels (1998). In Figures 2.5(a) and 2.5(c), m(·)
is volatile and changes rapidly versus the covariant. But in Figure 2.5(d), m(·) as a

function of DEF is less volatile and is modestly stable. Therefore, if I use a specific

model to measure time-varying structure for different APT-type models, the result

would be sophisticated and fragile. That is the reason why one needs a more flexible

model in the nonlinear APT models.

2.6 Proof of Theorems

To prove the theorem, I need the following four lemmas, which are stated below

without a proof. For the detailed proofs, the reader is referred to the book by

Hall and Hyde (1980) for Lemma 2.1, papers by Volkonskii and Rozanov (1959)

for Lemma 2.2, Shao and Yu (1996) for Lemma 2.3, papers by Hjort and Pollard

(1996) for Lemma 2.4. Finally, I use the same notation introduced in Section 2.

Throughout this Appendix, C denotes a generic positive constant, which may take

different values at different places.

Lemma 2.1. Davydov’s Lemma: Suppose that two random variables X and Y

that are Ft
−∞ and F∞t+τ , respectively, and that ||X||p < ∞ and ||Y ||q < ∞, where

||X||p = {E|X|p}1/p, p, q ≥ 1, and 1/p + 1/q < 1. Then,

sup
t
|Cov(X,Y )| ≤ 8α1/r(τ){E|X|p}1/p{E|Y |q}1/q,

where r = (1− 1/p− 1/q)−1 and α(·) is the mixing coefficient.

Lemma 2.2. Let V1, . . . , VL1 be α mixing stationary random variables that are

Fj1
i1

, · · · ,FjL1
iL1

-measurable, respectively with 1 ≤ i1 < j1 < · · · < jL1 , il+1 − jl ≥ τ ,
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and |Vl| ≤ 1 for l = 1, . . . L1. Then,

∣∣∣∣∣E
(

L1∏

l=1

Vl

)
−

L1∏

l=1

E(Vl)

∣∣∣∣∣ ≤ 16(L1 − 1)α(τ),

where α(·) is the mixing coefficient.

Lemma 2.3. Let Vt be an α-mixing process with E(Vt) = 0 and ‖ Vt ‖r< ∞ for

2 < p < r ≤ ∞. Define Sn =
∑n

t=1 Vt and assume that α(τ) = O(τ−θ) for some

θ > pr/(2(r − p)). Then,

E|Sn|p ≤ Knp/2 max
t≤n

‖ Vt ‖p
r,

where K is a finite positive constant.

Lemma 2.4. Convexity Lemma: Let {λn(θ : θ ∈ Θ)} be a sequence of random

convex functions defined on a convex, open subset Θ of <d. Suppose λ(d) is a real-

valued function on Θ for which Λn(θ) → λ(θ) in probability, for each θ in Θ. Then

for each compact subset C0 of Θ,

sup
θ∈C0

|λn(θ)− λ(θ)| p−→ 0

Moreover, the function λ(.) is necessarily convex on Θ.

Recall and define some notations as follows:

et = (1−m(Zt)rp,t+1)ri,t+1, ST = QtQ
>
t Kh(Zt − z0)ri,t+1rp,t+1,

εt = Qt(1−m(Zt)rp,t+1)ri,t+1Kh(Zt − z), GT =
1

T

T∑
t=1

εt,

BT =
1

T

T∑
t=1

1

2
Qtri,t+1rp,t+1(Zt − z0)

>m′′(z0)(Zt − z0)Kh(Zt − z0),
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Rt = m(Zt)−m(z0)−m′(z0)
>(Zt − z0)− 1

2
(Zt − z0)

>m′′(z0)(Zt − z0),

R∗
T =

1

T

T∑
t=1

Kh(Zt − z0)Qtri,t+1rp,t+1

[
m(Zt)−m(z0)−m′(z0)

>(Zt − z0)

−1

2
(Zt − z0)

>m′′(z0)(Zt − z0)

]
,

M(z) = E(rp,t+1, ri,t+1|Zt = z), S(z) = M(z)diag{1, µ2(K)} and

S∗(z) = diag{ν0(K), h2µ2(K
2)}σ2

0(z).

Finally, set S̃T = H−1ST and H = diag{1, h2IL}.

Proposition 2.1. Under Assumption A1 - A5, we have

(i) S̃T = f(z0)S{1 + op(1)}.

(ii) BT = f(z0)M(z0)B(z0) + op(h
2).

(iii) R∗
T = op(h

2).

Proof: By the stationary assumption and A1 - A5, we have,

E(S̃T ) = E

(
1

T

T∑
t=1

H−1QtQ
∗
t
>Kh(Zt − z0)ri,t+1rp,t+1

)

= E(H−1QtQ
∗
t
>Kh(Zt − z0)ri,t+1rp,t+1)

= E(E(H−1QtQ
∗
t
>Kh(Zt − z0)ri,t+1rp,t+1 |Zt))

=

∫



M(z0 + hu) M(z0 + hu)u>

M(z0 + hu)u M(z0 + hu)uu>


 K(u)f(z0 + hu)du

→ f(z0)S(z0)
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and

ThL Var

(
1

T

T∑
t=1

ri,t+1rp,t+1Kh(Zt − z0)

)

= hL Var(ri,t+1rp,t+1Kh(Zt − z0))

+
2hL

T

T−1∑
t=1

(T − t)Cov(ri,2rp,2Kh(Z1 − z0), ri,t+1rp,t+1Kh(Zt − z0))

≡ I1 + I2.

By Assumption A1 and A2,

Var(ri,t+1rp,t+1Kh(Zt − z0)) = O(h−L),

which implies that

I1 = O(1).

Next we prove that I2 → 0. To this end we split I2 into two parts as I2 = I3 + I4,

where I3 = 2hL/T
∑dT

t=1(· · · ) and I4 = 2hL/T
∑

t>dT
(· · · ). Let dT → ∞ be a

sequence of integers such that dT hL → 0. Firstly we show that I3 → 0. By

conditional on Z1, Zt, and using assumption A2, we obtain

Cov(ri,2rp,2Kh(Z1 − z0), ri,t+1rp,t+1Kh(Zt − z0)) = O(1)

It follows that I3 ≤ dT hL → 0. We now consider the contribution of I4. For an

α-mixing process, we use Davydov’s inequality (see, e.g., Lemma 2.1).

|Cov(ri,2rp,2Kh(Z1 − z0), ri,t+1rp,t+1Kh(Zt − z0))|

≤ C[α(t)]
δ

2+δ ‖ ri,2rp,2Kh(Z1 − z0) ‖2+δ‖ ri,t+1rp,t+1Kh(Zt − z0) ‖2+δ
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By Assumption A2, we have

E|ri,t+1rp,t+1Kh(Zt − z0)|2+δ

= h−L(1+δ)f(z0)|E(ri,t+1rp,t+1|z0)
2+δ|

∫
K2+δ(u)du + o(h−L(1+δ))

≤ O(h−L(1+δ))

Thus,

|Cov(ri,2rp,2Kh(Z1 − z0), ri,t+1rp,t+1Kh(Zt − z0))| = O(αδ/(2+δ)(t)h−2L(1+δ)/(2+δ)),

and

|I4| = C
hL

T

∑

t>dT

(T − t)αδ/(2+δ)(t)h−2L(1+δ)/(2+δ) ≤ C
∑

t>dT

αδ/2+δ(t)h−δL/2+δ

By Assumption A1, and choosing d2+δ
T hL = O(1), we have

I4 = C
∑

t>dT

αδ/2+δ(t)h−Lδ/2+δ = o(h−Lδ/2+δd−δ
T ) = o(1)

dT satisfies the requirement that dT hL → 0. Note that, in Assumption A4, we

assume h → 0 and ThL → ∞ as T → ∞,

Var

(
1

T

T∑
t=1

ri,t+1rp,t+1Kh(Zt − z0)

)
= o(1).

Using similar arguments, we can show that

1

T

T∑
t=1

ri,t+1rp,t+1Kh(Zt − z0)(Zt − z0)/h = op(1), (2.29)
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1

T

T∑
t=1

ri,t+1rp,t+1Kh(Zt − z0)(Zt − z0)(Zt − z0)
>/h2 = f(z0)M(z0)µ2(K) + op(1),

(2.30)

By (2.29) and (2.30), we can obtain immediately that

S̃T = f(z0)S{1 + op(1)}.

Hence, we have proved (i).

Next, we show (ii). Note that by stationary assumption and A2,

E(BT )

=
h2

2
E

(
QtKh(Zt − z0)ri,t+1rp,t+1

(
Zt − z0

h

)>
m′′(z0)

(
Zt − z0

h

))

=
h2

2
E

(
E[Kh(Zt − z0)ri,t+1rp,t+1Qt

(
Zt − z0

h

)>
m′′(z0)

(
Zt − z0

h

)
|Zt]

)

=
h2

2

∫



M(z0 + hu)u>m′′(z0)u

h M(z0 + hu)uu>m′′(z0)u


 K(u)f(z0 + hu)du

→ f(z0)M(z0) B(z0).

where
∫

u>uK(u) = tr(µ2(K)). By the same token, we can show that the variance

of h−2BT converges to 0. Hence, we proved (ii). Finally, we have

h−2E(R∗
T ) = h−2E [Kh(Zt − z0)ri,t+1rp,t+1Rt Qt]

= h−2E [Kh(Zt − z0)M(Zt)RtQt]

= h−2

∫
M(z0 + hu)K(u)f(z0 + hu)R(z0 + hu)




1

hu


 du,
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where, by assumption A2,

R(z) = m(z)−m(z0)−m′(z0)hu− 1

2
(z − z0)

>m′′(z0)(z − z0),

so that R(z0 + hu) = o(h2). Then,

E[h−2R∗
T ] = o(1).

Similarly, we can show that Var[h−2R∗
T ] = o(1). This proves the proposition.

Proposition 2.2. Under assumption A1-A5, then,

ThL Var(GT ) → f(z0)S
∗. (2.31)

Proof: By the orthogonal condition in (2.1), we know that E(GT ) = 0 and

ThL Var(GT ) =
hL

T
V ar

(
T∑

t=1

QtetKh(Zt − z0)

)

= hL Var (QtetKh(Zt − z0))

+
2hL

T

T−1∑
t=1

(T − t)Cov(Q1e1Kh(Z1 − z0), QtetKh(Zt − z0))

≡ I5 + I6.

By Assumption A2, similar to the proof of Proposition 2.1, we have

I5 → f(z0)S
∗.

The same, we split I6 into two parts as I6 = I7 + I8, where I7 = 2hL/T
∑dT

t=1(· · · ) ≤
dT hL → 0 and I8 = 2hL/T

∑
t>dT

(· · · ). Take v1, v2 as 0,1, by Davydov’s inequality
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to obtain,

|Cov(e1Kh(Z1 − z0)(Z1 − z0)
v1 , etKh(Zt − z0)(Zt − z0)

v2)|

≤ C[α(t)]
δ

2+δ ‖ e1Kh(Z1 − z0)(Z1 − z0)
v1 ‖2+δ‖ etKh(Zt − z0)(Zt − z0)

v2 ‖2+δ

E|e1Kh(Z1 − z0)(Z1 − z0)
v1|2+δ ≤ O(h−L(1+δ)).

Thus, by assumption A.1 and choosing d2+δ
T hL = O(1)

I8 = o(d−δ
T h−Lδ/2+δ) = o(1)

and that

ThL Var(GT ) → f(z0)S
∗.

This proves the proposition.

Proof of Theorem 2.1: Recall that

H








m̂(z0)

m̂′(z0)


−




m(z0)

m′(z0)







− S̃−1

T BT − S̃−1
T R∗

T = S̃−1
T GT

It follows from Propositions 2.1 and 2.2 that

H








m̂(z0)

m̂′(z0)


−




m(z0)

m′(z0)







−B(z0) + op(h

2) = f−1(z0)S
−1GT{1 + op(1)}.

(2.32)

To prove Theorem 2.1, it suffices to establish the asymptotic normality of
√

ThLGT .

Now we use the Wold-Craḿer device, so that we consider linear combination with
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an unit vector d>GT . It is easy to show by a simple algebra that

√
ThLd>GT =

1√
T

T∑
t=1

wt,

where wt =
√

hLd> {Qtri,t+1Kh(Zt − z0)(1−m(Zt)rp,t+1)}. Now the problem re-

duces to proving the asymptotic normality of
∑T

t=1 wt/
√

T . By Proposition 2.2, one

can show that

Var(wt) = f(z0)d
>S∗d(1+o(1)) ≡ θ2(z0)(1+o(1)), and

T∑
t=2

|Cov(w1, wt)| = o(1).

Therefore,

Var
(√

ThL d>GT

)
= θ2(z0)(1 + o(1)). (2.33)

We employ so-called small-block and large-block method. For this setting, we parti-

tion the set {1, 2, · · · , T} into 2qT + 1 subsets with large-blocks of size rT and small

blocks of size sT . Let T/(rT +sT ) be the number of blocks. Let the random variables

ηj and εj be the sum over the jth large block, the jth small block, and ξ be the sum

over the residual block. That is,

ηj =

(j+1)(rT +sT )+rT∑

t=j(rT +sT )+1

wt, and εj =

(j+1)(rT +sT )∑

t=j(rT +sT )+rT +1

wt.

Then,

√
ThL d>GT =

1√
T

{
qT−1∑
j=0

ηj +

qT−1∑
j=0

εj + ξ

}
≡ 1√

T
{QT,1 + QT,2 + QT,3}.

We will show that as T →∞,

1

T
E[QT,2]

2 → 0,
1

T
E[QT,3]

2 → 0, (2.34)
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∣∣∣∣∣E [exp(itQT,1)]−

qT−1∏
j=0

E [exp(itηj)]

∣∣∣∣∣ → 0, (2.35)

1

T

qT−1∑
j=0

E(η2
j ) → θ2(z0), , (2.36)

and for every ε∗ > 0,

1

T

qT−1∑
j=0

E
[
η2

j I{|ηj| ≥ ε∗ θ(z0)
√

T}
]
→ 0. (2.37)

Clearly, these four statements imply that the sums over small and residual blocks

QT,2/
√

T , QT,3/
√

T are asymptotically negligible in probability, and {ηj} in QT,1

are asymptotically independent. Also, (2.36) and (2.37) are standard Lindeberg-

Fellow conditions for asymptotic normality of QT,1/
√

T . To show the asymptotical

normality of d>GT , it suffices to establish the four statements stated in (2.34) -

(2.37). First, we choose the block sizes,

rT =
⌊
(ThL)1/2

⌋
, sT =

⌊
(ThL)1/2/ log T

⌋
,

where τ = (2 + δ)(1 + δ)/δ . It can be easily shown that

sT /rT → 0, rT /T → 0, qT α(sT ) → 0. (2.38)

Now we establish (2.34) and (2.36). Clearly,

E[Q2
T,2] =

qT−1∑
j=0

Var(εj) + 2
∑

0≤k<j<qT−1

Cov(εk, εj) ≡ J1 + J2.

By stationarity and (2.33),

J1 = qT Var(ε1) = qT Var

(
sT∑
t=1

wt

)
= qT sT [θ2(z0) + o(1)],
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and

|J2| ≤ 2

T−rT∑
j1=1

T∑
j2=j1+rT

|Cov(wj1 , wj2)| ≤ 2T
T∑

j=rT +1

|Cov(w1, wj)| = o(T ).

Hence, by (2.38),

qT sT = o(T ), so that E(QT,2)
2 = qT sT θ2(z0) + o(T ) = o(T ).

It follows from the stationarity, (2.38) and Proposition 2.2 that

Var(QT,3) = Var




T−qT (sT +rT )∑
t=1

wt


 = O(T − qt(rT + sT )) = o(T ).

From Lemma 2.2, we then proceed as follows:

∣∣∣∣∣E
[
exp

(
it

qT−1∑
j=0

QT,1

)]
−

qT−1∏
j=0

E [exp(itηj)]

∣∣∣∣∣ ≤ 16 qT α(sT ) → 0.

This proves (2.35). It remains to show that

1

T

qT−1∑
j=0

E
[
η2

j I{|ηj| ≥ εθ(z0)
√

T}
]
→ 0.

Now, it follows from Lemma 2.3 that

E
[
η2

j I{|ηj| ≥ εθ(z0)
√

T}
]

≤ CT−δ/2E(|ηj|2+δ) ≤ CT−δ/2r
1+δ/2
T {E|wt|2(1+δ)}(2+δ)/2(1+δ)

One can easily show that

E
(|w1|2+2δ

) ≤ c h−Lδ.
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By plugging into the above the right-hand side, we obtain

1

T

qT−1∑
j=0

E
[
η2

j I{|ηj| ≥ ε∗θ(z0)
√

T}
]

= O(r
δ/2
T T−δ/2h−L(2+δ)δ/2(1+δ))

= O(T−δ/4h−L[1+2/(1+δ)]δ/4) → 0

by Assumption A5. This proves the theorem.

Proof of Theorem 2.2: Solving for β̂(z) in (2.21), we have

H(β̂T (z)− β(z))

= H[(S>T ΛT ST )−1(S>T ΛT LT )− β(z)]

= H(S>T ΛT ST )−1S>T ΛT (LT − ST β(z))

= H(S>T ΛT ST )−1S>T ΛT AT

= [S̃>T ΛT S̃T ]−1S̃>T (ΛT )AT .

Then,

H(β̂T−βT )−(S̃T (ΛT )S̃T )−1S̃T ΛT BT−(S̃T (ΛT )S̃T )−1S̃T ΛT R∗
T = (S̃T (ΛT )S̃T )−1S̃T ΛT GT .

Since in the general nonparametric GMM framework, we may choose different weigh-

ing matrix ΛT . ΛT is consistent estimate of some positive definite matrix Λ0, where

lim ΛT
p−→ Λ0(z). By Propositions 2.1 and 2.2

H[β̂T (z)− βT (z)]− (S(z)>Λ0(z)S(z))−1S>Λ0(z)M(z)B(z) + op(h
2)

= f−1[S(z)>Λ0(z)S(z)]−1S>Λ0(z)GT{1 + op(1)}
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By applying the proof of asymptotic normality of
√

ThLGT in the proof of Theorem

2.1, Theorem 2.2 is proved.

In Proposition 2.3, we take the weighting matrix Λ0 = V ar−1(εt).

Proposition 2.3. Under Assumption A1 - A5, B1-B2, we have

(i) ThL(ÂT (z)− AT (z))(ÂT (z)− AT (z))> = op(1)

(ii) ThLAT (ÂT − AT )> = op(1).

(iii) ThLÂT (z)Â>
T (z)

p−→ Λ−1
0 (z), where Λ0 = V ar−1(εt)

(iv) supβ∈Θ |ΛT (z)− Λ0(z)| p−→ 0.

Proof: Firstly, we prove proposition 2.3(i). Recall that

ÂT =
1

T

T∑
t=1

Qt{1− [m̂(z) + ∇̂m(z)>(Zt − z)]rp,t+1}ri,t+1Kh(Zt − z)
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By decomposition we have that ÂT = R∗
T + GT + BT

ThL(ÂT (z)− AT (z))(ÂT (z)− AT (z))>

=
1

ThL

T∑
t=1




1

(Zt − z)/h







1

(Zt − z)/h




> 


m̂(z)−m(z)

∇m̂(z)−∇m(z)







1

h4I







m̂(z)−m(z)

∇m̂(z)−∇m(z)




> 


1

(Zt − z)/h




> 


1

(Zt − z)/h




>

K2(
Zt − z

h
)r2

p,t+1r
2
i,t+1

+
1

ThL

∑

s 6=t

rp,t+1ri,t+1rp,s+1ri,s+1




1

(Zt − z)/h







1

(Zt − z)/h




> 


m̂(z)−m(z)

∇m̂(z)−∇m(z)







m̂(z)−m(z)

∇m̂(z)−∇m(z)




> 


1

h4I







1

(Zs − z)/h







1

(Zs − z)/h




>

K(
Zt − z

h
)K(

Zs − z

h
)

≡ G1(z) + G2(z).

We have proved in Theorem 2.1 that

H








m̂(z0)

m̂′(z0)


−




m(z0)

m′(z0)







− S̃−1

T BT − S̃−1
T R∗

T = S̃−1
T GT

Since β̂(z) is a kernel estimate, by Masry (1996) and standard conditions, we can

easily show the uniform consistency,

sup
z
|S̃T − f(z)S(z)| p−→ 0 and sup

z
|BT − f(z)M(z)B(z)| = op(h

2).
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Then

H








m̂(z)

m̂′(z)


−




m(z)

m′(z)







−B(z)+op(h

2) = f−1(z)S−1GT{1+op(1)}. (2.39)

Regarding on the first term of (ÂT (z)− AT (z))(ÂT (z)− AT (z))>,

G1(z)

=
1

ThL

∑
t

(



1

(Zt − z)/h







1

(Zt − z)/h




>

(B(z) + f−1(z)S−1(z)GT )

(B(z)> + f−1(z)S−1(z)>G>
T )K2(

Zt − z

h
)r2

p,t+1r
2
i,t+1




1

(Zt − z)/h







1

(Zt − z)/h




> )

+op(1).

By Proposition 2.1 and 2.2. ThLV ar(GT ) → f(z)S∗, BT = f(z)M(z)B(z)+ op(h
2),

B(z) = O(h2), R∗
T = op(h

2) we can obtain that

E

(



1

(Zt − z)/h







1

(Zt − z)/h




> 


1

(Zt − z)/h







1

(Zt − z)/h




>

(f−2(z)S−1(z)GT G>
T S−1(z)>)K2(

Zt − z

h
)r2

p,t+1r
2
i,t+1

)

= O(1/(ThL)) + O(h4) = o(1)

By law of large number,

G1(z) = op(1).

Similar to the proof of Proposition 2.1, by Assumption A1 that under mixing con-
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dition and Davydov’s inequality,

E(

(



1

(Zt − z)/h







1

(Zt − z)/h




>

(f−1(z)GT S−1(z)K(
Zt − z

h
)rp,t+1ri,t+1)

(f−1(z)GT S−1(z)>)K(
Zs − z

h
)rp,t+1ri,s+1




1

(Zs − z)/h







1

(Zs − z)/h




> )

= O(αδ/(2+δ)(t)h2δL/(2+δ))

Hence G2(z) = op(1), Proposition 2.3 (i) is proved.

Moreover, by Proposition 2.1

ThL(ÂT − AT )A>
T

= ThL(ÂT − AT )(GT + BT + R∗
T )

=
1

ThL

T∑
t=1




1

(Zt − z)/h







1

(Zt − z)/h




>

(B(z)> + f−1(z)S−1(z)>G>
T )

(GT + f(z)M(z)B(z)) + op(1)

Also

E(




1

(Zt − z)/h







1

(Zt − z)/h




>

(B(z)> + f−1(z)S−1(z)>G>
T )(GT + f(z)M(z)B(z)))

= O(1/ThL) + O(h4) = o(1)

Using similar argument in Proposition 2.3(i), we have ThL(ÂT − AT )A>
T = op(1).

Next, we show (iii). Note that

V ar(εt) = f(z)S∗
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ThLAT (z)AT (z)>
p−→ f(z)S∗.

Thus ThLAT (z)AT (z)>
p−→ Λ−1

0 (z) where Λ0 = V ar−1(εt).

By decomposition, it is easy to see that

ÂT (z)ÂT (z)

= (ÂT (z)− AT (z))(ÂT (z)− AT (z))> + 2(ÂT − AT )A>
T + AT A>

T

(2.40)

Thus, by Proposition 2.3 (i) and (ii), we have that

ThLÂT (z)Â>
T (z)

p−→ Λ−1
0 (z)

Proposition 2.3 (iii) is proved.

We have already proved the point wise convergence ΛT . Since the limiting

process of our target function AT A>
T is a quadratic form, using the convexity lemma

2.4 given in Pollard (1991), see lemma 2.4 one can easily establish the uniform

convergence. According to Proposition 2.3, Λ(z) is a real-valued function on Θ for

which ΛT → Λ(z) in probability, for each β in Θ. Then for each compact subset C

of Θ,

sup
β∈Θ

|ΛT (z)− Λ(z)| p−→ 0.

Hence, Proposition 2.3 is proved.

. Proof of Theorem 2.3 It follows from Proposition 2.3,

H[β̂T (z)− βT (z)]− (S(z)Λ(z)S(z))−1S>Λ(z)M(z)B(z) + op(h
2)

= f−1[S(z)>Λ(z)S(z)]−1S>Λ(z)GT{1 + op(1)}.
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By combining with Proposition 2.3 and multiple by
√

ThL, Theorem 2.3 is proved.



CHAPTER 3: TEST OF MISSPECIFICATION OF PRICING KERNEL

In Chapter 2, I consider a general nonlinear pricing kernel model and propose a

new nonparametric estimation procedure by combining local polynomial estimation

technique and generalized estimation equations, termed as nonparametric gener-

alized estimation equation (NPGEE). The nonparametric method may provide a

useful insight for future parametric fitting. Parametric models for time-varying be-

tas can be most efficient if the underlying betas are correctly specified. However,

a misspecification may cause serious bias and model constraints may distort the

betas in local area if the underlying betas are not correctly specified. Hence, to test

whether the SDF model has a linear structure or whether some parametric form

is correctly specified becomes essentially important in practice. In this chapter, I

propose a consistent nonparametric testing procedure to test whether the model is

correctly specified under a U-statistic framework. I adopt general GMM of Hansen

(1982) method to estimate the parameter inside parametric form of SDF under the

null hypothesis. Under fairly general stationarity, continuity, and the moment con-

dition that the expectations of the pricing errors delivered by SDF equal to zero, the

estimate inside SDF is consistent. My test combines the methodology of the condi-

tional moment test and nonparametric techniques, it may help to avoid the model

misidentification in pricing kernel and may enhance the efficiency of the parametric

model with prior information. Further, the limiting distributions under both the

null and alternative hypotheses are derived.

The rest of the chapter is organized as follows. In Section 3.1, I use GMM to

estimate functional form involved in the pricing kernel. I consider testing misspecifi-
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cation of the pricing error and propose a nonparametric consistent test statistic and

establish its limiting distributions under both the null and alternative hypotheses.

Also in this section, I compare the nonparametric and parametric pricing kernel

model and their testing inference. I show that there is no power if I plug in the

nonparametric estimator into the pricing kernel. Results based on the Monte Carlo

simulation study and real examples are reported in Section 3.4 to illustrate the finite

sample performance.

3.1 Parametric Models

In this section, I concentrate on a parametric approach to asset pricing models.

I follow Bansal, Hsieh and Viswanathan (1993), Bansal and Viswanathan (1993),

Ghysels (1998), and Wang (2003) closely and start with a stochastic discount factor

model; see Campbell, Lo and MacKinlay (1997) and Cochrane (2001) for details

about theory and methods and references of recent studies on the SDF approach. A

very simplified version of the SDF framework is universal and admits a basic pricing

representation

E[mt+1 ri,t+1 |Ωt] = 0,

where Ωt denotes the information set at time t, mt+1 is the SDF or the marginal rate

of substitution (MRS) or the pricing kernel, and ri,t+1 is the excess return on the i-th

asset or portfolio. In empirical finance, different models impose different constraints

on the SDF. Particularly, the SDF is usually assumed to be a linear function of

factors in various applications. Further, when the SDF is fully parameterized such

as linear form, the general method of moments (GMM) of Hansen (1982) can be

used to estimate parameters; see Campbell, Lo and MacKinlay (1997) and Cochrane

(2001) for details.

Recently, some more flexible SDF models have been studied by several authors.

For example, Bansal, Hsieh and Viswanathan (1993) and Bansal and Viswanathan
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(1993) were the pioneers to propose nonlinear APT models in empirical asset pricing

by assuming that the SDF or MRS is a nonlinear function of a few state variables.

Ghysels (1998) further advocated these models. When the exact form of the non-

linear pricing kernel is unknown, Bansal and Viswanathan (1993) suggested using

the polynomial expansion to approximate it. As pointed by Wang (2003), although

this approach is very intuitive and general, one of the shortcomings is that it is

difficult to obtain the distribution theory and the effective assessment of finite sam-

ple performance. To overcome this difficulty, instead of considering the nonlinear

pricing kernel, Ghysels (1998) focused on the nonlinear parametric model and used

a set of moment conditions suitable for GMM estimation of parameters involved.

Wang (2003) studied the nonparametric conditional CAPM and gave an explicit

expression for the nonparametric form of conditional CAPM for the excess return;

that is, mt+1 = 1 − b(Zt) rp,t+1, where Zt is a L × 1 vector of conditioning vari-

ables from Ωt, b(z) = E(rp,t+1|Zt = z)/E(r2
p,t+1|Zt = z) is an unknown function,

and rp,t+1 is the return on the market portfolio in excess of the riskless rate. Since

the functional form of b(·) is unknown, Wang (2003) suggested estimating b(·) by

using the Nadaraya-Watson method to two regression functions E(rp,t+1|Zt = z)

and E(r2
p,t+1|Zt = z). Also, he conducted a simple nonparametric test about the

pricing error. Further, Wang (2003) extended this setting to multifactor models

by allowing b(·) to change over time; that is, b(Zt) = b(t). Finally, Bansal, Hsieh

and Viswanathan (1993), Bansal and Viswanathan (1993), and Ghysels (1998) did

not assume that mt+1 is a linear function of rp,t+1 and instead they considered a

parametric model by using the polynomial expansion.

In reality, people would be interested in identifying the parametric form of

the pricing kernel and to test the mean-variance efficiency. My test statistic UT

introduced in Section 3.2 is essentially based on a leave-one-out Nadaraya-Watson

estimator formulated from E(ξtE(ξt|Zt)f(Zt)) and I show in Section 3.2 that to test
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E(ξt|Zt) = 0 is equivalent to testing E(ξtE(ξt|Zt)f(Zt)) = 0. Furthermore, there is

no power if I plug in the nonparametric GEE estimator into my test statistic. The

reason is obviously that nonparametric GEE method can always give us a consistent

estimate which satisfies the orthogonal condition

E[{1−m(Zt) rp,t+1} ri,t+1 |Ωt] = 0. (3.1)

Especially, when m(.) is a scale function, the alternative expression is

m(Zt) =
E(ri,t+1|Ωt)

E(ri,t+1rp,t+1|Ωt)
.

In other words, the null hypothesis H0 : E[(1 − m(Zt)rp,t+1)ri,t+1|Zt] = 0 can not

be rejected since such m(Zt) satisfying H0 always exists and its NPGEE can always

give an consistent estimate of m(Zt).

Indeed, H0 can be regarded as a parametric moment (orthogonal) condition.

Hence, my interest is to estimate function form of m(Zt, θ) and thus I can test mis-

specification of m(Zt, θ) and the pricing error E(ξi,t+1|Ωt) = E((1−m(Zt, θ)rp,t+1)ri,t+1|Ωt) =

0, where m(·, θ) is an assumed known function of Zt and Zt is a L × 1 vector of

conditioning variables from Ωt.

3.2 Estimation and Statistical Inference

Let θ denote an unknown (a× 1) vector of parameters and Zt be a L× 1 vector

of conditional variables from Ωt. Then, (3.1) becomes

E[{1−m(Zt, θ)rp,t+1} ri,t+1 |Zt] = 0 (3.2)

which implies

E[{1−m(Zt, θ)rp,t+1} ri,t+1] = 0
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its sample version is

1

T

T∑
t=1

{1−m(Zt, θ)rp,t+1} ri,t+1 = 0. (3.3)

Let êp
i,t+1 be the estimated pricing error in parametric model; that is, ξ̂t = êp

i,t+1 =

m̂t+1 ri,t+1, where m̂t+1 = 1−m(Zt, θ̂)rp,t+1. I use GMM method of Hensen (1982) to

estimate the unknown parameter θ and the formulation of this estimation problem

is as follows. Under one factor model, I have (L×1) vector-valued function

gT (θ) =
1

T

T∑
t=1

gt(θ, Zt, rp,t+1, ri,t+1),

where

gt(θ, yt) ≡ gt(θ, Zt, rp,t+1, ri,t+1) = Zt(1−m(Zt, θ)rp,t+1)ri,t+1

Under H0, the true value of θ is characterized by

E[gt(θ, yt)] = 0.

To choose θ so as to make the sample moment gt(θ, yt) as close as possible to the

population moment of zero, the GMM estimator θ̂ is

θ̂ = argmin g>T (θ)W−1gT (θ), (3.4)

where W is a weighting matrices. The optimal weighting matrix is the asymptotic

variance of
√

TgT (·). If the vector process gt(θ, yt) is serially uncorrelated, then the

matrix W = limT→∞ E(gT (θ)gT (θ)>) can be consistently estimated by

WT = (1/T )
∑

t

[gt(θ, yt)][gt(θ, yt)]
>
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Of course, W should be estimated by Newey-West (1987) when gt(θ, yt) is serially

correlated

WT ≡
∞∑

υ=−∞
τυ, τυ = E(gt(θ, yt)g

>
t (θ, yt−υ)), (3.5)

and

ŴT = τ0,T +

q∑
υ=1

{1− [υ/(q + 1)]}(τ̂υ,T + τ̂ ′υ,T ), (3.6)

where

τ̂υ,T = (1/T )
T∑

t=υ+1

[gt(θ̂, yt)][gt(θ̂, yt−υ)]. (3.7)

Clearly, it turns out that

WT
p −→ W.

Indeed, Hansen (1982) showed that under some regularity conditions (θ̂ − θ) =

op(1), θ̂ is asymptotically normally distributed and
√

TgT (θ, Zt, rp,t+1, ri,t+1)
d−→

N(0,W ).

To test E(ξt|Ωt) = E((1 − m(θ, Zt)rp,t+1)ri,t+1 |Ωt) = 0, Wang (2002, 2003)

considered a simple test as follows. First, to run a multiple regression

ξ̂t = êp
i,t+1 = IT

t δi + vi,t+1,

where It is a q × 1 (q ≥ k) vector of observed variables from Ωt,
1 and then test if

all the regression coefficients are zero; that is, H0 : δ1 = · · · = δq = 0 by using a

F-test. Also, Wang (2002) discussed two alternative test procedures. Indeed, the

above model can be viewed as a liner approximation of E[ξt | It]. To examine the

magnitude of pricing errors, Ghysels (1998) considered the mean square error (MSE)

as a criterion to test if the conditional CAPM or APT model is misspecified relative

to the unconditional one.

1Wang (2003) took It to be Zt in his empirical analysis.
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To check the misspecification of the model, I am going to construct test based

on U-Statistics technique. This test combines the methodology of the conditional

moment test and nonparametric techniques and it is similar to the test in Zheng

(1996). In this section, with the help of central limit theory and U-statistics the-

ories, I am able to derive the asymptotic normality under the null and alternative

hypothesis. I am interested in testing the null hypothesis

H0 : E(ξt| It) = 0 versus Ha : E(ξt| It) 6= 0, (3.8)

where It is a q × 1 (q ≥ k) vector of observed variables from Ωt. Similar to

Wang (2003), we take It to be Zt. It is clear that E(ξt|Zt) = 0 if and only if

[E(ξt|Zt)]
2 f(Zt) = 0 if and only if E [ξtE(ξt|Zt)f(Zt)] = 0. Interestingly, the test-

ing problem on conditional moment becomes unconditional. Obviously, the test

statistic could be postulated as

1

T

T∑
t=1

ξtE(ξt|Zt)f(Zt), (3.9)

if ξt and E(ξt|Zt)f(Zt) would be known. Since E(ξt|Zt)f(Zt) is unknown, its leave-

one-out Nadaraya-Watson estimator can be formulated as

̂E(ξt|Zt)f(Zt) =
1

T (T − 1)

T∑

s6=t

ξt Kh(Zs − Zt). (3.10)

Plugging (3.10) into (3.9) and replacing ξt by its estimate ξ̂t, I obtain the test

statistic, which is indeed similar to that in Zheng (1996) for classical regression

settings, denoted by UT , which is a second order U-statistics

UT =
1

T (T − 1)

∑

s 6=t

Kh(Zs − Zt)ξ̂tξ̂s (3.11)
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as shown later.

3.3 Distribution Theory

In this subsection, I discuss the large sample theory for the proposed test statis-

tic.

3.3.1 Assumptions

Assumption C:

C1. (i) For each t and s, E(rp,t+1) < ∞, E(ri,t+1) < ∞, E(r2
i,t+1r

2
p,t+1) < ∞,

E(ξt|Zs, Zt) < ∞, and E(ξ2
t |Zt) < ∞.

(ii) m(., θ) and ∂m
∂θ

(·, θ) are Borel measurable for each θ, m(z, θ) and ∂m
∂θ

(·, θ)
are continuous for each z ⊆ RL, and E(ξt) and E(∂m

∂θ
)2 exist and are

finite for all θ.

(iii) The parameter space Θ is a compact and convex subset of RL, and

E[ξ2(θ)] takes a unique minimum at θ0 ∈ Θ. Under H0, θ0 is an interior

point of Θ, E[supθ∈Θ m2(z, θ)] < ∞, E[supθ∈Θ ‖ ∂m(z,θ)
∂θ

.∂m(z,θ)
∂θ′ ‖] < ∞,

and the matrix E[∂ξ(θ0,z)
∂θ

.∂ξ(θ0,z)
∂θ′ ] is nonsingular.

(iv) A(z) = E(εt|Zt = z) and σ2
0(z) = E(ε2

t |Zt = z) satisfy Lipschitz condi-

tions. There exists some δ > 0 such that E{|εt|2+δ|Zt = z} is continuous

at z.

(v) Let fτ (., .) be the joint probability density function of Z1 and Zτ . Then

for all τ , fτ (., .) exists and satisfies a Lipschitz condition.

C2. The process {Zt, ri,t+1, rp,t+1, ξt} is strictly stationary and absolutely regular

with mixing coefficient β(k) satisfying
∑∞

k=1 k2β(k) < ∞.

C3. For some δ, Th
1+3δ
1+δ

L →∞ and Th4L →∞ as T →∞

C4. κj = E[ξ0|ξ−j, ξ−j−1...]− E[ξ0|ξ−j−1, ξ−j−2...] for j ≥ 0,
∑∞

j=0 E[κ2
j ]

1/2 is finite.
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C5. The kernel K(·) is symmetric, bounded and compactly supported.

3.3.2 Large Sample Theory

Due to the lack of the asymptotic result for a U-statistic under α-mixing context,

I consider only β-mixing given in Assumption C2. As aforementioned, the test

statistic UT given in (3.11) is a U-statistic. First, I decompose ξt to be

ξ̂t = εt + µt − bt,

where

εt = (1−m(Zt)rp,t+1)ri,t+1,

µt = (m(Zt)−m(Zt, θ))rp,t+1ri,t+1,

and

bt = (m(Zt, θ̂)−m(Zt, θ))rp,t+1ri,t+1.

Hence, the test statistic UT is decomposed as

UT =
1

T (T − 1)

∑

s6=t

Kh(Zs − Zt)ξ̂sξ̂t

=
1

T (T − 1)

∑

s6=t

Kh(Zs − Zt)[εtεs − 2εtbs + bsbt]

+
1

T (T − 1)

∑

s6=t

Kh(Zs − Zt)[µtµs − 2µtbs + 2εsµt]

≡ (LT1 − 2LT2 + LT3) + (LT4 − 2LT5 + 2LT6)

≡ UT1 + UT2. (3.12)

It is showed in the proof of Theorem 3.1 that under H0, UT2 is a higher order

by comparing with UT1 and UT1 is asymptotically unbiased and it is a degenerate

U-statistics. To prove the asymptotic result under the null hypothesis, I use mar-
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tingale central limit theorem which is similar to Hjellvik etc (1998), and the proof

is presented in the Appendix.

Theorem 3.1. If Assumptions C1 - C5 are satisfied, then under the null hypothesis,

one has

T hL/2UT1
d−→ N(0, ΣA),

where ΣA = 2
∫

[µ2(K)σ4
0(z)]f 2(z)dz with σ2

0(z) = E(ε2
t |Zt = z) and

Σ̂A = 2/(T 2hL)
∑

s 6=t

K2(
Zs − Zt

h
)ξ̂2

t ξ̂
2
s

is a consistent estimator of ΣA.

Next, we now discuss the asymptotic properties of the statistic UT under the

alternative. By Proposition 2.3, it is easy to show that
√

TUT1 = op(1). Hence, the

dominating term in UT under Ha is still UT2.

Theorem 3.2. If Assumptions C1 - C5 are satisfied, under the alternative hypoth-

esis, UT2 is asymptotically normally distributed

[UT2 − E(UT2)]/
√

Var(UT2) d −→ N(0, 1)

and

Var(UT2) =
4

T
{Var(h

(1)
T (V1)) + 2

T−1∑
t=1

Cov
(
h

(1)
T (V1), h

(1)
T (Vt+1)

)
}+ o(T−1) → ΣB,

where

Vt = [Zt, ξt], hT (Vs, Vt) = Kh(Zs − Zt)[µtµs + εtµs + εsµt − µtbs − µsbt],
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and

γT = E⊗hT (Vs, Vt) , h
(1)
T = E(hT (v, Vt))− γT .

Moreover, since
√

T UT1 = op(1), it is easy to establish the asymptotic normality

for the test statistic UT

√
T (UT − E(UT ))

d−→ N(0, ΣB).

Now I am going to investigate the power of the test under local misidentification

which departures from the null hypothesis under the rate δT = T−1/2h−L/4. It is

assumed that the local alternative is given by

H0 : E[(1−m(Zt, θ)rp,t+1)ri,t+1|Zt = z] = 0,

Ha : E[(1−m(Zt, θ)rp,t+1)ri,t+1|Zt = z] = δT q(z), (3.13)

where m(·) is a known function and q(·) is bounded and continuously differentiable.

Theorem 3.3. If Assumptions C1 - C5, are satisfied and δT = T−1/2h−L/4, under

the local alternative hypothesis (3.13), one has

ThL/2(UT )
d−→ N(

∫
q2(z)f 2(z)dz, ΣA),

where ΣA is given in Theorem 3.1.
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3.3.3 Comparing Nonparametric with Parametric Pricing Kernel

It is interesting to compare the nonparametric with parametric pricing kernel

model. Similarly, we assume that

H0 : E[(1−m(Zt)rp,t+1)ri,t+1|Zt = z] = 0,

Ha : E[(1−m(Zt)rp,t+1)ri,t+1|Zt = z] = q(z), (3.14)

where where m(·) is unspecified function and q(·) is bounded and continuously dif-

ferentiable. If we use the estimated NPGEE pricing error to construct test statistic

UN
T = 1

T

∑
t 6=s K(Zt − Zs)êtês, where êt = (1 − m̂(Zt)rp,t+1)ri,t+1, the following

theorem shows that, the test will have no power against the alternative hypotheses.

Theorem 3.4. If Assumptions A1 - A5 and C1-C5 are satisfied, under the alter-

native hypothesis (3.14), UN
T is asymptotically normally distributed

ThL/2(UN
T )

d−→ N(0, ΣC),

where ΣC = 2
∫

[µ2(K)σ4
a]f

2(z)dz with σ2
a = E(ε2

a,t|Zt = z) and εa,t = {1− [m(Zt) +

q(z)/(rp,t+1ri,t+1)]rp,t+1}ri,t+1, and Σ̂C = 2/(T 2hL)
∑

s 6=t K
2(Zs − Zt)ê

2
t ê

2
s is consis-

tent estimator of ΣC.

Remark 8: In Theorem 3.4, we have an alternative hypothesis that conditional

expectation of the pricing error E[et|Zt] = E[(1 − m(Zt)rp,t+1)ri,t+1|Zt] is q(Zt).

Under Ha, we can rewrite this as εa,t = {1 − [m(Zt) + q(z)/(rp,t+1ri,t+1)]rp,t+1},
E[εa,t|Zt] = 0. Hence under NPGEE estimation framework, the orthogonal condition

setting mentioned in (2.2) turns out to be E(1−[m(Zt)+q(z)/(rp,t+1ri,t+1)]rp,t+1|Zt) =

0. The pseudo pricing kernel becomes m∗(Zt) = m(Zt)+E( q(Zt)
rp,t+1ri,t+1

|Zt), meanwhile

in the working orthogonality condition (2.2), â becomes the estimator of m∗(z) and

b̂ becomes the estimator of ∇m∗(z). It is easy to see that εa,t is the pseudo pric-
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ing error where E(εa,t|z) = 0. It is difficult to separate our true pricing kernel m(z)

from q(z) since without imposing any constrain or specific form of real pricing kernel

m(.), we can not estimate m(z) separately using NPGEE. Moreover in the testing

procedure, we test misspecification of the pricing kernel by testing whether pricing

error E(et|zt) is zero. However as we have discussed that by using nonparametric

estimation technique the pseudo pricing error from orthogonal condition (2.2) has

conditional mean zero E(εa,t|z) = 0. It is naturally that in case we use NPGEE

estimate êt and plug into the test statistic 3.11, it will not show any power and can

not detect the deviance between m(z) and m∗(z).

3.4 Empirical Examples

To investigate how well the proposed test works, I need to calculate the size

and power function of the test. In both simulations and real data applications, the

bandwidth hi is chosen to be σi ((L + 2)T/4)−1/(L+4) suggested by Zhang (2004),

where σi is the standard deviation for the ith variable, and L is the dimension. I

choose the kernel function to be the product kernel as K(u, v) = K(u)K(v), where

K(·) is the standard normal density function.

3.4.1 Simulated Examples

To illustrate the methods proposed, I consider two simulated examples, one is

testing for linearity and the other is testing for mean-variance efficient condition.

Example 3.1 (Testing for Linearity): For simplicity of implementation, I choose only

two covariates Zt = (Z1t, Z2t)
T and Zt follows a vector autoregressive (VAR) model

as

Zt = µ + Φ Zt−1 + ηt, (3.15)
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T α Rejection rate
α = 0.10 0.089

T=400 α = 0.05 0.046
α = 0.01 0.02
α = 0.10 0.092

T=800 α = 0.05 0.053
α = 0.01 0.016
α = 0.10 0.097

T=1200 α = 0.05 0.049
α = 0.01 0.012

Table 3.1: Simulation results with three sample sizes T = 400, 800, 1200 for three
significance levels α = 0.10, 0.05, and 0.01.

where

µ =




1

1


 , Φ =




0.4 0.3

0.5 0.35




and ηt is standard normally distributed.

rp,t+1 = 1 + Z2
1t + Z2

2t + εt ≡ g(Zt) + εt,

where εt is standard normally distributed and m(Zt) is taken to be m(Zt) = θ>Zt.

First, I consider the test size. Toward the end, under H0, ri,t+1 is generated by

[1−m(Zt)rp,t+1] ri,t+1 = et,

where et = ρ1et−1 + vt, and vt is also standard normally distributed and ρ1 = 0.05.

Hansen’s (1982) GMM is used for estimating θ, and the pricing error is

êt = [1− (θ̂>Zt)rp,t+1]ri,t+1.

Define
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YT =
ThL/2UT√

σ̂T

=

∑
s6=t K(Zs−Zt

h
)êsêt

{∑s6=t 2K2(Zs−Zt

h
)ê2

s ê
2
t}1/2

. (3.16)

Then, Theorem 3.1 implies that the asymptotic distribution of YT is N(0, 1) under

H0. For each sample size of 400, 800, and 1200, the simulation is replicated 1000

times. For each level of significance α, based on the asymptotic distribution of the

test statistic, the rejection rate is computed. The simulation results are reported in

Table 3.1, from which it is easy to see that the test size performs fairly well.

Next I consider the test power. To this effect, I will evaluate the power under

a sequence of alternative models:

Ha : E[{1−m0(Zt, θ)rp,t+1}ri,t+1|Zt] = δ Z2
1t

parameterized by δ, where Zt is generated based on equation (3.15). Here, m0(Zt, θ) =

θ′Zt is a linear form, where θ = (1, 3)T and ri,t+1 is generated by

rit+1 = [εt + δ(Z2
1t)]/ [1−m0(Zt, θ)rp,t+1] ,

where rp,t+1 = Z2t + ut, εt and ut are standard normally distributed. This sequence

of models ranges from the null model (δ = 0) to the models departure from the null

model. δ(1 + Z2
1t) measures the degree of departure from the null hypothesis. The

test statistics is defined in (3.16), the rejection frequencies are computed based on

1000 simulations.

Note that when δ is equal to zero, the setting becomes to the null hypotheses.

In that case, the power is the significant level. On the other hand, when δ increases,

it is expected that the rejection rate of the null hypothesis should become larger.

The power functions under significance level α = 0.05 are reported in Figure (3.1).

The vertical line represents the rejection rate and the horizontal line represents δ



74

ranging from 0 to 0.025. The result is inline with the theory.

Figure 3.1: Power function α = 0.05
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Example 3.2 (Testing for Mean-Variance Efficiency:) To further illustrate the testing

procedure, I consider testing mean-variance efficient condition as in Wang (2002)

for the portfolio. The conditional mean of rp,t+1 takes the form

E(rp,t+1 |Zt) = 1 + Z2
1t + Z2

2t ≡ g(Zt),

and

rp,t+1 = g(Zt) + εt,

where the residual εt is standard normally distributed. In order to generate m(Zt)

to satisfy the mean-variance efficient condition as in Wang (2002) for the portfolio,

I consider

E(ri,t+1|Ωt) = E(rp,t+1|Ωt)
Cov(ri,t+1, rp,t+1|Ωt)

Var(rp,t+1|Ωt)
,
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which implies

E(ri,t+1|Ωt) = E(rp,t+1|Ωt)
E(ri,t+1rp,t+1 |Ωt)

E(r2
p,t+1|Ωt)

= m(Zt) E(ri,t+1rp,t+1 |Ωt), (3.17)

where

m(Zt) = E(rp,t+1|Zt)/E(r2
p,t+1|Zt) = g(Zt)/[1 + g(Zt)

2]. (3.18)

Then, ri,t+1 is determined by (3.17). In this experiment, under H0, ri,t+1 is generated

by

[1−m(Zt)rp,t+1] ri,t+1 = et, (3.19)

where et = ρ1et−1 + vt, vt is also standard normally distributed, and ρ1 = 0.05. m(·)
and ri,t+1 are generated by (3.17) and (3.19), respectively.

From equation (3.18), it is easy to see m(·) is nonlinear and does not have spe-

cific form. Therefore, the standard GMM method is not suitable for the estimation.

First, the proposed NPGEE method can be used to estimate the unknown form of

m(·). Thus, by plugging the NPGEE estimator m̂(zt) into (3.19), êt can be obtained

and so is the test statistic. For each of sample sizes T = 400, 800, and 1200, the

simulation is repeated 1000 times. For each level of significance α, the rejection rate

is computed and is displayed in Table 3.2. One can see easily from Table 3.2 that

the rejection rate is closer to its nominal rate when the sample size is increasing.

This implies that the result is consistent with the asymptotic theory.

3.4.2 A Real Example

Similar to the simulated examples, I am now applying the methods to test the

linearity of the pricing kernel and the mean-variance efficiency condition. The data

are monthly excess returns from January 31, 1966 to December 29, 2006. For the

benchmark portfolio, I use NYSE value-weighted (including dividend) as rp,t+1 and
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T α Rejection rate
α = 0.10 0.079

T=400 α = 0.05 0.035
α = 0.01 0.004
α = 0.10 0.08

T=800 α = 0.05 0.033
α = 0.01 0.007
α = 0.10 0.094

T=1200 α = 0.05 0.045
α = 0.01 0.01

Table 3.2: Simulation results with three sample sizes T = 400, 800, 1200 for three
significance levels α = 0.10, 0.05, and 0.01.

Table 3.3: Testing of the linearity
Forecasting Variables z-statistic p-value

DPR,DEF 5.4224 < 0.001
DPR,RTB 3.3892 < 0.001
DEF,RTB 10.2596 < 0.001
EWR,DPR 48.8062 < 0.001

the value-weighted NYSE size decile 1 (SZ1) is used as asset ri,t+1. The covariates

are chosen to be the logarithm of dividend-price ratio (DPR), the logarithm of de-

fault premium (DEF), the logarithm of the one month treasury bill rate (RTB), and

the excess return on NYSE equally weighted index (EWR).

First, I consider testing whether the pricing kernel has a linear form m(Zt) =

θ>Zt. To do so, I use the GMM method to obtain the estimated coefficient θ̂ and

pricing error ξ̂ and then compute the test statistic. Each time I take two variables

as covariates, and only take one risky portfolio as our test asset ri,t+1. The results

are given in Table (3.3). All tests on linearity of the pricing kernel are rejected.

This coincides with unstable and nonlinear curved surfaces shown in Figure 2.5 and

similar to the findings in Ghysels (1998) and Wang (2002, 2003) that the pricing

kernel is nonlinear.
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Table 3.4: Testing the conditional mean-variance efficiency of the portfolio.
Forecasting Variables z-statistic p-value

DPR,DEF -0.6375 0.2619
DPR,RTB -0.0175 0.4930
DEF,RTB 0.0711 0.5283
EWR,DPR 16.4524 < 0.001

Next, I would like to test the conditional mean-variance efficiency. As discussed

in Section (2.1), when m(·) is a scale function if benchmark portfolio is conditionally

mean-variance efficient, m(Zt) = E(rp,t+1|Zt)

E(r2
p,t+1|Zt)

. A natural way to test the condition is

to use local constant method to get the consistent estimate of b̂(Zt) =
bE(rp,t+1|Zt)bE(r2

p,t+1|Zt)
,

where

Ê(rp,t+1|z) =

∑T
t Kh(Zt − z)rp,t+1∑T

t Kh(Zt − z)
and Ê(r2

p,t+1|z) =

∑T
t Kh(Zt − z)r2

p,t+1∑T
t Kh(Zt − z)

,

and ε̂t = (1 − b̂(Zt)rp,t+1)ri,t+1 to check whether the orthogonal condition (3.1)

is satisfied. Table (3.4) presents the testing results based on nonparametric local

constant estimate. When only two covariates DPR and EWR are used as the fore-

casting variables, the null hypothesis is strongly rejected, but for other cases, one

would accept that the NYSE market proxies satisfy the conditional orthogonality,

i.e., conditionally mean-variance efficiency.

Remark 10 (Comparing with the results in Wang (2002)): Wang takes the vector

of conditioning variables as xt = (DPR, DEF, RTB, EWR)’ and the instrument

vector is zt = (1 x′t)
′ for constructing the tests. The benchmark portfolio rp,t+1 is

selected as NYSE value-weighted portfolio. He tests the mean-variance efficiency

by choosing the risky assets as five NYSE size portfolios, ri,t+1 is a vector. Since in

our test, we only use one test asset, ri,t+1 is scalar, intuitively we will have smaller

chance to reject the null hypothesis of mean-variance efficiency.
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Wang gives three different test statistics from the chi-squared distribution and

in each sample time interval case, UM-tests produce much higher p-value than the

R2-tests. The difference of the p-value range from 10.8% to 52.0%. However, Wang

claims that R1-tests producing the strongest rejections when he increases the number

of test assets. During 1971-1995, both R1 and UM test failed to reject mean-variance

efficiency hypotheses, while during 1947-1970, both R1 and UM test provide strong

rejections.

3.5 Proof of Theorems

To prove the theorems, the following lemmas are needed and listed below with-

out their proof. Indeed, Lemma 3.1 is Lemma A in Hjellvik (1999), Lemma 3.3 is

Lemma 1 in Yoshihara (1976), and Lemma 3.4 is Lemma A.0 in Fan and Li (1999).

Lemma 3.1. Let ψ(., .) be a symmetric Borel function defined on Rp×Rp. Assume

that for any fixed x ∈ Rp, E{ψ(ς1, x)} = 0. Then,

E{
∑

1≤i<j≤n

ψ(ςi, ςj)}2 ≤ cn2{M 1
1+δ

n∑

k=1

kβ
δ

1+δ (k), max
i>1

E[ψ(ς1, ςi)]
2},

where δ > 0 is a constant,

M = max
1<i≤n

max{E|ψ(ς1, ςi)|2(1+δ),

∫
|ψ(ς1, ςi)|2(1+δ)dP (ς1)dP (ςi)}

and c > 0 is a constant independent of n and the function ψ.

Lemma 3.2. Let ψ(., ., .) be a symmetric Borel function defined on Rp × Rp × Rp.

Assume that for any fixed x, y ∈ Rp, E{ψ(ς1, x, y)} = 0. Then,

E{
∑

1≤i<j<k≤n

ψ(ςi, ςj, ςk)}2 ≤ cn2{M 1
1+δ

n∑

k=1

k2β
δ

1+δ (k), max
i>1

E[ψ(ς1, ςi, ςj)]
2},
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where δ > 0 is a constant,

M = max
1<i≤n

max{E|ψ(ς1, ςi, ςj)|2(1+δ),

∫
|ψ(ς1, ςi, ςj)|2(1+δ)dP (ς1)dP (ςi, ςj),

∫
|ψ(ς1, ςi, ςj)|2(1+δ)dP (ς1, ςi)dP (ςj),

∫
|ψ(ς1, ςi, ςj)|2(1+δ)dP (ς1)dP (ςi)dP (ςj)}

and c > 0 is a constant independent of n and the function ψ.

Lemma 3.3. If (Vi)i∈Z is an absolutely regular process with mixing coefficients β(j)

and, if for some δ > 0 and 1 ≤ j < k,

Mn = max{E|hn(Vt1 , . . . , Vtk)|1+δ, Ej⊗|hn(Vt1 , . . . , Vtk)|1+δ} < ∞,

then,

|Ehn(Vt1 , . . . , Vtk)− Ej⊗|hn(Vt1 , . . . , Vtk)| ≤ 4M
1

1+δ
n β

δ
1+δ (tj+1 − tj),

where

Ej⊗hn(Vt1 , ..., V tk) =

∫
hndP (Vt1 ,...,V tk) ⊗ dP (Vtj+1 ,...,V tk).

Lemma 3.4. Let ε1, . . . , εn be a random vectors taking values in Rp satisfying an

absolute regularity condition with coefficient βm. Let h(y, z) be a Borel measurable

function, δ > 0, M = max{E[|h(η, ζ)|1+δ],
∫ ∫ |h(y, z)|1+δQ(dy)R(dz)} exists, where

Q and R are probability distributions of η and ζ, respectively. Further, let g(y) =

E[h(y, ζ)]. Then,

E|E{h(η, ζ)} − g(η)| ≤ 4M1/(1+δ)βδ/(1+δ)
m .

Now, I embark on the proofs of the theorems.

Proof of Theorem 3.1: Under H0, UT2 will vanish. The dominating term in UT1
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is LT1 which can be expresses as a partial sum of martingale differences. I will

first show that LT2 and LT3 are asymptotically of order op(T
−1h−k/2), and LT1 is

asymptotically normally distributed, which are given in the following proposition.

Proposition 3.1. Assume that Assumptions C1 - C6 hold, under H0, one has

(i) ThL/2LT1

d−→ N(0, ΣA);

(ii) LT2 = op((ThL/2)−1);

(iii) LT3 = op((ThL/2)−1);

(iv) Σ̂ = Σ + op(1).

Proof of Proposition 3.1(i):

It follows from (3.11) that

LT1 =
1

T (T − 1)

∑

s 6=t

Kh(Zs − Zt)eset

=
2

T (T − 1)

∑
1≤s<t≤T

Kh(Zs − Zt)eset

≡ 2

T (T − 1)
L∗T1 (3.20)

Define

L∗T1 =
T∑

t=2

Jt, Jt =
t−1∑
s=1

φ(1)(Vs, Vt), φ(1) = Kh(Zs − Zt)εsεt,

σ2
T =

∑
1≤s<t≤T

σ2
st, and σ2

st = E(φ(1)2).

Since (Vt) is an absolutely regular process, by Lemma 3.3, it is easy to calculate

that

σ2
st = h−L

∫
[µ2(K)σ4

0(z)]f 2(z)dz + o(β
δ

1+δ (t− s)h−L), and σ2
T = O(T 2h−L).
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Under the null hypothesis, L∗T1 is a second order degenerate U-Statistic and Jt is a

martingale difference. To show the asymptotic normality of the dominate term L∗T1,

martingale central limit theorem can be applied; see Shiryaev (1995, Theorem 4 in

VII.8). Then, it suffices to prove the following conditions:

Var(L∗T1
) '

T∑
t=2

E(J2
t ) ∼ σ2

T (3.21)

and
T∑

t=2

J2
t

p→ σ2
T , (3.22)

and Lindeberg condition:

∑T
t=2 E(J2

t I{Jt>σT ε}|Ft−1)

σ2
T

p→ 0 (3.23)

and

T 2hLVar(LT1)
p→ ΣA. (3.24)

Under H0, LT1 is a degenerate U-Statistics. Therefore, E(Jt) = 0. By the definition

of L∗T1,

Var(L∗T1) =
T∑

t=2

Var(Jt) +
∑

t 6=s

cov(Jt, Js)

= E(
T∑

t=2

J2
t ) +

∑

t6=s

E(
t−1∑
i=1

s−1∑
j=1

φ
(1)
it φ

(1)
js ).
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It follows by using the assumption
∑T

k=1{k2β
1

1+δ (k)} < ∞ that

∑

t 6=s

E(
t−1∑
i=1

s−1∑
j=1

φ
(1)
it φ

(1)
js )

= 2
∑

2<s<t≤T

t−1∑
i=1

s−1∑
j=1

E(φ
(1)
it φ

(1)
js )

≤ C
∑

2<s<t≤T

tβδ/(1+δ)(t)sβδ/(1+δ)(s)

≤
∑

t

βδ/(1+δ)(t)
∑

s

βδ/(1+δ)(s) = O(1) = o(σ2
T ).

Thus,

Var(LT1) ≈ E(
T∑

t=2

J2
t ) =

∑
1≤s<t≤T

σst + 2
∑

1≤s<t<k≤T

φ
(1)
sk φ

(1)
tk .

By Lemma 3.3, one can show that

∑

1≤s<t<k<T

E(φ
(1)
sk φ

(1)
tk ) = o(σ2

T ),

and

E(φ
(1)
sk φ

(1)
tk ) ≤ 4M

1
1+δ

1 {β(t− s)} δ
1+δ ,

where δ > 0 is a constant, and

M1 = max1≤s<t≤T{E|φ(1)
1s φ

(1)
st |1+δ, Ej⊗|φ(1)

1s φ
(1)
st |1+δ j = 1, 2} = O(h−2δL).

Next I will show that
∑T

t=2 J2
t /σ2

T

p→ 1. By a simple calculation, one can easily
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show that

E(
T∑

t=1

J2
t − σ2

T )2 = E{[
T∑

t=1

J2
t − E(

T∑
t=1

J2
t )] + [E(

T∑
t=1

J2
t )− σ2

T ]}2

≤ 2E[
T∑

t=1

J2
t − E(

T∑
t=1

J2
t )]2 + 2E[(

T∑
t=1

J2
t )− σ2

T ]2

≤ 2E{
∑

1≤s<t≤T

(φ
(1)2
st − σ2

st)}2 + 8E{
∑

1≤s<k<t≤T

φ
(1)
st φ

(1)
tk }2,

and

∑

1≤s<k<t<T

E(φ
(1)
sk φ

(1)
tk ) ≤ C

T−2∑
s=1

T−1∑
t=s+1

T∑

t=k+1

M
1

1+δ

1 {β 1
1+δ (t− s)}

≤ CM
1

1+δ

1

T−2∑
s=1

T−1∑
t=s+1

{(t− s)β
1

1+δ (t− s)}

≤ CTM
1

1+δ

1 {
T∑

k=1

kβ
1

1+δ (k)} = O(Th−2δL) = o(σ2
T ).

To build a symmetric third order U-statistic kernel, I project the three dimensional

U-statistic onto two dimensional space and define

qstk = 1/3(φ
(1)
st φ

(1)
kt + φ

(1)
sk φ

(1)
kt + φ

(1)
st φ

(1)
ks ), and qsk = 1/3

∫
φ

(1)
st φ

(1)
kt dP (Vt).

It is easy to see that E{∑1≤s<k<t≤T (φ
(1)
kt φ

(1)
st )}2 = E{∑1≤s<k<t≤T qstk}2. By apply-

ing Lemma 3.1

E{
∑

1≤s<k<t≤T

qstk}2

≤ 2E{
∑

1≤s<k<t≤T

(qstk − qst − qsk − qtk)}2 + 8T 2E{
∑

1≤s<t≤T

qst}2

≤ {c1T
3(M

1/1+δ
2 + M3) + c2T

4(M
1/1+δ
5 + M4), } = o(σ4

T ),
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where

M2 = max1<i<tmax{E[φ
(1)2
it −E(φ

(1)2
it )]2(1+δ),

∫
[φ

(1)2
it −E(φ

(1)2
it )]2(1+δ)dP (V1)dP (Vi)},

M3 = maxs<t<kE(qstk)
2, M4 = maxs<tE(qst)

2,

and

M5 = max1<s<t<T max{E|
∫

φ1sφ1tdP (V1)|2(1+δ),

∫
|φ1sφ1tdP (V1)|2(1+δ)dP (Vs, Vt)}.

By a simple calculation, one has

M
1/1+δ
2 = O(h−2L), M3 = O(1), M4 = O(1), and M

1/1+δ
5 = O(h−2L+ L

1+δ ).

Again by Lemma 3.3, one can show that

E{
∑

1≤s<t≤T

φ
(1)2
st − σ2

st}2 = O(T 2h−2L) = o(σ2
T ).

Therefore,

E(
∑T

t=1 J2
t − σ2

T )2

σ4
T ε

→ 0,

which, together with Chebychev’s inequality implies that

∑T
t=1 J2

t

σ2
T

p→ 1.

Similar to the previous proofs, one can show that

∑T
t=2 E(J4

t )

σ4
T

→ 0,
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and
T∑

t=2

E(J4
t I{Jt>σT ε}|Ft−1) ≤

T∑
t=2

E(J4
t |Ft−1).

It is clear that by Chebychev’s inequality, Lindeberg condition is satisfied

∑T
t=2 E(J4

t I{Jt>σT }|Ft−1)

σ4
T

p→ 0.

Next, I need to prove that

T 2hLV ar(LT1)
p→ ΣA, and ΣA =

∫
µ2(K)σ4

0(z)f 2(z)dz.

It follows from (3.21), (3.22) and (3.23) that

T 2hLVar(LT1) = T−2hLVar(L∗T1) = T−2hL
∑

s6=t

E(φ
(1)2
st ) + op(1) = ΣA + op(1)

It follows by martingale central limit theorem that ThL/2LT1
d−→ N(0, ΣA).

Proof of Proposition 3.1(ii): It follows by (3.11) and Lemma 3.1 that

E(LT2)
2 =

1

T 2(T − 1)2
E(

∑

s 6=t

Kh(Zt − Zs)εtbs)
2

=
4

T 2(T − 1)2
E(

∑
1≤s<t≤T

Kh(Zt − Zs)εtm
′
0(Zs, θ̃)(θ̂ − θ)rp,s+1ri,s+1)

2

≤ C

T 2(T − 1)2
T 2M

1
1+δ

6

T∑

k=1

kβ
δ

1+δ (k),

where

m0(Zt, θ)−m0(Zt, θ̂) ∼ ∂m0

∂θ
(·, θ̃)(θ̂ − θ), and θ̃ is between θ and θ̂.
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Define

φ(2)(Vs, Vt) = Kh(Zt − Zs)εtm
′
0(Zs, θ̃)(θ̂ − θ)rp,s+1ri,s+1,

and

M6 = max
1<t≤T

max{E|φ(2)(V1, Vt)|2(1+δ),

∫
|φ(2)(V1, Vt)|2(1+δ)dP (V1)dP (Vt)}.

Hansen proved the consistency and asymptotic normality of GMM estimator of θ.

W is weighting matrix which is positive semi-definite. ŴT
p−→ W , θ0 ∈ Θ, g(Vt, θ) is

continuous at each θ with probability one. E[supθinΘ ||g(Vt, θ||] < ∞. Under global

identification condition WE[g(Vt, θ)] = 0 only for θ = θ0. Hansen showed that

θ̂
p−→ θ0

Moreover, define G = E[∇θg(Vt, θ0)], Ω = E[g(Vt, θ0)g(Vt, θ0)
>]. Hansen also showed

the asymptotic normality

√
T (θ̂ − θ0)

d−→ N(0, (G>ΩG)−1),

One can obtain from Holder’s inequality and Hansen (1982) that

E|Kh(Zs − Zt)εsm
′
0(Zt, θ̃)(θ̂ − θ)rp,t+1ri,t+1|2(1+δ)

≤ {E|Kh(Zs − Zt)εsm
′
0(Zt, θ̃)rp,t+1ri,t+1|2(1+δ)p}1/p{E(θ̂ − θ)2(1+δ)q}1/q

≤ o(h−2L(2+2δ))o(T−(1+δ)).

Thus, by Assumption C3, one has

E(ThL/2LT2)
2 = o(1).
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Similarly, by Chebychev’s inequality, it is easy to see that LT2 = op(1).

Proof of Proposition 3.1(iii): Again by Holder’s inequality and Hansen (1982), one

has

E(LT3)
2 = 1/T 2E(Kh(Zt−Zs)btbs)

2 ≤ T−2E1/2(Kh(Zt−Zs))
2E1/2(btbs)

2) ≤ o(
1

T 3hL/2
).

Thus ThL/2LT3 = op(1).

Proof of Proposition 3.1(iv): Recall that

Σ̂A =
2

T 2hL

∑

s 6=t

K2(Zt − Zs)ê
2
t ê

2
s.

Using similar arguments, one can show that under H0,

Σ̂A =
2

T 2hL

∑

s6=t

K2(Zt − Zs)[ε
2
t ε

2
s

+ε2
t (µs − bs)

2 + 2ε2
t εs(µs − bs) + (µs − bs)

2(µt − bt)
2

+ 2(µt − bt)
2εs(µs − bs) + 2εt(µt − bt)ε

2
s + 2εt(µt − bt)(µs − bs)

2

+4εtεs(µt − bt)(µs − bs)]

=
2

T 2hL

∑

s6=t

K2(Zt − Zs)ε
2
t ε

2
s + op(1).

It remains to show that

2

T 2hL

∑

s 6=t

K2(Zt − Zs)ε
2
t ε

2
s = ΣA + op(1).

By Lemma 3.4,

4

T 4
{
∑

s6=t

[E(h−LK2(Zt − Zs)ε
2
t ε

2
s)− ΣA]}2 ≤ C

T 4
T 2M7

T∑

k=1

kβ
δ

1+δ (k), (3.25)
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where

M7 = max1<i≤n max{E|φ(3)(V1, Vs)|2(1+δ),

∫
|φ(3)(V1, Vs)|2(1+δ)dP (V1)dP (Vs)}.

It follows by Lemma 3.3 that

φ(3)(Vt, Vs) = E(h−KK2(Zt − Zs)ε
2
t ε

2
s)− ΣA ≤ C

T 2
M7

T∑

k=1

kβ
δ

1+δ (k) = o(1),

which, together with (3.25) implies that

E{ 2

T 2hK

∑

s 6=t

K2(Zt − Zs)ε
2
t ε

2
s − ΣA}2 = o(1),

Therefore, Σ̂A
p→ ΣA. Thus Proposition 3.1 and Theorem 3.1 is proved.

Proof of Theorem 3.2: Recall that

UT2 =
1

T (T − 1)

∑

s 6=t

Kh(Zs − Zt)[µtµs + εtµs + εsµt − µtbs − µsbt].

To establish a corresponding result in the non-degenerate case, I use Theorem 2 in

Dette and Spreckelsen (2004). To this end, I apply the Hoeffding decomposition

method. Now, define

U∗
T2 = γT + 2 H

(1)
T + H

(2)
T , Vt = {Zt, εt, µt}, and γT = E⊗hT (Vs, Vt),

where E⊗ denotes the expectation with respect to the measure P Vs ⊗ P Vt ,

H
(1)
T =

1

T

T∑
t=1

h
(1)
T (Vt), and H

(2)
T =

1

T (T − 1)

∑

s6=t

h
(2)
T (Vs, Vt)
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with

hT (Vs, Vt) = Kh(Zs − Zt)[µtµs + εtµs + εsµt − µtbs − µsbt],

and

h
(1)
T = E(hT (v, Vt))−γT and h

(2)
T (v, w) = hT (v, w)−E(hT (v, Vt))−E(hT (Vs, w))+γT .

To prove the theorem, I need to check whether the conditions in Dette and Spreck-

elsen (2004) are satisfied which are stated in the following proposition.

Proposition 3.2. Under Assumptions C1 - C5, one has

(i) γT =
∫ {[m(z)−m0(z, θ)]E(rp,t+1ri,t+1|Zt = z)f(z)}2dz + op(1);

(ii) NT = O(h−L(1+δ));

(iii) E|h(1)
T (Vt)|q = O(1), and E|h(2)

T (v, 2)|2 = O(h−L);

(iv) V ar(h
(1)
T (V1)) = O(1).

Proof: By Lemma 3.4, one can evaluate the conditional expectation of a β-mixing

process by an independent process which has the same marginal distribution. By

observing Assumptions C1-C5, it follows by a straightforward application of Lemma

A.1 in Yoshihara (1976) that

h
(1)
T (ν) = µE(µ|z)f(z) + εE(µ|z)f(z)− γT + op(1).

Similarly, one can show that

γT =

∫
{[m(z)−m0(z, θ)]E(rp,t+1ri,t+1|Zt = z)f(z)}2dz + op(1).
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Therefore, Proposition 3.2(i) holds. For Proposition 3.2(ii), on has

NT = max{ sup
s 6=t,t 6=m,m6=n

E|hT (Vs, Vt)hT (Vm, Vn)|1+δ,

sup
s6=t,t6=m,m6=n

Ej⊗|hT (Vs, Vt)hT (Vm, Vn)|1+δ,j=1,2,3} = O(h−L(1+δ)).

Note that the order of Ej⊗|hT (Zs, Zt)hT (Zm, Zn)|1+δ is the same as

E|Kh(Zs − Zt)Kh(Zm − Zt)[µtµs + εtµs + εsµt − µtbs − µsbt]

[µmµn + εmµn + εmµn − µmbn − µmbn]|1+δ.

By an application of Holder’s inequality with 1/η+1/ζ = 1, and taking η < 2/(1+δ),

one has

E|hT (Zs, Zt)hT (Zm, Zn)|1+δ

= E|Kh(Zs − Zt)Kh(Zm − Zt)[µtµs + εtµs + εsµt − µtbs − µsbt]

[µmµn + εmµn + εnµm − µmbn − µnbm]|1+δ

≤ {E|Kh(Zs − Zt)Kh(Zm − Zn)|η(1+δ)} 1
η {E|(µtµs + εtµs + εsµt − µtbs − µsbt)

(µmµn + εmµn + εnµm − µmbn − µnbm|ζ(1+δ)} 1
ζ

= O(h(−2Lη(1+δ)+2L)/η) ∗O(1) = O(h−L(1+δ)).

For other cases, using the same techniques, one can obtain

Ej⊗|hT (Zi, Zj)hT (Zk, Zl)|1+δ = O(h−L(1+δ)), j = 1, 2, 3.

This proves Proposition 3.2(ii). To show Proposition 3.2(iii), using Cτ -inequality,

one has

E|h(1)
T (Vt)|q ≤ E[µE(µ|z)f(z)]q + γq

T + o(1) = O(1).
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Similarly,

E|h(2)
T (v, w)|2 ≤ C1E|hT (v, w)|2 + C2E|h(1)

T (v)|2 + C3γ
2
T , (3.26)

and

E|hT (Vs, Vt)|2 = E{Kh(Zs − Zt)[µtµs + εtµs + εsµt − µtbs − µsbt]}2

= O(h−L). (3.27)

Thus, it follows by (3.26) and (3.27) that E|h(2)
T (v, w)|2 = O(h−L). Finally,

Var(h
(1)
T (V1)) =

∫
{[m(z)−m0(z, θ)]

2E2(rp,t+1ri,t+1|Zt = z)}2f 3(z)

+ {E(ε2|z)[m(z)−m0(z, θ)]
2E2(rp,t+1ri,t+1|Zt = z)}f 3(z)dz − γ2

T

= O(1),

and

Cov(h
(1)
T (V1), h

(1)
T (Vt+1)) = E[E2(u|z1)E

2(u|zt+1)f(z1)f(zt+1)]− γ2
T + op(1).

The proof of Proposition 3.2 is complete. Therefore, the conditions in Dette and

Spreckelsen (2004) are satisfied. Thus, Theorem 3.2 is proved.

Proof of Theorem 3.3: Firstly, it is easy to see that

UT = UT1 + MT1 + MT2 ,
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where

MT1 =
1

T (T − 1)

∑

s6=t

Kh(Zs − Zt)[µt(bs + εs) + µs(bt + εt)]

and

MT2 =
1

T (T − 1)

∑

s 6=t

Kh(Zs − Zt)µtµs.

Proposition 3.3. Under local alternative, if E(µt|Zt) = δT q(Zt) and δT = T−1/2h−L/4,

one has

ThL/2MT1 = op(1), and ThL/2MT2

p−→ E[q2(z)f(z)].

Proof of Proposition 3.3: MT1 is a non-degenerate U-statistic. Similarly to proof

of Proposition 3.2, one can deal with conditional probability of P (Vs|Vt) by treating

Vs and Vt as independent using Lemma 3.4.

h
(1)
T2(v) = E(Kh(Zs − Zt)[µt(bs + εs) + µs(bt + εt)|Vs = v) = εδT q(z)f(z) + o(1).

Hence when δT = T−1/2h−L/4,

Var(MT1) =
4

T
{Var(h

(1)
T2(V1)) + 2

T−1∑
t=1

cov(h
(1)
T2(V1), h

(1)
T2(Vt+1))}+ o(T−1)

= O(T−1δ2
T ) = O(T−2h−k).

Thus,

ThL/2MT1 = op(1).

Since MT2 is a non-degenerate U-statistic with

h
(1)
T3(v) = E(Kh(Zs − Zt)µsµt|Vs = v) = µE(µ|z)f(z),
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it is clear that

E(MT2) =

∫
E2(µ|z)f 2(z)dz =

∫
δ2
T q2(z)2(z)f 2(z)dz. (3.28)

and

Var(MT2) =
4

T
{Var(h

(1)
T3(V1)) + 2

T−1∑
t=1

cov(h
(1)
T3(V1), h

(1)
T3(Vt+1))}+ o(T−1)

= O(T−3h−L).

Thus,

Var(ThL/2MT2) = o(1),

which, together with (3.28), implies that

ThL/2MT2

p−→
∫

δ2
T q2(z)(z)f 2(z)dz.

By Proposition 3.3, it is easy to show that under local alternative hypothesis,

Thk/2(UT − E(UT ))
d−→ N(

∫
δ2
T q(z)2f 2(z)dz, ΣA).

This proves Theorem 3.3.

Proof of Theorem 3.4: First, decompose êt to be

êt = εa,t + nt

where

εa,t = {1− [m(Zt) + q(z)/(rp,t+1ri,t+1)]rp,t+1}ri,t+1
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and

nt = m̂(Zt)− [m(Zt) + q(z)/(rp,t+1ri,t+1)].

Then,

UN
T =

1

T (T − 1)

∑

s6=t

Kh(Zs − Zt)êsêt

=
1

T (T − 1)

∑

s6=t

Kh(Zs − Zt)[εa,tεa,s + (εa,tns + εa,snt) + nsnt]

= NT1 + NT2 + NT3. (3.29)

Suppose m(Zt) inside the pricing kennel satisfies Ha, there exists mN(Zt) = m(Zt)+

q(Zt)/(rp,t+1ri,t+1) such that E(εa,t|Zt) = 0. By comparing with the parametric

model, εa,t and εt have the same property. In the following Proposition, it shows

that the asymptotic distributions of NT1 and L∗T1 are same.

Proposition 3.4. Under the alternative hypothesis setting given in 3.14, if Assump-

tions A1 - A5 are satisfied, one has

(i) ThL/2NT1
d−→ N(0, Σc),

(ii) NT2 = op((ThL/2)−1),

(iii) NT3 = op((ThL/2)−1),

(iv) Σ̂c = Σc + op(1).

Proof of Proposition 3.4: Recall that by decomposition given in (3.29), after adding

the deviance part of the model back to the pricing kernel, the conditional expec-

tation of the pricing error is zero; that is E(εa,t|Zt) = 0 so that NT1 is a degen-

erate U-statistic. The process V N
t = (Zt, rp,t+1, ri,t+1, nt, εa,t) is absolutely regular

with mixing coefficient satisfying
∑T

k=1 k2β(k) < ∞. The dominating term NT1 is

asymptotically normally distributed by the central limit theorem for a degenerate
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U-statistic. The nonparametric GEE method actually gives the estimate of mN(·)
inside the pricing kernel mN

t+1 = 1−mN(Zt)ri,t+1.

Note that the rest proof of Proposition 3.4 is the same as that for Proposition

3.1. Therefore, details are omitted. Define

NT1 =
T∑

t=2

Ja,t, Ja,t =
t−1∑
s=1

φ(1)
a (Vs, Vt), φ(1)

a = Kh(Zs − Zt)εsεt,

σ2
a,T =

∑
1≤s<t≤T

σ2
a,st, and σ2

a,st = E(φ(1)2
a ).

Similar to the proof of Proposition 3.1, one can show that

Var(NT1) '
T∑

t=2

E(J2
a,t) ∼ σ2

a,T ,

and
T∑

t=2

J2
a,t

p→ σ2
a,T

and Lindeberg condition:

∑T
t=2 E(J2

a,tI{Ja,t>σa,T ε}|Ft−1)

σ2
a,T

p→ 0,

and

T 2hLV ar(NT1)
p→ Σc.

The β-mixing coefficient is always larger than the α-mixing one. Then, if a process

is β-mixing, it is α-mixing. Therefore, Assumptions A1-A5 in Theorem 2.12 are still

valid. By Theorem 2.12, one can show that nt = Op(h
2). It follows by the proof of



9

Proposition 3.1 and Theorem 3.1 that

E(NT2)
2 =

1

T 2(T − 1)2
E(

∑

s6=t

Kh(Zt − Zs)εa,tns)
2

=
4

T 2(T − 1)2
E(

∑
1≤s<t≤T

Kh(Zt − Zs)εa,tns)
2 = O(h2/(T 2hL)),

and

E(ThL/2NT2)
2 = o(1).

By Chebychev’s inequality, it is easy to see that LT2 = op(1) and

E(NT3)
2 = T−2E(Kh(Zt − Zs)ntns)

2 ≤ T−2E1/2(Kh(Zt − Zs))
2E1/2(ntns)

2)

≤ o(T−2h−L/2−2).

Hence, ThL/2NT3 = op(1). Since nonparametric estimation can always give a

consistent estimator, term nt, which is the difference between the nonparametr

estimator and m(Zt) + q(Zt)/(rp,t+1ri,t+1) has small order and it therefore vanishe

Also,

Σ̂c =
2

T 2hL

∑

s6=t

K2(Zt − Zs)[ε
2
a,tε

2
a,s + ε2

a,tn
2
s + 2ε2

a,tεa,sns + n2
sn

2
t

+ 2ntεa,tε
2
a,s + 2n2

sεa,tnt + 4ntnsεa,tεa,s]

=
2

T 2hL

∑

s6=t

K2(Zt − Zs)ε
2
t ε

2
s + op(1).

Similarly, one can show that

2

T 2hL

∑

s6=t

K2(Zt − Zs)ε
2
a,tε

2
a,s = Σc + op(1).

Thus, Proposition 3.4 is proved.
6

n

ic

s.



CHAPTER 4: CONCLUSION

In this dissertation, my main goal is to study the nonparametric pricing kernel

models. To estimate nonparametric pricing kernel function, I propose a nonparamet-

ric estimation procedure, term as nonparametric generalized estimation equations

(NPGEE) which combines the local linear fitting and the generalized estimation

equations. I establish the asymptotic properties of the resulting estimator. In order

to test whether pricing kernel model has some specific parametric form, I propose a

consistent nonparametric testing procedure under U-statistic framework.

There are still some related works which can be done in this research area.

First, some other possible models could be considered in a similar context, such as

a semi-parametric SDF model. Also, the SDF mt+1 is unnecessary to be specified

as mt+1 = 1 − m(Zt)rp,t+1. For example, one can consider a more general setting

like mt+1 = m1(Zt, rp,t+1) with the unknown form of SDF. Alternatively, mt+1 =

m1(m(Zt), rp,t+1) with known m1(·, ·) but unknown m(·). In addition, unit root issue

may exist for financial variables in the SDF model. Furthermore, my studies in this

dissertation strongly support using a conditional SDF. But the question arises is

how to choose an appropriate model and related variables in a real application. All

of these problems could be considered as future work in this area.
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