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ABSTRACT 

 

 

CORBIN MICHAEL GROHOL.  Toward fixtureless inspection of automotive fenders.  

(Under the direction of DR. EDWARD MORSE) 

 

 

With nonrigid parts, it is most convenient for designers to specify the desired 

shape in the design condition; that is, the shape is specified with all loads present that the 

part will experience in service (gravity, assembly constraints, etc.). The flexibility of the 

part begins to pose challenges for the dimensional inspection of the part profile when the 

deformations due to design loads exceed 10% of the dimensional tolerances. A common 

approach to negotiate the inspection of nonrigid parts is to construct an inspection fixture 

that mimics the design condition (identical mounting points and orientation to gravity). 

Although effective, inspection fixtures have the limitation of cost, calibration 

maintenance, procurement time, and the inspection is limited to a small subset of parts. 

This thesis builds on the fixtureless inspection literature which has emerged in response 

to these limitations. 

The proposed fixtureless inspection method uses finite element simulations to 

adjust the nominal design shape into the fixtureless measurement condition. Finite 

element simulations are used to remove deformations from the nominal shape due to 

design condition loads and add deformations due to measurement condition loads. In this 

way, the part can be inspected under different constraints than the design condition and 

without specialized fixtures. The details of the method are outlined including the finite 

element simulations (using Abaqus), conditioning of the finite element mesh (using 

MATLAB
®

), optical point cloud acquisition (using a ROMER Absolute Arm with 

integrated scanner), and the processing of the point cloud data (using MATLAB
®

).  
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This method is first demonstrated on a cantilevered flat plate where the design 

condition is defined with a mass hanging on the end and the measurement condition is 

defined under the influence of gravity only. The proposed method is used to measure the 

profile deviation of the plate in the measurement condition (gravity only). For validation, 

the profile deviation is also measured in the design condition (mass hanging on the end). 

The profile deviation from the measurement condition is shown to match the directly 

measured profile deviation from the design condition to within 25 μm. This is two orders 

of magnitude lower than the 3 mm design condition deflections of the cantilevered plate. 

The method is extended to an automotive fender where an original modal 

decomposition technique is used to deform the nominal model to the measurement data. 

The modal decomposition compensates for deformation of the part during assembly and 

provides a means to predict the required assembly forces. The profile deviation is 

measured using the proposed method with the fender in a fixtureless state resting on a flat 

table. For validation, the profile deviation of the fender is also measured in a specialized 

fixture to hold the fender in the design condition. The two profile deviations match within 

0.6 mm, more than an order of magnitude lower than the 10 mm measurement condition 

deflections of the fender. This thesis provides one of the first automotive examples of 

fixtureless inspection and offers improved computational efficiency as finite element 

simulations for every measured part are not required. 
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CHAPTER 1: INTRODUCTION 

1.1. Research area description 

The assignment of geometric and dimensional tolerances to a part is a critical step 

in the design process and is intended to capture the precision with which the part must be 

manufactured. To assist in this endeavor, standards such as the ASME Y14.5 [1] have 

been developed. According to para. 4.20 of the ASME Y14.5 standard, unless otherwise 

specified, the manufactured part is dimensionally inspected in the free-state. ISO 

10579:2010 defines the free-state as the part under the influence of gravity only. ASME 

Y14.5 provides exceptions to the free-state inspection rule for nonrigid parts in which the 

shape change is significant after the removal of manufacturing forces. 

Abenhaim et al. [2] propose a compliance scale shown in Figure 1-1 to help 

contextualize the rigidity of a part. In zone A, parts are considered practically rigid. In 

this case, reasonable forces from handing and inspection (~40 N) cause deformations less 

than 5% of the part tolerances. In zone B, handling and inspection forces exceed 10% of 

the part tolerances and are classified as nonrigid. In Zone C, which includes parts such as 

gaskets and seals, parts are extremely nonrigid.  

 
Figure 1-1: Compliance behavior scale (reproduced from Abenhaim et al. [2]) 

The research in this thesis investigates parts in the zone B category which pose 

unique challenges to dimensional specification and inspection. The challenge of the 

profile inspection of nonrigid parts in zone B is illustrated in Figure 1-2. Consider a 
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sheet-metal part of cylindrical-shell shape that is fastened to the bottom of an aircraft. 

The designer defines the Computer Aided Design (CAD) model and the corresponding 

profile tolerance when the part is on the aircraft. The design shape and profile tolerance 

bounds appear as in Figure 1-2a where the arrows represent the fastening locations. 

Dimensional inspection is completed off of the aircraft supported as shown in Figure 

1-2b where the arrows represent the supports. The solid blue line represents the 

manufactured part while the dotted line represents the ideal shape of the part with no 

defects. 

 
Figure 1-2: Cylindrical shell a) design condition CAD model, b) measurement data, and 

c) evaluation of profile deviation 

In Figure 1-2c, the CAD model and measured part are overlaid to evaluate the 

profile deviation. Portions of the part that are outside of the tolerance zones are shown in 

red. The part is out of tolerance partially due to gravitationally induced sag in the 

measurement condition and partially due to actual manufacturing defects. In this 

example, deviations due to manufacturing defects and gravitational sag are 

indistinguishable. 

1.2. Nonrigid specification 

To deal with the challenge of the specification and inspection of nonrigid parts, 

ASME Y14.5 provides exceptions to the free-state inspection requirement as defined in 

para. 4.20 and 5.5. Abenhaim et al. [2] again provide a very useful classification structure 

a) b)

c)
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for navigating the nonrigid specification methods allowed by the ASME Y14.5 [1] 

standard which is reproduced in Figure 1-3.  

The first specification method that departs from the free-state is the restrained 

condition which allows restraining features to impose deformations on the part during 

inspection. Restrictive specification is another method which allows the tolerance to be 

applied on a per unit basis to limit abrupt surface changes in a relatively short length. For 

example, the straightness of a 100 mm shaft may be controlled by applying a 0.1 mm 

straightness tolerance to any 25 mm zone along the length. The restrictive specification 

approach is described in ASME Y14.5 para. 5.4.1.3 for straightness and para. 5.4.2.2 for 

flatness. Lastly, curved feature properties allow the specification of curved properties 

such as arc lengths (see ASME Y14.5 para. 1.8.3). 

The reader is referred to Abenhaim et al. [2] for a detailed explanation of each 

method. However, this brief explanation demonstrates that the restrictive specification 

and curved feature properties specification methods do not provide a means to evaluate 

the profile tolerance of a freeform part. As a result, the restrained condition is the only 

specification method well suited for the profile inspection of freeform nonrigid parts. 
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Figure 1-3: Categorization of inspection specification methods for nonrigid parts 

(reproduced from Abenhaim et al. [2]) 

1.3. Nonrigid inspection 

All five of the restrained condition specification methods (shown in Figure 1-3) 

require the use of an inspection fixture. The most prevalent in the automotive and 

aerospace literature seems to be the restrained on a shaped fixture approach. In this 

method, a part of interest (hood, fender, aircraft skin, etc.) is mounted into a specialized 

fixture that holds the part in the design condition and measurements of the parts surface 

are captured using a 3D sensor. Reference points are used to rigidly transform the 

measurements and CAD model into the same coordinate system. The measured points on 

the part surface are then compared directly to the CAD model to determine if the part is 

in tolerance [3].  

To illustrate the restrained on a shaped fixture approach, the cylindrical-shell part 

from Figure 1-2 is presented again in Figure 1-4. Instead of measuring in an arbitrary 

support condition (Figure 1-2b), a fixture is constructed to mimic the design condition 

(Figure 1-4b). The CAD model and measured part are overlaid to evaluate the profile 
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deviation in Figure 1-4c. Profile deviations due to gravitational sag are eliminated and the 

remaining deviations are therefore departures from the designer’s intended shape. 

 
Figure 1-4: Cylindrical shell a) design condition CAD model, b) restrained on a shaped 

fixture, and c) evaluation of profile deviation 

Ascione and Polini [4] provide an example in the literature of the restrained on a 

shaped fixture approach. They used the design drawings and datum structures from a 

helicopter winch fairing to design an inspection fixture shown in Figure 1-5 [4]. A high 

point-density inspection of the part was completed using a tactile-probe CMM. A total of 

50,000 points were collected during the inspection and the measurement procedure was 

repeated five times. They demonstrated a repeatability (standard deviation) of 8.5 μm, 

much smaller than the profile tolerance of the part. 

 
Figure 1-5: Measurement fixture for winch faring (reproduced from Ascione and Polini 

[4]) 

a) b)

c)
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As shown by Ascione and Polini [4], the measurement repeatability and the 

limited number of uncertainty contributions no doubt make the restrained on a shaped 

fixture method a top choice for high quality inspection of nonrigid parts. 

Although effective, as pointed out by many [2], [3], [5], the restrained on a 

shaped fixture method has several limitations including speed, cost, calibration 

maintenance, and procurement time. To help contextualize the cost and difficulty of 

maintaining a specialized fixture, consider an automotive fender with a 1 mm profile 

tolerance. The position of the fixture locations should be within 0.1 mm of the nominal 

design for the inspection equipment to be an order of magnitude more precise than the 

fender. Automotive fenders are of 1 m scale so the required fixture precision is 1 part in 

10
4
 (0.1 mm / 1 m). Additionally, automation is difficult and most inspection is 

performed manually on a small subset of parts.  

In response to these limitations, a research area known as fixtureless inspection 

has emerged in an effort to eliminate these specialized inspection fixtures and enable 

100% in-line profile inspection of nonrigid parts. This research area seeks to inspect parts 

in arbitrary support conditions. For example, a part may be inspecting lying on a table 

with no fixturing. 

1.4. Fixtureless inspection literature review 

Fixtureless inspection makes use of what Abenhaim et al. [2] termed simulated 

displacement. Simulations are either performed on the CAD model (defined in the design 

condition) or the scan data (measured in a fixtureless condition) to adjust the two data 

sets into the same condition. In either case, deformations due to gravity and the 

inspection fixture are virtually corrected for and the scan data is compared to the CAD 
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model to evaluate the dimensional conformance. The following paragraphs are intended 

to be a comprehensive review of the fixtureless inspection literature in roughly 

chronological order. The last paragraph of this section will summarize the current state of 

the literature and opportunities for improvement. 

To the knowledge of the author, the earliest published research on fixtureless 

inspection was by Blaedel et al. [6] in 2002. They introduced the technical approach of 

inspecting the part in an arbitrary fixture and using simulation to remove the 

deformations due to the fixture, providing the shape of the part in its free state (i.e., 

floating in zero gravity). Another simulation is then completed to virtually deform the 

scan data from the free state into its functional equivalent that mimics the design 

condition. The distortion-compensated scan data is compared to the CAD model to 

evaluate the dimensional conformance. They created a useful diagram to represent their 

idea which is reproduced in Figure 1-6. 

  
Figure 1-6: Technical approach by Blaedel et al. (reproduced from [6]) 

In 2005 and 2006, Weckenmann et al. [7], [8] published a method called virtual 

distortion compensation. They scanned the surface of a sheet metal part simply lying on a 
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table (fixtureless) using optical fringe projection measurement. A triangular mesh of the 

point cloud was created and feature extraction was used to locate the assembly features. 

Finite Element (FE) modeling was used to displace the assembly features to their nominal 

position. The distortion-compensated scan mesh was then compared to the CAD model. 

Their method corrected the profile of a sheet metal part from a profile deviation of about 

6 mm in the fixtureless state to under 1 mm (in the interpretation of the author, this 

should be zero if the process worked perfect) in the distortion-compensated mesh. 

In 2007, Weckenmann et al. [9] improved their previous method by performing 

the FE analysis on the CAD model rather than the scanned data in a virtual reverse 

deformation approach. The CAD model was meshed and FE boundary conditions were 

applied to move the fixation points of the CAD to the scanned data.  This reduces the 

amount of processing that must be done on the scan data. 

In 2009, Jaramillo et al. [10] sought to decrease the computational time of a 

method like the virtual reverse deformation approach to make the process more practical 

for in-line inspection (i.e., on an assembly line). Radial basis function interpolation was 

used to reduce the required mesh density in the FE calculations. They decrease the FE 

computation time by more than three orders of magnitude (from 282 seconds to 0.2 

seconds). In 2011, they provide more details of the method along with additional case 

studies [3]. In 2013, they extended their method to only require partial scans of the 

inspected part [11], [12]. The partial view method was demonstrated on four plastic parts 

around 100 mm in size.   

In 2010, Lemeš published a thesis [13] in which an uncertainty analysis and 

validation of the virtual distortion compensation approach was investigated. The method 
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was demonstrated on the diameter measurement of 25 deep-drawn-steel oil filter 

housings and 25 manually manufactured sheet-metal saddle brackets. Tensile tests were 

performed on 75 specimens to determine the statistical distribution of material properties. 

FE simulations were used to deform the fixtureless scanned part into the clamped 

configuration. A GOM ATOS II and NextEngine scanner were used for digitization of 

the parts. A GUM [14] based uncertainty analysis was completed on the 46 mm diameter 

oil filter housing and showed that a direct scanned measurement of the clamped part and 

the FE corrected fixtureless diameter measurement both yielded a measurement 

uncertainty of 93 μm (k = 2).  This is an exciting result as it shows FE corrected 

measurements can be as precise as fixtured measurements. 

In 2011, Gentilini and Shimada [15] used a method similar to virtual distortion 

compensation [7], [8] to predict the post assembly shape of a 500 mm scale plastic lid 

and a sheet-metal toaster housing. The pre-assembly shape of each part was attained 

using a 3D Laser Digitizer VIVID9i.  The scanned shape was meshed and FE simulations 

were performed to deform the scan data into the assembly configuration to predict the 

post-assembly shape. A material calibration and boundary condition optimization process 

was also included. A comparison between the predicted post-assembly shape and actual 

scan data from the assembled parts showed average deviations around 0.3 mm with 

maximum deviations around ±4 mm. 

Also in 2011, Abenhaim et al. [16] proposed a unique method which, unlike the 

previous studies, was not based on FEA. They named the method iterative displacement 

inspection algorithm. In this algorithm, the meshed CAD model is iteratively deformed 

until it matches the scanned manufactured part. The iterative deformation is done in such 



10 

 

a way to ensure the smoothness of the CAD surface so that neither the measurement 

noise nor surface defects of the manufactured part are concealed. Rather than scanning 

physical parts, they test their method on several simulated parts (300 mm to 1000 mm 

scale) with known defects. The simulated measurement data is created by adding a dent 

shape to the CAD model (about 3 mm profile deviation), performing FE analysis to 

deform the model from its nominal position (induced deformations around 30 mm), and 

adding measurement noise with a 0.1 mm standard deviation to the mesh. This is done 32 

times on various 14 gauge (0.721 mm) aluminum parts. The detected profile deviations 

from their algorithm are within approximately 10% of the known simulated values. A 

drawback of this approach is it seems to be restricted to dent shaped profile deviations. In 

the same year, Aidibe et al. [17] added a maximum normed residual test to the algorithm 

to automatically set the identification threshold. 

In 2012, Abenhaim et al. [2] published an excellent review on the specification 

and inspection of nonrigid parts. Their review of the subject was the source for much of 

the literature reviewed in this thesis. 

Also in 2012, Radvar-Esfahlan et al. [18] introduce what they call the generalized 

numerical inspection fixture process to help generalize the procedure for fixtureless 

inspection. Their method is based on the distance-preserving property of nonrigid parts.  

They use the conservation of geodesic distance (shortest distance between two points 

along a surface) principle to identify corresponding points between the nominal CAD 

(fixtured) and scan data (fixtureless). FE analysis is then used to deform the CAD model 

to the scan data such that the identified corresponding points match. In a manner similar 

to Abenhaim et al. [16], they tested their method on simulated parts with known 
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displacements and bump shaped profile deviations. The reported errors in the results 

varied between less than 1% (detection of a 9.93 mm profile deviation for a known 10 

mm bump) and over 25% (detection of a 1.44 mm profile deviation for a known 2 mm 

bump). 

In 2014, the same authors (Radvar-Esfahlan et al.) increased the robustness of the 

generalized numerical inspection fixture process by filtering out incoherent geodesic 

distances from their similarity detection algorithm [19]. Incomplete scan data can be 

processed with the updated algorithm. Radvar-Esfahlan and Tahan [20] also completed a 

performance study of dimensionality reduction methods. Radvar-Esfahlan then organized 

these works into a doctoral thesis on generalized numerical inspection fixtures [21]. 

In 2013, Abenhaim et al. [22] performed a sort of best case analysis of the virtual 

distortion compensation approach [7], [8] where the properties of the material are known 

(no uncertainty), the thickness of the part is uniform and known (no uncertainty), and the 

position of the support points are known (no uncertainty). They perform the case studies 

on an aluminum aerospace panel of 2000 mm scale and 2.54 mm thickness. FEA is used 

to simulate a deformed fixtureless geometry before a variety of measurement noise 

distributions are imposed on the simulated fixtureless geometry. The appropriate FE 

boundary conditions are imposed on the simulated fixtureless geometry to force it into 

the nominal condition. The most interesting of the case studies is perhaps the 

Predicted#2. In this case, no measurement noise is added. The simulated fixtureless 

geometry is displaced to the nominal condition and compared to the nominal CAD model 

which results in a mean profile deviation of 0.027 mm and a maximum of 0.460 mm. 

Since this case consisted of no material property or measurement uncertainties, these 
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profile deviations represent the limit of the numerical accuracy of the FE analysis and the 

boundary condition definition. 

In 2014, Aidibe and Tahan [23] introduced another non-FE based approach. They 

used Gaussian curvature properties, an intrinsic property of the part, in combination with 

a Thompson-Biweight statistical test to identify the profile deviations of nonrigid parts. 

The method is tested on three simulated parts and one experimental case with a variety of 

dent and waviness profile deviations. Their method properly identifies the deviations to 

within 2% to 17%, depending on the case. In 2015, the authors extend this method to 

include a coherent point drift algorithm [24]. In 2016, Babanezhad et al. [25] further 

improved this method with what they called a bi-objective flexible registration algorithm. 

In 2015, Abenhaim et al. [26], [27] introduced a method that maps the scanned 

point cloud (from the fixtureless state) to the nominal model (fixtured state) using FEA 

results on the nominal model. In this way, all the FEA is performed on the nominal CAD 

avoiding the difficulties of generating a quality FE mesh from point cloud data. 

Abenhaim et al. [26] succinctly describe the process: 

This [point cloud mapping] is done by embedding a FE-based transformation 

model into a boundary displacement constrained optimization. The boundary 

displacement constrained optimization seeks to minimize a distance-based 

similarity criterion between points in unconstrained regions while maintaining a 

distance-based similarity criterion between points in constrained regions within a 

specified contact distance, and at the same time, limiting the restraining forces. 

[26]  

 

Using simulated parts similar to ref: [22], the method results in shape errors 70% less 

than their previous work [22].  

In 2016, Karganroudi et al. [28] improve on the generalized numerical inspection 

fixture [18] by filtering out inaccurate sample points. The generalized numerical 
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inspection fixture method generates a set of corresponding sample points between the 

scan data (fixtureless) and nominal CAD (fixtured) that are used to deform the CAD to 

the scan data by FE simulation. If some of the sample points are located close to the 

defects, the method can fail to detect those defects. In response to this issue, Karganroudi 

et al. use a curvature and von Mises stress filtering method to eliminate the sample points 

near the defects. They performed many case studies on simulated parts and, in general, 

the filtering method improves the estimation of defect size. In 2018, the authors asses the 

robustness of their method using a verification and validation approach [29]. In 2018, the 

authors also investigate the use of permissible restraining pressures for the fixtureless 

inspection of aerospace panels [30]. 

In 2017, Sabri published a thesis [31] documenting the works of Sabri et al. In 

2016 and 2013, Sabri et al. [5], [32] presented a method very similar to the generalized 

numerical inspection fixture with the exception of the boundary condition definition for 

the FE analysis. When the corresponding points between the CAD model and scan data 

are found, only the points around fixating features (holes) are used. FE analysis is then 

used to displace the CAD model towards the scan data by applying translational 

displacement boundary conditions to the fixating features. They test their method on 

simulated parts with known defects. The performance ranges from a 0.3% to 25% error 

between the detected and known defect amplitude. In 2017, Sabri et al. [33] improved 

their previous method by increasing the accuracy of the displacement boundary 

conditions using an automatic FE node insertion technique. They retested on the 

simulated parts and reported minor improvements. 
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In 2017, Thiébaut et al. [34] presented a method based on a previous work [35] in 

which they dealt with the point cloud directly (i.e., no mesh of the scanned part was 

created). They used the mesh of the nominal CAD model to evaluate the point cloud. To 

evaluate the geometric deviation, they created a cylinder around the normal vector of 

each FE node. Cloud points within the cylinder were identified and the normal distance to 

the node for each identified cloud point was calculated. Then, the normal distances were 

averaged to attain a geometric deviation at that FE node. To attain the profile deviations, 

the geometric deviations were corrected for the FE calculated gravitational sag at each 

node. If the standard deviation or number of identified cloud points for a given node were 

too high, they ignored that node’s data. Modal decomposition was used to develop a 

continuous function representation of the surface deviations to 1) interpolate the 

deviation where missing data existed and 2) enable assembly simulations. The method 

was tested on an aluminum sheet-metal section in multiple configurations and showed a 

repeatability of 0.02 mm over most of the part with differences reaching 0.06 mm in 

some areas.  

As demonstrated, the literature on fixtureless inspection is fairly voluminous; 

however, it is certainly not closed. Below a few opportunities for remaining work in the 

fixtureless inspection of nonrigid parts are provided. 

1) Recently, most of the proposed methods have only been tested on simulated data. 

While this is useful, when the methods are tested on real data, unforeseen 

obstacles will undoubtedly arise.  
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2) Other than the thesis of Lemeš [13], no rigorous uncertainty analysis has been 

completed. All the FE based methods are directly influenced by the part material 

properties and these influences should be quantified. 

3) Large scale automotive parts such as hoods or fenders have yet to be studied. 

4) Assembly forces have only been predicted in a few cases. 

For these reasons, this thesis develops and original method for the fixtureless 

inspection of an automotive fender and predicts the assembly forces. Uncertainties in 

material properties and part thickness are considered for a simplified case study. 

In the opinion of the author, the most intuitive method was that of Thiébaut et al. 

[34]. Interfacing directly with the scanned point cloud (no meshing of the point cloud 

necessary) and performing the FEA based off a known support configuration seemed 

achievable and was therefore chosen as the basis of the method for this thesis. This 

technique also implements FEA on the CAD geometry rather than the scan data and only 

requires FE simulations to be completed once for a given part design. In contrast, 

techniques that use FEA on the scan data require simulations for every measured part and 

would likely be infeasible in a production environment. 

1.5. Thesis structure 

Chapter 2 introduces the theory and nomenclature used in the proposed approach. 

Chapter 3 introduces the scanner used for point cloud acquisition. Chapter 4 applies the 

proposed approach to the profile deviation measurement of a flat plate. This case study 

provides an initial evaluation of the proposed approach on a simple geometry with 

boundary conditions that are simple to model. Chapter 5 estimates the uncertainty in the 

profile deviation measured in the Chapter 4 case study. 
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Chapter 6 conceptually investigates the proposed approach against a challenging 

measurement of a twisted plate. This investigation reveals limitations of the Chapter 2 

formulation of the proposed approach. The proposed approach is modified with an 

original modal correction technique to account for over-constrained design conditions.  

Chapter 7 implements the updated formulation of the proposed approach on the 

fixtureless inspection of an automotive fender. Finally, Chapter 8 will conclude the 

thesis, suggest opportunities for future work, and identify the research contributions of 

this thesis to the nonrigid inspection literature. 
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CHAPTER 2: PROPOSED APPROACH 

For the remainder of the thesis, the design condition is defined as the condition in 

which the CAD model is specified. The measurement condition is defined as the 

fixtureless inspection configuration in which the part is measured. The free condition is 

defined as the shape of the part in zero gravity with all forces removed.  

The goal of the proposed approach is to enable the measurement of the profile 

deviation (the measurand) of the manufactured part in an arbitrary “fixtureless” 

measurement condition. This avoids the cost and logistics of creating a dedicated fixture 

that holds the part in the design condition during inspection. Quotation marks are added 

to “fixtureless” to denote that some hardware may still be required to hold the part during 

measurement. 

Continuing the cylindrical shell example from Figure 1-4, the proposed approach 

uses FEA to deform the CAD model (geometrically defined in the design condition) to 

the measurement condition as illustrated in Figure 2-1. Then, scan data from the 

measurement condition can be directly compared to the deformed CAD geometry to 

assess the profile deviation (measurand). The defect free part is represented by the orange 

solid line, the profile tolerance zone by the orange dashed line, the measured part by the 

blue line, and the out of tolerance regions in red. This approach only requires a simplified 

inspection stand (black arrows in Figure 2-1 measurement condition) as opposed to 

building a fixture to mimic the design condition as required in the restrained on a shaped 

fixture approach (recall Figure 1-4). Notice the proposed approach in Figure 2-1 reveals 

the same profile deviations (shown in red) as Figure 1-4 despite the differing support 

conditions. 
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Figure 2-1: Principle of the proposed approach 

The technique used in this thesis for the measurement of nonrigid parts was 

adapted from Thiébaut et al. [34]. It differs from Thiébaut et al. [34] through 

nomenclature changes and a modification to Equation (2.4) such that the profile deviation 

is evaluated by comparing the point cloud to the deformed measurement condition CAD 

model rather than the nominal design condition CAD model. Thiébaut et al. [34] also use 

the structural modes of the part to create an analytical representation of the profile 

deviation, which is not reproduced in this thesis. 

2.1. Theory of proposed approach 

In the following section, defect free surfaces are represented by 𝑺, deformations 

due to gravity as 𝑫, measured point clouds as 𝑴, and residual profile deviations 

(measurand) as 𝑹. Variables corresponding to the design condition carry the subscript des 

while measurement condition variables carry the subscript meas. 𝑺, 𝑫, and 𝑹 correspond 

to the nodal coordinates of the discretized CAD model while 𝑴 consists of the 

coordinates of the measured point cloud. The following paragraphs develop nomenclature 

and equations for the proposed approach which is illustrated in Figure 2-2. 

Measurement condition Design condition
(CAD)

Free condition

Remove gravitational 
deformations

Add gravitational 
deformations
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Figure 2-2: Nomenclature of proposed process 

The shape of the design as captured by the CAD model in design condition is 

defined as 𝑺𝒅𝒆𝒔. It follows that the free shape of the component, when the forces of 

gravity and fixturing are removed, is defined as 𝑺𝒇𝒓𝒆𝒆. Defining the deformations due to 

gravity in the design condition as 𝑫𝒅𝒆𝒔, the relationship in Equation (2.1) is attained [34]. 

With the CAD model discretized into a mesh containing 𝑚 nodes, 𝑺𝒅𝒆𝒔 is an 𝑚𝑥3 matrix 

containing the XYZ nodal coordinates of the design condition CAD model mesh. 𝑺𝒇𝒓𝒆𝒆 is 

an 𝑚𝑥3 matrix containing the XYZ nodal coordinates of the free condition (gravity and 

fixturing forces removed) mesh. 𝑫𝒅𝒆𝒔 is an 𝑚𝑥3 matrix obtained from FE simulations 

containing the dXdYdZ nodal displacements due to design condition gravity. 𝑫𝒅𝒆𝒔 thus 

represents the displacements necessary to deform 𝑺𝒇𝒓𝒆𝒆 to 𝑺𝒏𝒐𝒎 as captured in Equation 

(2.1)
 
[34]. 

𝑺𝒅𝒆𝒔 = 𝑺𝒇𝒓𝒆𝒆 + 𝑫𝒅𝒆𝒔 (2.1) 

The defect-free surface in the measurement condition is defined as 𝑺𝒎𝒆𝒂𝒔 as 

captured by Equation (2.2). 𝑺𝒎𝒆𝒂𝒔 is an 𝑚𝑥3 matrix containing the XYZ nodal 

coordinates of the measurement condition CAD model mesh. 𝑫𝒎𝒆𝒂𝒔 is an 𝑚𝑥3 matrix 

Measurement condition Design condition
(CAD)

Free state

gravitational 
deformations

gravitational 
deformations

(measurand)

Free condition
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obtained from FE simulations containing the dXdYdZ nodal displacements due to 

measurement condition gravitational load and represents the displacements necessary to 

deform 𝑺𝒇𝒓𝒆𝒆 to 𝑺𝒎𝒆𝒂𝒔. Combining Equation (2.1) and (2.2) to produce Equation (2.3), 

𝑺𝒎𝒆𝒂𝒔 is attained by taking the design condition CAD model (𝑺𝒅𝒆𝒔), subtracting design 

condition (𝑫𝒅𝒆𝒔) displacements, and adding measurement condition (𝑫𝒎𝒆𝒂𝒔) 

displacements. This is illustrated in Figure 2-2. 

𝑺𝒎𝒆𝒂𝒔 = 𝑺𝒇𝒓𝒆𝒆 + 𝑫𝒎𝒆𝒂𝒔 (2.2) 

𝑺𝒎𝒆𝒂𝒔 = 𝑺𝒅𝒆𝒔 − 𝑫𝒅𝒆𝒔 + 𝑫𝒎𝒆𝒂𝒔 (2.3) 

Now, the manufacturing induced deviations from the ideal geometry can be 

discussed. In this proposed approach, the profile deviations (the measurand) are attained 

by measuring the part shape in an arbitrary “fixtureless” configuration using non-contact 

optical scanning. The scanning generates a point cloud with 𝑝 points defined as 𝑴𝒎𝒆𝒂𝒔 

which is a 𝑝𝑥3 matrix containing the XYZ coordinates of the point cloud and contains 

deformations due to the measurement condition gravity and profile deviations.  

The residual profile deviations (the measurand) due to the manufacturing process 

are defined as 𝑹𝒎𝒆𝒂𝒔 which is an 𝑚𝑥1 matrix containing the surface normal distance 

between the measurement condition CAD model (𝑺𝒎𝒆𝒂𝒔, Equation (2.3)) and the scanned 

part surface (𝑴𝒎𝒆𝒂𝒔). This is illustrated in Figure 2-2.  

𝑹𝒎𝒆𝒂𝒔 can be conceptually represented in Equation (2.4). However, the matrices 

are different sizes and the surface normal distance needs to be computed so the equation 

is not strictly executable. A method for evaluating Equation (2.4) will be discussed in the 

next section. 

𝑹𝒎𝒆𝒂𝒔 = 𝑴𝒎𝒆𝒂𝒔 − 𝑺𝒎𝒆𝒂𝒔 (2.4) 
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2.2. Profile deviation calculation 

The following section provides a means for evaluating the profile deviation 

(𝑹𝒎𝒆𝒂𝒔) given the conceptual basis of Equation (2.4). This method is directly from 

Thiébaut et al. [34] except for 1) different nomenclature and 2) Thiébaut et al. evaluate 

𝑹𝒎𝒆𝒂𝒔 by comparing 𝑴𝒎𝒆𝒂𝒔 to 𝑺𝒅𝒆𝒔 (and then correct for FE predicted deformations 

later) whereas here 𝑴𝒎𝒆𝒂𝒔 is compared to 𝑺𝒎𝒆𝒂𝒔 (already takes FE predicted 

deformations into account). The two approaches should lead to the same result; however, 

the author believes the approach in this thesis is more intuitive and slightly more 

computationally efficient. 

Figure 2-3 (adapted from Thiébaut et al. [34]) depicts the stages of the calculation 

of 𝑹𝒎𝒆𝒂𝒔. The step by step procedure is described as follows (adapted from Thiébaut et 

al. [34]): 

1) The measured point cloud (𝑴𝒎𝒆𝒂𝒔) is registered to the measurement condition 

CAD surface (𝑺𝒎𝒆𝒂𝒔). The rough registration is completed through aligning the 

two coordinate systems while the fine registration is accomplished through a 

rigid-body best-fit transformation. An example result is shown in Figure 2-3a. 

2) The normal vector (�⃗� 𝑖) of each node (𝑆𝑚𝑒𝑎𝑠𝑖
) is calculated (see Figure 2-3b). 

Here, 𝑖 is the index into the 𝑚 nodes. The details of the nodal normal vector 

calculation can be found in Appendix A.1. 

3) For the 𝑖𝑡ℎ node, a cylindrical zone of radius 𝑅 is defined around �⃗� 𝑖. Nearest 

neighbors from the 𝑴𝒎𝒆𝒂𝒔 point cloud within the cylindrical zone are identified 

as 𝑵 (see red points in Figure 2-3b). 𝑵 is a 𝑞𝑥3 matrix containing the XYZ 

coordinates of each of the nearest neighbors. 𝑞 is the number of nearest neighbors 
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for the 𝑖𝑡ℎ node. The details of the nearest neighbor search can be found in 

Appendix A.2. 

4) The surface normal distance 𝑒𝑖𝑘 = 𝑆𝑚𝑒𝑎𝑠𝑖𝑁𝑘
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ �⃗� 𝑖 is calculated for each nearest 

neighbor cloud point 𝑁𝑘 (see Figure 2-3c). Here, 𝑘 is the index into the 𝑞 nearest 

neighbors of the 𝑖𝑡ℎ node. 

5) The residual profile deviation 𝑅𝑚𝑒𝑎𝑠𝑖
= 𝑚𝑒𝑎𝑛(𝒆𝒊) (measurand) is calculated for 

each node resulting in an 𝑚𝑥1 matrix of profile deviations. As a result, every 

node of the 𝑺𝒎𝒆𝒂𝒔 mesh has a corresponding profile deviation. 

6) As a measure of scan noise, the standard deviation of the nearest neighbor surface 

normal distances is calculated 𝜎𝑖 = √
1

𝑞−1
∑ (𝑒𝑖𝑘 − 𝑅𝑚𝑒𝑎𝑠𝑖

)
2𝑞

𝑘=1 . 

7) As a measure of scan density, the number of nearest neighbors per node is stored 

𝑄𝑖 = 𝑞. 

8) If 𝜎𝑖 is above a threshold (0.05 mm in this thesis) or 𝑄𝑖 is below a threshold (10 in 

this thesis), the point cloud (𝑴𝒎𝒆𝒂𝒔) at that node (𝑆𝑚𝑒𝑎𝑠𝑖
) is deemed too noisy or 

insufficiently dense to trust its representation of the part surface. Thus, the profile 

deviation 𝑅𝑚𝑒𝑎𝑠𝑖
 is ignored for that node. This step will create some missing data 

in the residual profile deviation field (𝑹𝒎𝒆𝒂𝒔). This is where Thiébaut et al. [34]) 

used modal decomposition to interpolate the missing data, which is not 

reproduced in this thesis. 
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Figure 2-3: Evaluation of 𝑹𝒎𝒆𝒂𝒔 by a) registration of scan data to CAD, b) identification 

of nearest neighbors, and c) calculation of the profile deviation (adapted from Thiébaut et 

al. [34]) 

The resulting measurand (the residual profile deviation 𝑹𝒎𝒆𝒂𝒔) reveals the 

manufacturing defects that cause the real part to differ from the ideal defect-free 

geometry (𝑺𝒎𝒆𝒂𝒔). These defects have to be evaluated against the profile tolerance to 

determine if the part is acceptable. Since 𝑺𝒎𝒆𝒂𝒔 is corrected for gravitational sag in the 

design and measurement conditions (recall Equation (2.3)), 𝑹𝒎𝒆𝒂𝒔 allows direct access to 

the manufacturing defects. That is, the challenges of separating gravitational effects from 

manufacturing defects previously shown in Figure 1-2 are overcome using the proposed 

approach. 

The MATLAB code for accomplishing the profile deviation calculation is 

provided in Appendix A.3. 

2.3. Performance check 

If the proposed approach were implemented in an industrial setting, 𝑹𝒎𝒆𝒂𝒔 would 

serve as the final measurand and no additional work would be required. In this thesis 

however, additional measurements will be performed to evaluate the proposed approach 

against the common restrained on a shaped fixture approach (recall Figure 1-4).  

a) b) c)
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The proposed approach and the restrained on a shaped fixture approach will be 

executed in parallel as shown in Figure 2-4. The part will be mounted in an inspection 

fixture that holds it in the design condition. The part will then be scanned to attain a point 

cloud 𝑴𝒅𝒆𝒔. The profile deviation 𝑹𝒅𝒆𝒔 will be calculated just as in section 2.2 by 

comparing 𝑴𝒅𝒆𝒔 to 𝑺𝒅𝒆𝒔 (conceptually represented in Equation (2.5)). In an ideal case, 

𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 would match perfectly. The performance of the proposed approach will 

be judged on how closely they match. 

𝑹𝒅𝒆𝒔 = 𝑴𝒅𝒆𝒔 − 𝑺𝒅𝒆𝒔 (2.5) 

 
Figure 2-4: Parallel execution of the proposed approach and the restrained on a shaped 

fixture approach 

Measurement condition
Design condition

Free condition

gravitational 
deformations

gravitational 
deformations

(measurand) (measurand check)

Proposed approach Restrained on a shaped fixture approach



25 

 

CHAPTER 3: DATA ACQUISITION 

The proposed approach requires an input point cloud (𝑴𝒎𝒆𝒂𝒔). There are many 

methods for non-contact point cloud acquisition as detailed in Savio et al. [36] and Li and 

Gu [37]. In this thesis, a ROMER Absolute Arm with integrated laser-line scanner is 

used. The UNC Charlotte Center for Precision Metrology owns one and the versatility of 

the contact stylus and scanner in one measurement system is convenient for this 

laboratory scale experiment. The metrology software Spatial Analyzer was used to 

operate the ROMER Arm during data acquisition. For full production automation, an 

automated fringe projection scanner is more appropriate.  

The ROMER Arm is shown in Figure 3-1. The specifications directly from the 

product brochure for the ROMER Absolute Arm are provided in Table 3-1. The single 

point repeatability and volumetric accuracy are evaluated according to the ASME 

B89.4.22 standard for performance evaluation of articulated arm coordinate measuring 

machines. Currently, there is no standardized test for scanner performance. 

The single point repeatability test involves measuring a point from multiple 

approach directions. The value reported is the maximum deviation from the average of 

the recorded points. The volumetric accuracy test involves measuring a calibrated length 

standard in several locations and orientations. The value reported is the maximum 

deviation between the measured lengths and the certified length. The scanning system 

accuracy test involves measuring a matte sphere from five different articulated positions. 

The value reported is the maximum center-to-center distance of the five sphere scans. 

(source: HexagonMI.com) 
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Figure 3-1: ROMER Absolute Arm with integrated RS4 scanner (source: 

HexagonMI.com) 

Table 3-1: ROMER Absolute Arm with integrated RS4 scanner specifications (source: 

HexagonMI.com) 

Model # RA-7525SEI-4 

Date of manufacture May 2016 

Single point repeatability  0.027 mm 

Volumetric accuracy ±0.038 mm 

RS4 scanning system accuracy 0.063 mm 

RS4 scanning sensor accuracy 0.028 mm (2σ) 
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CHAPTER 4: CASE STUDY - CANTILEVERED FLAT PLATE 

The first case study of the proposed approach was completed on a cantilevered 

aluminum flat plate 313.68 mm x 101.63 mm x 2.479 mm in size (22 μm uncertainty in 

length and width, 11 μm uncertainty in thickness). The goal of this case study was to 

assess the performance of the proposed process as discussed in section 2.3. Ideally, the 

profile deviation measured using the proposed process in the measurement condition 

(𝑹𝒎𝒆𝒂𝒔) would match that measured in the design condition (𝑹𝒅𝒆𝒔). This case study 

provides a simple geometry with simple boundary conditions for the first test of the 

proposed approach. 

4.1. Setup and point cloud acquisition 

The nominal plate geometry was defined as perfectly flat in the free condition 

(𝑺𝒇𝒓𝒆𝒆). The plate was mounted in a cantilevered support such that the overhanging 

dimensions were 221.68 mm x 101.63 mm x 2.479 mm. Using the touch probe of the 

ROMER Arm, a coordinate system was created (see Figure 4-1a). 

Two arbitrary loading conditions that would produce significantly different plate 

shapes were chosen as the design and measurement conditions. The design condition 

defect-free surface (𝑺𝒅𝒆𝒔) was defined as the plate in a cantilevered support with a 739.8 

g mass hanging at the top right corner of the plate (see Figure 4-1b). The measurement 

condition defect free surface (𝑺𝒎𝒆𝒂𝒔) was defined as the plate under the influence of 

gravity only (see Figure 4-1a).  
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Figure 4-1: Flat plate in a) measurement condition and b) design condition  

The point clouds in Figure 4-2 were acquired with the plate loaded as shown in 

Figure 4-1. A point cloud (𝑴𝒎𝒆𝒂𝒔, Figure 4-2a) of 500,514 points was acquired in the 

measurement condition using the ROMER Arm RS4 scanner. The vertical structures at x 

= 220 mm in Figure 4-2a are simply the cloud points measured in the tapered holes. The 

mass was applied to the top right corner and another point cloud (𝑴𝒅𝒆𝒔, Figure 4-2b) of 

634,525 points was acquired in the design condition. 

 
Figure 4-2: Unprocessed point clouds in a) measurement condition and b) design 

condition 

4.2. FE analysis 

To create the design condition CAD mesh (𝑺𝒅𝒆𝒔), an FE simulation was carried 

out in Abaqus. A shell part of size 221.682 mm x 101.630 mm was created. The part was 

assigned aluminum material properties of Young’s modulus 69x10
9
 Pa, Poisson’s ratio 

a) b)

y

x.
z

x gravity x gravity

a) b)

gravity gravity

mass
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0.35, and density 2700 kg/m
3
. The shell was assigned a thickness of 2.479 mm and the 

default Simpson integration rule with 5 integration points was used. A fixed boundary 

condition was applied along the x = 0 edge restricting displacement and rotation about all 

three axes. A gravitational load of -9.7976 m/s
2
 was applied in the z direction. To 

represent the mass, a concentrated force of 0.7398 kg x -9.7976 m/s
2
 = -7.2483 N was 

applied at the x = 221.682 mm, y = 101.630 mm corner node in the z direction.  

Quadrilateral shell elements were creating by seeding the edges with 4 elements 

along each edge creating a 16 element mesh. The simulation was executed and the 

displacement of the x = 221.682 mm, y = 101.630 mm corner node with the mass was 

recorded. To evaluate the sufficiency of the mesh density, the number of elements was 

doubled along each edge and the simulation was re-executed reporting the displacement 

each time. This was repeated until the displacement sufficiently converged.  The results 

of the mesh convergence can be found in Table 4-1 and graphically represented in Figure 

4-3. The transition from 1024 to 4096 elements only resulted in a 2 μm change in 

displacement. This is much less than the volumetric accuracy of the scanner and was 

deemed sufficiently converged. The final mesh used for the FE simulations is shown in 

Figure 4-4 and resulted in 4255 nodes. 

Table 4-1: Total elements versus nodal displacement of the weighted node 

Elements 
per edge 

Total 
elements 

Weighted node 
displacement (mm) 

4 16 -3.075 

8 64 -3.108 

16 256 -3.118 

32 1024 -3.123 

64 4096 -3.125 
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Figure 4-3: Total elements versus nodal displacement of the weighted node 

 
Figure 4-4: Mesh used for FE simulations (design condition loads shown) 

The FE simulation was executed using the 4255 node mesh. The free condition 

nodal coordinates (𝑺𝒇𝒓𝒆𝒆) were attained from the Abaqus .inp file. The nodal 

displacements representing deformations due to the design condition loads (𝑫𝒅𝒆𝒔) were 

exported from Abaqus. According to Equation (2.1), 𝑫𝒅𝒆𝒔 was added to 𝑺𝒇𝒓𝒆𝒆 to attain 

𝑺𝒅𝒆𝒔. 

An FE simulation was completed for the measurement condition using all the 

same settings except the concentrated force representing the mass was removed. The 

nodal displacements representing deformations due to the measurement condition loads 
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(𝑫𝒎𝒆𝒂𝒔) were exported from Abaqus. The measurement condition CAD mesh (𝑺𝒎𝒆𝒂𝒔) 

was calculated according to Equation (2.2). 

The deformed meshes are shown in Figure 4-5 and Figure 4-6. The maximum 

displacement in the measurement condition was -0.21 mm. The maximum displacement 

in the design condition was -3.30 mm. 

 
Figure 4-5: Deformed FE meshes in a) measurement condition and b) design condition 

 
Figure 4-6: Deformed FE meshes reproduced from Figure 4-5 with different orientations 

and scaling 

4.3. Point cloud registration 

According to step 1) of the profile deviation calculation (recall section 2.2), the 

measured point cloud must be registered to the CAD mesh. To accomplish this task, it is 

first necessary to simplify the point cloud such that there exists a one-to-one CAD node 

a) b)

gravity gravity

mass

a) b)

gravity gravity
mass
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to point cloud correspondence. This was accomplished by creating a 1 mm cylinder that 

extended along the z direction at each node. Cloud points within the cylinder were 

averaged to create a single cloud point for each node. The MATLAB code is provided in 

Appendix B.1. 

The X-Y-yaw alignment was deemed satisfactory due to the coordinate system 

setup with the ROMER Arm touch probe during data acquisition. However, the clamping 

system (Figure 4-1), is believed to provide insufficient restraint to pitch-roll movements.  

As such, the simplified point clouds were transformed to their corresponding CAD mesh 

(simplified 𝑴𝒎𝒆𝒂𝒔 to 𝑺𝒎𝒆𝒂𝒔, simplified 𝑴𝒅𝒆𝒔 to 𝑺𝒅𝒆𝒔) by minimizing the sum of the 

squared z distances through z-roll-pitch movements. The MATLAB code is provided in 

Appendix B.2. The resulting simplified point clouds transformed to their corresponding 

CAD meshes are shown in Figure 4-7 and begin to reveal the profile deviation. Note, the 

transformations were applied to the entire point clouds (Figure 4-2), even though the 

simplified point clouds are shown in Figure 4-7 just for neatness. 

 
Figure 4-7: Transformed point clouds from a) measurement condition and b) design 

condition 

gravity gravity

mass

a) b)
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4.4. Profile deviation calculation 

Next, according to steps 2) through 8) the profile deviation was calculated using 

the MATLAB code in Appendix A.3. The cylindrical search radius (𝑅) was set to 1 mm, 

the standard deviation (𝜎𝑖) threshold to 0.05 mm, and the nearest neighbor (𝑄𝑖) threshold 

to 10. 𝑹𝒎𝒆𝒂𝒔 (500,514 points and 4,225 nodes) took 344 seconds of CPU time and 𝑹𝒅𝒆𝒔 

(634,525 points and 4,225 nodes) took 429 seconds. The calculations were performed on 

a ThinkPad T530 laptop with an Intel® Core i7-3720QM CPU @ 2.60 GHz. 

The resulting profile deviation is presented in Figure 4-8. The profile deviation 

reveals a 0.2 mm deviation around (200 mm,100 mm) as well as an overall saddle shaped 

deviation with the saddle point near (100 mm, 50 mm).  If the proposed process worked 

perfectly, the measurand (𝑹𝒎𝒆𝒂𝒔) and the measurand check (𝑹𝒅𝒆𝒔) would be identical.  

Qualitatively, they do look similar. 

 
Figure 4-8: Profile deviation from a) measurement condition (measurand) and b) design 

condition (check of measurand) 

The difference between 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 is presented in Figure 4-9. The statistics 

relating to the difference are listed in Table 4-2. 95% of the deltas lie within ±25 μm. 

These deltas will be investigated through an uncertainty analysis in Chapter 5.  

a) b)
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Figure 4-9: Deltas between 𝑹𝒎𝒆𝒂𝒔 (measurand) and 𝑹𝒅𝒆𝒔 (check of measurand) 

represented a) graphically and b) in a histogram 

To help contextualize the magnitude of the deltas, the simplified 𝑴𝒅𝒆𝒔 point cloud 

was transformed to the simplified 𝑴𝒎𝒆𝒂𝒔 point cloud as shown in Figure 4-10. This 

comparison shows that the deformations due to gravity and the applied weight caused 

shape differences in the flat plate that ranged from -0.4 mm to 0.2 mm. The proposed 

approach was able to realize the profile deviations from two different loading conditions 

within ±25 μm (recall discussion on Figure 4-9) in the background of these 0.4 mm shape 

differences (Figure 4-10). The proposed method is therefore able to identify profile 

deviations an order of magnitude better than the background shape differences. This 

result is considered a success for the first case study. 

 
Figure 4-10: 𝑴𝒅𝒆𝒔 (design condition, gravity and weight) simplified point cloud 

transformed to 𝑴𝒎𝒆𝒂𝒔 (measurement condition, gravity only) simplified point cloud 

a)
b)
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Table 4-2: Statistics relating to profile deviation calculation results 

Variable Mean 
Std. 
dev. 

Min 
Percentiles 

Max 
2.5% 16% 84% 97.5% 

Rmeas - Rdes (mm) 0.001 0.013 -0.057 -0.024 -0.012 0.013 0.025 0.054 

Measurement 
condition 

σi 
(mm) 

0.034 0.160 0.000 0.013 0.016 0.027 0.043 2.882 

Qi 53.6 28.7 0 9 25 80 119 226 

Design 
condition 

σi 
(mm) 

0.033 0.134 0.000 0.013 0.016 0.028 0.048 2.899 

Qi 77.3 38.4 0 19 40 111 157 453 

 
The standard deviation per node, as calculated in step 6), is shown for the 

measurement condition in Figure 4-11. From Table 4-2 the mean is 0.034 mm. As 

mentioned at the beginning of this section, the standard deviation threshold was set to 

0.05 mm. As a result, any node with a standard deviation greater than 0.05 mm was 

ignored and a profile deviation value was not calculated. Figure 4-11a reveals that most 

of the large standard deviations occur near the edges or holes of the plate where the point 

cloud becomes distorted. From Table 4-2 and Figure 4-11b, 95% of the standard 

deviations were between 0.013 mm and 0.043 mm. These standard deviations are 

reasonable given the specified accuracy of the scanner (Chapter 3). 

 
Figure 4-11: The standard deviation per node for the measurement condition (gravity 

only) represented a) graphically and b) in a histogram 

a) b)
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The number of nearest cloud point neighbors within the cylindrical search 

volume, as calculated in step 7), is shown for the measurement condition in Figure 4-12. 

From Table 4-2 the mean is 53.6. The number of nearest neighbors threshold was set to 

10 resulting in any node with fewer than 10 neighboring cloud points being ignored. 

Given that point cloud acquisition with the ROMER Arm is a manual process, the 

distribution of nearest neighbors shown in Figure 4-12a is inhomogeneous. From Table 

4-2 and Figure 4-12b, 95% of the nearest neighbor counts were between 9 and 119. 

 
Figure 4-12: The number of nearest cloud point neighbors per node for the measurement 

condition (gravity only) represented a) graphically and b) in a histogram 

The standard deviation and nearest neighbor threshold checks from step 8) of the 

profile deviation calculation produce gaps in the profile deviation field. The previously 

shown 𝑹𝒎𝒆𝒂𝒔 in Figure 4-8a is reproduced in Figure 4-13 from a vertical view to show 

the gaps. In Thiébaut et al. [34] modal decomposition is used to produce a continuous 

function representing the profile deviation. The function is then used to interpolate the 

profile deviation in the presence of the gaps. 

a) b)
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Figure 4-13: Profile deviation from measurement condition (measurand) showing gaps in 

the profile deviation field 

4.5. Cantilevered flat plate conclusion 

As a reminder, the goal of the proposed process is to measure the profile deviation 

(𝑹𝒎𝒆𝒂𝒔) in a simplified measurement condition and predict the prolife deviation (𝑹𝒅𝒆𝒔) in 

the more complicated design condition. This way, the part only needs to be measured in 

the measurement condition and no specialized fixture is needed to replicate the design 

condition. The proposed approach is judged by how closely 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 match. 

Figure 4-14 reviews the steps in the cantilevered flat plate case study. This figure 

matches the generic performance check process from Figure 2-4. 𝑺𝒇𝒓𝒆𝒆 was defined as 

perfectly flat. 𝑺𝒅𝒆𝒔 and 𝑺𝒎𝒆𝒂𝒔 were calculated by adding their corresponding 

deformations 𝑫𝒅𝒆𝒔 and 𝑫𝒎𝒆𝒂𝒔. The point clouds 𝑴𝒎𝒆𝒂𝒔 and 𝑴𝒅𝒆𝒔 were registered to the 

defect free surfaces 𝑺𝒅𝒆𝒔 and 𝑺𝒎𝒆𝒂𝒔. The profile deviation calculation (section 2.2) was 

performed to produce the profile deviation fields 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔. Finally, 𝑹𝒎𝒆𝒂𝒔 and 

𝑹𝒅𝒆𝒔 were compared. 

Figure 4-9 and Table 4-2 demonstrated that for the flat plate case study 95% of 

the deltas between 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 were within ±25 μm. This is an order of magnitude 
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smaller than the background shape differences (Figure 4-10) and two orders of magnitude 

smaller than the background design condition deflections (Figure 4-7b). Uncertainties in 

each step of the proposed approach are the reason 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 do not match 

perfectly. 

 
Figure 4-14: Review of cantilevered flat plate case study (units: mm) 

Measurement condition Design condition

Free condition

gravitational 
deformations

gravitational 
deformations

(measurand) (measurand check)

gravity

gravity

mass
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CHAPTER 5: CANTILEVERED FLAT PLATE UNCERTAINTY ANALYSIS 

This section seeks to understand which uncertainties are the main contributions to 

the ±25 μm mismatch between 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 in the cantilevered flat plate case study. 

The profile deviation calculation process involves FEA, point cloud registration, 

cylindrical searches, and so on. All of these steps are difficult to analyze through an 

uncertainty analysis because they cannot be represented in an analytical (i.e., closed 

form) expression. As such, a Monte Carlo style approach may be used. Monte Carlo 

uncertainty simulations involve generating a random set of input variables and repeatedly 

executing the calculation procedure to generate a set of outputs. The uncertainty can then 

be evaluated by analyzing the variation of the outputs. The software development for a 

complete Monte Carlo uncertainty simulation of the profile deviation calculation would 

be quite challenging considering the many software modules that must be automatically 

tied together for the analysis (Abaqus and many MATLAB® scripts). Also, the simulation 

would take hours of CPU time. 

Given the challenges of the Monte Carlo method, a simplified uncertainty analysis 

is performed using beam theory as an approximation of the FEA. This uncertainty 

analysis only considers the effects of uncertainty in the FE inputs and point clouds. 

Uncertainties in the FE mesh, FE modeling errors, point cloud registration, environment, 

etc. will not be considered. Beam theory provides a closed form expression for the 

deflections of the plate which enables a GUM [14] based uncertainty analysis. 

5.1. Closed form expression for profile deviations 

The first step in a GUM [14] based uncertainty analysis is to mathematically 

express the relationship between the measurand (𝑹𝒎𝒆𝒂𝒔) and the input quantities.  
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Combining Equation (2.3) and (2.4), 𝑹𝒎𝒆𝒂𝒔 is represented in Equation (5.1). 

Allow 𝑫𝒈 to represent the deformations due to gravity acting on the cantilevered plate 

such that it represents deformations from the weight of the plate itself. Allow 𝑫𝑴 to 

represent the deformations due to the mass hanging on the cantilevered plate in the design 

condition. It follows that 𝑫𝒎𝒆𝒂𝒔 and 𝑫𝒅𝒆𝒔 can be represented by Equation (5.2) and (5.3), 

respectively. Combining these equations, the simplified expression for 𝑹𝒎𝒆𝒂𝒔 is 

represented in Equation (5.4).  

𝑹𝒎𝒆𝒂𝒔 = 𝑴𝒎𝒆𝒂𝒔 − 𝑺𝒅𝒆𝒔 + 𝑫𝒅𝒆𝒔 − 𝑫𝒎𝒆𝒂𝒔 (5.1) 

𝑫𝒎𝒆𝒂𝒔 = 𝑫𝒈 (5.2) 

𝑫𝒅𝒆𝒔 = 𝑫𝒈 + 𝑫𝑴 (5.3) 

𝑹𝒎𝒆𝒂𝒔 = 𝑴𝒎𝒆𝒂𝒔 − 𝑺𝒅𝒆𝒔 + 𝑫𝒈 + 𝑫𝑴 − 𝑫𝒈 

= 𝑴𝒎𝒆𝒂𝒔 − 𝑺𝒅𝒆𝒔 + 𝑫𝑴          

(5.4) 

The cantilevered flat plate deflections from the mass (𝑫𝑴) are approximated as a 

cantilever beam with a concentrated load at the end. Beer et al. [38] use beam theory to 

derive Equation (5.5) which represents the z deflections in the Figure 5-1 loading. For a 

beam of rectangular cross section, the second moment of area is calculated using 

Equation (5.6). 

𝑫𝑴 = 
𝑃

6𝐸𝐼
(𝒙3 − 3𝐿𝒙2) =

2𝑀𝑔

𝐸𝑏𝑡3
(𝒙3 − 3𝐿𝒙2) (5.5) 

𝐼 =
𝑏𝑡3

12
 (5.6) 

 
Figure 5-1: Concentrated load on a cantilever beam (inspired by Beer et al. [38]) 

>>>>>

z

x
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The cantilevered flat plate deflections from its own weight (𝑫𝒈) are approximated 

as a cantilever beam with a distributed load. Beer et al. [38] use beam theory to derive 

Equation (5.7) which represents the z deflections in the Figure 5-2 loading. The 

distributed load due to gravity is calculated using Equation (5.8). 

𝑫𝒈 = −
𝜔

24𝐸𝐼
(𝒙4 − 4𝐿𝒙3 + 6𝐿2𝒙2) = −

𝜌𝑔

2𝐸𝑡2
(𝒙4 − 4𝐿𝒙3 + 6𝐿2𝒙2) (5.7) 

𝜔 =  𝜌𝑔𝑏𝑡 (5.8) 

 
Figure 5-2: Distributed load on a cantilever beam (inspired by Beer et al. [38])  

In Figure 5-3, the design condition (𝑺𝒅𝒆𝒔) shape output from FEA is compared to 

the beam theory prediction of 𝑺𝒇𝒓𝒆𝒆 + 𝑫𝒈 + 𝑫𝑴. The beam theory mostly over-predicts 

the gravitational sag in comparison the FE model. They differ by a maximum of 0.45 mm 

(14% of total deflection) at x = 220 mm, y = 0 mm. The difference is expected 

considering the beam theory evenly distributes the concentrated force due to the mass 

along the x = 220 mm edge. Beam theory is also less accurate when the deflections (max 

around 3 mm in this case) are of the same order of magnitude as the thickness (2.479 

mm). That is, the beam theory model performs better when the deflections are much less 

than the cross-sectional dimensions. 

The 14% maximum difference between the FEA and beam theory predicted 

deflections is considered acceptable and the beam theory model will be used for the 

uncertainty analysis sensitivity coefficients. If anything, the beam theory conservatively 

overestimates the uncertainty. 

>>>>>

z

x
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Figure 5-3: FEA versus beam theory predictions design condition 

Finally, the closed form expression for 𝑹𝒎𝒆𝒂𝒔 is represented in Equation (5.9) by 

combining Equation (5.4) and (5.5). 

𝑹𝒎𝒆𝒂𝒔 = 𝑴𝒎𝒆𝒂𝒔 − 𝑺𝒅𝒆𝒔 +
2𝑀𝑔

𝐸𝑏𝑡3
(𝒙3 − 3𝐿𝒙2) (5.9) 

5.2. Standard uncertainties 

With a closed form expression for the measurand (Equation (5.9)) established, the 

next step in a GUM [14] based uncertainty analysis is to estimate a value for each input 

quantity and evaluate the standard uncertainty of each estimate, as presented in Table 5-1. 

Most of the standard uncertainties were evaluated by Type B methods, meaning statistical 

methods were not implemented. Table 5-1 provides comments on the details of the 

standard uncertainty calculation for each input quantity. 

The estimated value for gravity was calculated using the Department of Defense 

World Geodetic System (WGS) of 1984 [39]. Geodetic systems involve the definition of 

three surfaces including the Earth’s topographic surface (highly irregular, includes 

landmasses and ocean floor topography), a mathematical reference surface called an 

ellipsoid, and an equipotential surface called a geoid. The geoid is the equipotential 

surface associated with the mean ocean surface. 

gravity

mass
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The gravity on the surface of the WGS84 ellipsoid can be calculated using 

Equation (5.10) (Equation 4-1 from [39]). With Duke Centennial Hall at UNC Charlotte 

(the building where experiments in this thesis were completed) having a latitude of 

35.312°, the gravity was calculated as 9.7976 m/s
2
. 

𝑔 =  𝑔𝑒
1+𝑘 𝑠𝑖𝑛(𝜑)2

√1−𝑒2 𝑠𝑖𝑛(𝜑)2
  (5.10) 

𝑔𝑒 =  9.7803253359 𝑚/𝑠2 
 

𝑘 = 0.00193185265241 

𝑒 = 8.1819190842622 𝑥 10−2 

𝜑 = 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 

 

The geoid reference surface for sea level is about 40 meters below the WGS84 

ellipsoid near North Carolina (see Figure 6.1 from [39]). Charlotte then has an elevation 

from the geoid of about 180 meters, or 140 meters (180 m – 40 m) from the WGS84 

ellipsoid. The vertical gravitational gradient is about -0.3x10
-5

 m/s
2
/m [40]. Therefore, 

from elevation, the gravity in Charlotte is about 0.0004 m/s
2
 (140*0.3x10

-5
) lower than 

the WGS84 ellipsoid value. Additionally, gravity anomalies due to variations in the 

density of the Earth’s crust are typically around 0.0005 m/s
2
 [41]. With the elevation and 

crust density effects considered, a standard uncertainty of 0.001 m/s
2
 seemed reasonable 

to account for these anomalies. 

The other standard uncertainty calculations were much simpler and are provided 

in Table 5-1. 
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Table 5-1: Estimated values and standard uncertaitnies of input quanitites 

Input quantity Units 
Est. 

value 
Stand. 
uncert. 

Type 
Estimated 

value source 
Standard uncertainty 
calculation comments 

𝑴𝒎𝒆𝒂𝒔  
𝑴𝒅𝒆𝒔  

point 
clouds 

mm N/A 0.018 B 
ROMER Arm 
scanner 

Spec sheet RS4 scanning 
system accuracy  is 0.063 
mm, assuming 
rectangular distribution of 
0.063 mm full width, u = 
0.063 mm/sqrt(12) 

𝑀 mass kg 0.7398 0.0001 B 
Ohaus 
Adventurer 
Pro AV4101 

Spec sheet 1σ 

𝑔 gravity m/s2 9.7976 0.001 B 
Equation 

(5.10) 

Estimated normal 
distribution 1σ based off 
Bouguer anomolies and 
vertical gravity gradients 

𝐸 
modulus 

of 
elasticity 

N/mm2 69x103 0.5x103 B 

MatWeb 
online 
materials 
database 

Estimated normal 
distribution 1σ to cover 
range of aluminum alloys 
with density between 
2.68 and 2.72 g/cm3 in 
MatWeb database 

𝑏 width mm 101.63 0.022 B 
ROMER Arm 
touch probe 

Spec sheet volumetric 
accuracy is 0.038 mm, 
assuming rectangular 
distribution of 0.038 mm 
half width, u = 0.038 
mm/sqrt(3) 

𝑡 thickness mm 2.479 0.011 A 
 Aerospace 
micrometers 

Standard deviation of 8 
measurements / sqrt(8) 

L length mm 221.68 0.022 B 
 ROMER Arm 
touch probe 

Spec sheet volumetric 
accuracy is 0.038 mm, 
assuming rectangular 
distribution of 0.038 mm 
half width, u = 0.038 
mm/sqrt(3) 

 

5.3. Combined standard uncertainty 

As described in the GUM [14], in order to calculate a combined standard 

uncertainty (𝑢𝑐) for 𝑹𝒎𝒆𝒂𝒔 the standard uncertainties of each input (Table 5-1) must be 

propagated through the closed form relationship (𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑁)) using Equation 

(5.11). Note, here 𝑖 represents the index into the number of input quantities 𝑁 which are 

both unrelated to their meaning in the profile deviation calculation.  
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𝑢𝑐
2(𝑌) = ∑(

𝜕𝑓

𝜕𝑋𝑖
)
2

𝑢2(𝑋𝑖)

𝑁

𝑖=1

 (5.11) 

The partial derivatives of the closed form 𝑹𝒎𝒆𝒂𝒔 (Equation (5.9)) used to evaluate 

Equation (5.11) are listed in Equation (5.12) through (5.19). 

𝜕𝑹𝒎𝒆𝒂𝒔

𝜕𝑴𝒎𝒆𝒂𝒔
=  1 (5.12) 

𝜕𝑹𝒎𝒆𝒂𝒔

𝜕𝑺𝒅𝒆𝒔
= −1 (5.13) 

𝜕𝑹𝒎𝒆𝒂𝒔

𝜕𝑀
=

2𝑔

𝐸𝑏𝑡3
(𝒙3 − 3𝐿𝒙2) (5.14) 

𝜕𝑹𝒎𝒆𝒂𝒔

𝜕𝑔
=

2𝑀

𝐸𝑏𝑡3
(𝒙3 − 3𝐿𝒙2) (5.15) 

𝜕𝑹𝒎𝒆𝒂𝒔

𝜕𝐸
= −

2𝑀𝑔

𝐸2𝑏𝑡3
(𝒙3 − 3𝐿𝒙2) (5.16) 

𝜕𝑹𝒎𝒆𝒂𝒔

𝜕𝑏
= −

2𝑀𝑔

𝐸𝑏2𝑡3
(𝒙3 − 3𝐿𝒙2) (5.17) 

𝜕𝑹𝒎𝒆𝒂𝒔

𝜕𝑡
= −

6𝑀𝑔

𝐸𝑏𝑡4
(𝒙3 − 3𝐿𝒙2) (5.18) 

𝜕𝑹𝒎𝒆𝒂𝒔

𝜕𝐿
= −

2𝑀𝑔

𝐸𝑏𝑡3
(3𝒙2) (5.19) 

Finally, the combined standard uncertainty of 𝑹𝒎𝒆𝒂𝒔 can be evaluated as provided 

in Table 5-2. Since the sensitivity coefficients are a function of 𝑥, it is expected that the 

uncertainty contribution from 𝑫𝑴 (recall Equation (5.4)) will be 0 at 𝑥 = 0 and increase 

to a maximum at 𝑥 = 𝐿. As such, the sensitivity coefficients were evaluated at 𝑥 = 𝐿 to 

attain the maximum uncertainty. 𝑺𝒅𝒆𝒔 was considered to have no uncertainty since it is 

the surface defined by the designer.  

The combined uncertainty for 𝑹𝒎𝒆𝒂𝒔 at 𝑥 = 𝐿 came to 0.048 mm. The only 

contributions over 1 μm came from 𝑴𝒎𝒆𝒂𝒔, 𝐸, and 𝑡. Improvement in the 𝑴𝒎𝒆𝒂𝒔 
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contribution would likely require using a different scanner or a study specifically to 

characterize the performance of the ROMER Arm RS4 scanner. Improvement in the 𝐸 

contribution should be simple in an industrial setting as the manufacturer would likely be 

more knowledgeable about the properties of the material they were using. The largest 

contributor came from the 0.011 mm uncertainty in the thickness for a contribution of 

0.039 mm. This contribution is challenging to improve upon given that it is limited by the 

thickness variation throughout the plate. Improving the thickness contribution would 

require adjusting the manufacturing process to attain greater thickness uniformity. 

Table 5-2: Combined standard uncertainty of 𝑹𝒎𝒆𝒂𝒔 at 𝑥 = 𝐿 

Input quantity 
𝑋𝑖 

Standard 
uncertainty 

𝑢(𝑋𝑖) 

Sensitivity 
𝜕𝑅𝑚𝑒𝑎𝑠(𝑥 = 𝐿)

𝜕𝑋𝑖
 

Contribution (mm) 

𝑢(𝑋𝑖) |
𝜕𝑅𝑚𝑒𝑎𝑠

𝜕𝑋𝑖
| 

𝑴𝒎𝒆𝒂𝒔 
point 
cloud 

0.018 mm 1 mm/mm 0.0182 

𝑺𝒅𝒆𝒔 CAD 0 mm -1 mm/mm 0.0000 

𝑀 mass 0.0001 kg -4.0 mm/kg 0.0004 

𝑔 gravity 0.001 m/s2 -0.30 mm/(m/s2) 0.0003 

𝐸 
modulus 

of 
elasticity 

0.5x103 N/mm2 4.3x10-5 mm/(N/mm2) 0.0214 

𝑏 width 0.022 mm 0.029 mm/mm 0.0006 

𝑡 thickness 0.011 mm 3.6 mm/mm 0.0394 

𝐿 length 0.022 mm -0.020 mm/mm 0.0004 

    𝑢𝑐(𝑅𝑚𝑒𝑎𝑠(𝑥 = 𝐿)) = √∑ (
𝜕𝑅𝑚𝑒𝑎𝑠(𝑥=𝐿)

𝜕𝑋𝑖
)
2
𝑢2(𝑋𝑖)

𝑁
𝑖=1 =  0.048 

 
The 𝑴𝒎𝒆𝒂𝒔 scanner uncertainty is expected to be randomly distributed while 

uncertainties in material properties (Table 5-2 less 𝑴𝒎𝒆𝒂𝒔 and 𝑺𝒅𝒆𝒔) increase towards the 

free end of the plate. The uncertainty contributions from the material properties increase 

as a function of 𝑥 in Figure 5-4. In contrast, the 𝑴𝒎𝒆𝒂𝒔 scanner uncertainty contribution 

is spatially invariant over the plate. 
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Figure 5-4: Contributions from the material properties and scanner to the combined 

standard uncertainty in 𝑹𝒎𝒆𝒂𝒔 

Recalling Equation (2.5), the profile deviation measured in the design condition 

(measurand check) is calculated as 𝑹𝒅𝒆𝒔 = 𝑴𝒅𝒆𝒔 − 𝑺𝒅𝒆𝒔. From Table 5-2, 𝑺𝒅𝒆𝒔 has no 

uncertainty so the uncertainty in the design condition profile deviation is simply 

𝑢𝑐(𝑹𝒅𝒆𝒔) = 𝑢𝑐(𝑴𝒅𝒆𝒔) which is 0.018 mm (recall Table 5-1). 

The 𝑢𝑐(𝑹𝒅𝒆𝒔) of 0.018 mm and 𝑢𝑐(𝑹𝒎𝒆𝒂𝒔(𝑥 = 𝐿)) of 0.048 mm are consistent 

with the case study results (95% of 𝑹𝒎𝒆𝒂𝒔 − 𝑹𝒅𝒆𝒔 within ±25 μm, Table 4-2). The best fit 

registration operations help to remove some of the uncertainties due to material properties 

(Figure 5-4). 
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CHAPTER 6: PROPOSED APPROACH UPDATE 

The proposed approach outlined in Chapter 2 worked well for the cantilevered 

plate (Chapter 4). However, the cantilever plate was statically determinate such the 

reaction forces in the FE simulations (defect-free plate) matched those in reality (profile 

deviation laden plate). When the FE simulations were completed to calculate 

gravitationally induced sag (Figure 4-5), the reaction forces in both FEA and in the real 

measurement were equal to the weight of the plate (measurement condition) or the weight 

of the plate and mass (design condition). 

In the following section, the proposed approach is applied to a statically 

indeterminate case. The proposed approach in its Chapter 2 form is shown to be 

inadequate (𝑹𝒎𝒆𝒂𝒔 does not match 𝑹𝒅𝒆𝒔) and updates are introduced to address the 

inadequacies.  

6.1. Consequences of over-constrained design conditions 

Consider a flat plate 200 mm x 100 mm x 0.25 mm in size with the same 

aluminum density, modulus of elasticity, and Poisson’s ratio used with the cantilevered 

plate (section 4.2). It is clamped to 4 planar locators in the design condition and simply 

supported on 3 locators in the measurement condition, as shown in Figure 6-1. M1, M2, 

and M3 represent the measurement condition locators while D1, D2, D3, and D4 

represent the design condition locators. 
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Figure 6-1: Flat plate measurement and design condition inspection fixtures 

This case differs from the cantilevered plate case in that the design condition is 

statically indeterminate.  

Let 𝐹𝑀1, 𝐹𝑀2, and 𝐹𝑀3 be the reaction forces in the z direction at the measurement 

condition locators. Assuming forces in the y and z direction are negligible, the static 

equilibrium equations available are ∑𝐹𝑧 = 0, ∑𝑀𝑥 = 0, and ∑𝑀𝑦 = 0. With 𝐹𝑀1, 𝐹𝑀2, 

and 𝐹𝑀3 as the only unknowns, there are 3 equations and 3 unknowns allowing the 

measurement condition reaction forces to be directly solved for. Now, superimpose any 

reasonable profile deviation field (maximum of around 1 mm, perhaps) on the nominally 

flat plate. This will negligibly change the position of the center of gravity and thus the 

reaction forces will be negligibly changed. 

Let 𝐹𝐷1, 𝐹𝐷2, 𝐹𝐷3, and 𝐹𝐷4 be the reaction forces in the z direction at the design 

condition locators. Again, the static equilibrium equations available are ∑𝐹𝑧 = 0, 

∑𝑀𝑥 = 0, and ∑𝑀𝑦 = 0. There are now 3 equations and 4 unknowns preventing the 

design condition reaction forces from being solved for directly. Given that the plate is 

nominally flat and the clamps are equally spaced about the center of gravity, the reaction 

forces at each clamp will simply be a fourth of the weight of the plate. FE simulations of 

the design condition agree with this conclusion and show reaction forces equal to a fourth 

of the plate weight at each clamp (see Figure 6-3b in the next section). 

Measurement condition Design condition
D1 D2

D4D3

M2M1

M3

y

x.z
y

x.z
x gravity
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As in the measurement condition thought experiment, superimpose the same 

profile deviation field on the nominally flat plate and the center of gravity is negligibly 

affected. However, the over-constrained design condition now has the ability to remove a 

component of the profile deviation field by forcing the 4 corners to be planar. A 

component of the profile deviation field is therefore removed which also causes the 

reaction forces to be redistributed (see Figure 6-4b in the next section). This situation will 

be examined through a hypothetical case study in the next section. 

6.2. Case study - Saddle plate 

This section applies the proposed approach to the flat plate case previously 

described in Figure 6-1. The challenge of the over-constrained (i.e., statically 

indeterminate) design condition is revealed. The case study uses purely simulated data. 

That is, the measured point clouds were artificially generated. 

The nominally flat plate (in zero gravity) was meshed with a 64 element x 64 

element quad shell mesh resulting in 4096 elements and 4225 nodes. Two FE simulations 

were completed to produce the hypothetical profile deviation field. The hypothetical 

profile deviation consisted of a) a saddle component capable of being removed by the 

design condition fixture and b) a bow component incapable of being removed by the 

design condition fixture.  

The saddle shape was generated by displacing the fourth locator (D4) of the 

design condition -2 mm in z. The resulting shape and vertical reaction forces at each 

clamp are shown in Figure 6-2a. The bow component was generated by displacing the 

node at x = 0 mm, y = 50 mm 1 mm in z while constraining the four clamp locations. The 

resulting shape is shown in Figure 6-2b. The Figure 6-2b component cannot be removed 
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by the design condition because the 4 locators are already planar. On the other hand, 

Figure 6-2a can be removed because D4 will force the fourth corner into plane at z = 0, 

removing the saddle. 

 
Figure 6-2: a) saddle component and b) bow component of hypothetical profile deviation 

In accordance with the Figure 2-4 performance check, gravity was applied in FEA 

to predict the defect-free surfaces in the measurement and design conditions as shown in 

Figure 6-3. Notice in Figure 6-3b that the FEA predicted reaction forces are equally 

distributed because this represents the defect-free plate (no profile deviations). 

 
Figure 6-3: Defect-free flat plate under the influence of gravity in the a) measurement 

condition and b) design condition. Reaction forces represent predicted forces in the 

fixtures when supporting the nominal defect free part. 

a) b)

a) b)

gravity
gravity
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Next, the hypothetical profile deviations were used to create measured point 

clouds which contain the profile defects. The measurement condition point cloud 

(𝑴𝒎𝒆𝒂𝒔) was created by adding 𝒔𝒂𝒅𝒅𝒍𝒆 and 𝒃𝒐𝒘 to 𝑺𝒎𝒆𝒂𝒔. Both components (𝒔𝒂𝒅𝒅𝒍𝒆 

and 𝒃𝒐𝒘) of the profile deviation show up in the measurement condition because the 3 

support measurement fixture is statically determinate and does not have the ability to 

remove either component. The reaction forces of 𝑴𝒎𝒆𝒂𝒔 are the same as 𝑺𝒎𝒆𝒂𝒔 because 

profile deviations negligibly effect statically determinate reaction forces. 𝑴𝒎𝒆𝒂𝒔 is shown 

in Figure 6-4a. 

The design condition point cloud (𝑴𝒅𝒆𝒔) was created by adding 𝒃𝒐𝒘 to 𝑺𝒅𝒆𝒔. 

Only the 𝒃𝒐𝒘 component of the profile deviation shows up in the design condition 

because the 4 clamp design fixture has the ability to remove the 𝒔𝒂𝒅𝒅𝒍𝒆 component. The 

reaction forces of 𝑴𝒅𝒆𝒔 are equal to 𝑺𝒅𝒆𝒔 reaction forces minus 𝒔𝒂𝒅𝒅𝒍𝒆 reaction forces 

because the four clamps must overcome the saddle shape and force the four corners into 

plane. 𝑴𝒅𝒆𝒔 is shown in Figure 6-4b.This illustrates the concept from section 6.1 that 

profile deviations redistribute reaction forces in over-constrained statically indeterminate 

fixtures. 
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Figure 6-4: Hypothetical point clouds in the a) measurement condition and b) design 

condition, reaction forces represent “real” forces in the fixtures when measuring the 

“real” defect laden part. Quotation marks are added to “real” as a reminder that the 

measured point clouds with profile deviations were artificially generated. 

Finally, the profile deviations were directly evaluated with Equation (2.4) and 

(2.5). Point cloud processing from section 2.2 was not required because the artificially 

generated point clouds are represented as deformed FE meshes. The results are shown in 

Figure 6-5. Recall that the proposed approach is judged by how closely 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 

match. They clearly do not match. 

 
Figure 6-5: Hypothetical measured profile deviations in the a) measurement condition 

and b) design condition 

a) b)

gravity
gravity

a) b)
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This case study on a flat plate with saddle profile deviations revealed two 

improvements required to apply the proposed approach to over-constrained statically 

indeterminate design conditions. 

First, as shown in Figure 6-5, the profile deviation predicted from the proposed 

approach (𝑹𝒎𝒆𝒂𝒔) did not match the common industry practice of the restrained on a 

shaped fixture approach (𝑹𝒅𝒆𝒔). The difference between 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 is simply the 

saddle shape from Figure 6-2a because the design condition fixture removes the saddle 

shape by forcing the four corners into plane. In contrast, the measurement condition 

fixture has no mechanism to remove the saddle. The proposed approach must be updated 

to account for “mode” shapes that the design condition fixture is capable of removing. 

Second, in some industrial cases (see for example, Abenhaim et al. [22]), to 

guarantee a person is strong enough to assemble a component, the designer places limits 

on the allowable forces to push the part into its design condition (i.e., in this case, the 

force required to make the four corners of the plate planar in the design condition). The 

proposed approach in its Chapter 2 form does not provide a means to predict the 

assembly forces (i.e., reaction forces). According to the proposed approach, the assembly 

forces in the design condition are equally distributed (𝑺𝒅𝒆𝒔, Figure 6-3b) regardless of the 

profile deviation. In reality, Figure 6-4b demonstrated that the reaction forces are strongly 

influenced by the profile deviation. Prediction of the assembly forces will increase the 

industrial applicability of the proposed approach 

For completeness, the saddle plate case study is summarized in Figure 6-6 

(analogous to Figure 2-4 and Figure 4-14). 
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Figure 6-6: Review of saddle plate case study (units: mm) 

6.3. Proposed approach update 

This section updates the profile deviation calculation from section 2.2 to address 

the two shortcomings mentioned in the previous section. That is, 1) correct 𝑹𝒎𝒆𝒂𝒔 for 

“mode” shapes the design condition fixture is capable of removing and 2) provide a 

means to calculate the assembly forces that deform the real defect-laden part into the 

design condition. Quotation marks are added to “mode” to notify the reader that the 

Measurement condition Design condition

Free condition

gravitational 
deformations

gravitational 
deformations

(measurand) (measurand check)

gravity

gravity
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definition differs from the way “mode” is commonly used to describe vibrations in 

structures.  

These shortcomings could be addressed by virtually assembling the measured part 

to the design condition fixture. That is, by taking the measurement condition point cloud 

(𝑴𝒎𝒆𝒂𝒔), correcting it for gravitational sag, rigidly aligning it to three of the design 

condition locators (recall Figure 6-1 D1, D2, and D3 locators), and removing mode 

shapes from the measured point cloud such that it touched the fourth design condition 

locator (D4). The transformed and mode shape adjusted 𝑴𝒎𝒆𝒂𝒔 could then be compared 

to 𝑺𝒅𝒆𝒔 to evaluate the profile deviation. The assembly forces could be calculated form 

the magnitude of the mode shape removal. This technique would work, however it 

involves processing the measured point cloud from the measurement condition to the 

design condition. This should be avoided because computations involving the point 

clouds (𝑴𝒅𝒆𝒔, 𝑴𝒎𝒆𝒂𝒔) are expensive. The point clouds contain 10 to 100 times more data 

points that the mesh representing the CAD model (𝑺𝒅𝒆𝒔, 𝑺𝒎𝒆𝒂𝒔). 

The previous paragraph was included to provide the simplest conceptual 

understanding for evaluating the profile deviation using mode shape removal. The 

proposed approach update implements this concept essentially in reverse by taking the 

design condition CAD to the measurement condition scan data, as initially described in 

Figure 2-1. 

The updated proposed approach adjusts the measurement condition CAD model 

(𝑺𝒎𝒆𝒂𝒔) with the mode shapes, calculates the assembly forces, then evaluates the point cloud 

(𝑺𝒎𝒆𝒂𝒔) against the adjusted 𝑺𝒎𝒆𝒂𝒔 to calculate the profile deviation (𝑹𝒎𝒆𝒂𝒔) using the steps 
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from section 2.2. The step by step procedure for the profile deviation and assembly force 

calculation is as follows: 

1) Use FEA to predict the deflections due to design condition (𝑫𝒅𝒆𝒔) and 

measurement condition (𝑫𝒎𝒆𝒂𝒔) gravitational loads. Use Equation (2.3) to 

calculate the measurement condition defect-free geometry 𝑺𝒎𝒆𝒂𝒔. Store the defect-

free design condition reaction forces predicted from the 𝑫𝒅𝒆𝒔 simulation in 𝐅𝐒𝐝𝐞𝐬
. 

2) Use FEA to predict the mode shapes 𝑽𝒓 that the design condition fixture is 

capable of removing. 

a. Identify 3 locators in the design condition which will be used to define the 

design condition coordinate system. These locators, D1, D2, and D3 will 

be considered principal locators. The remaining locators, D4, D…, will be 

considered supplementary locators. That is, they define the over-

constraining locators that are capable of distorting the part and removing 

mode shapes. 

b. Perform FEA on the design condition CAD (𝑺𝒅𝒆𝒔) to predict the mode 

shapes the supplementary locators remove. Each mode shape is created by 

displacing the specific supplementary locator an arbitrary distance while 

constraining the other locators to zero displacement. Complete this for 

each supplementary locator creating a set of “modes” 𝑽𝒓 that represent the 

shapes that can be removed (for the saddle plate, D4 is the only 

supplementary locator so the only mode is 𝑽𝑫𝟒). Each 𝑽𝒓 (one for each 

supplementary locator mode), is an 𝑚𝑥3 matrix containing the dXdYdZ 

displacement of each mesh node. Store the resulting reaction forces for 
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each mode 𝑽𝒓 at each locator in 𝑭𝑽𝒓
(e.g., 𝑭𝑽𝑫𝟒

 will contain the reaction 

forces for D1, D2, D3, and D4 from 𝑽𝑫𝟒). 

3) Transform 𝑺𝒎𝒆𝒂𝒔 to contact the three principal locator (D1, D2, D3) positions on 

𝑴𝒎𝒆𝒂𝒔, creating 𝑺𝒎𝒆𝒂𝒔,𝑻. 

4) Scale and add the mode shapes to 𝑺𝒎𝒆𝒂𝒔,𝑻 to force it to contact the supplementary 

locator (D4, D…) positions on 𝑴𝒎𝒆𝒂𝒔. That is, find the coefficient 𝐶 for each 

mode shape to make 𝑺𝒎𝒆𝒂𝒔,𝑽 touch 𝑴𝒎𝒆𝒂𝒔 at the supplementary locator (D4, D…) 

positions, where 𝑺𝒎𝒆𝒂𝒔,𝑽 is provided by Equation (6.1). 

𝑺𝒎𝒆𝒂𝒔,𝑽 = 𝑺𝒎𝒆𝒂𝒔,𝑻 + ∑ 𝐶𝑟𝑽𝒓𝑟   (6.1) 

5) Use the coefficients 𝐶 to predict the assembly forces 𝑭. The assembly forces are 

calculated with Equation (6.2), where 𝑭𝑺𝒅𝒆𝒔
 is the reaction force at each locator 

output from the FEA simulation that produced 𝑫𝒅𝒆𝒔 (recall Figure 6-3b). 

𝑭 = 𝑭𝑺𝒅𝒆𝒔
− ∑ 𝐶𝑟𝑭𝑽𝒓𝑟   (6.2) 

6) Use Equation (6.3) to calculate the profile deviation field (measurand) 𝑹𝒎𝒆𝒂𝒔. 

This equation is evaluated using the point cloud processing steps from section 2.2. 

𝑹𝒎𝒆𝒂𝒔 = 𝑴𝒎𝒆𝒂𝒔 − 𝑺𝒎𝒆𝒂𝒔,𝑽 (6.3) 

Steps 1) and 2) are “pre-processing” as they are only executed once per part 

design. Steps 3) to 6)  are “processing” as they must be executed for every single 

measured part. Within the processing category, steps 3) to 5) involve CAD model 

adjustment while step 6) processes the point cloud. 

6.4. Saddle plate revisited 

This section revisits the saddle plate case study by applying the proposed 

approach update detailed in the previous section. 
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Applying step 1), 𝑫𝒅𝒆𝒔 and measurement condition (𝑫𝒎𝒆𝒂𝒔) were calculated 

through FEA by applying a gravitational load and restraining displacement at the locators. 

These data sets were combined with 𝑺𝒅𝒆𝒔 to calculate the measurement condition defect-

free geometry 𝑺𝒎𝒆𝒂𝒔, as previously shown in Figure 6-3. 

Applying step 2), the design condition locators from Figure 6-1 were grouped into 

principal locators (D1, D2, and D3) and a supplementary locator (D4). 𝑽𝑫𝟒 was created 

by displacing D4 vertically 1 mm. The resulting shape and reaction forces are shown in 

Figure 6-7. 

 
Figure 6-7: Saddle plate mode shape and reaction forces 

Applying step 3), 𝑺𝒎𝒆𝒂𝒔 (previously shown in Figure 6-3a) was transformed to 

contact the D3 position of 𝑴𝒎𝒆𝒂𝒔 (previously shown in Figure 6-4a), creating 𝑺𝒎𝒆𝒂𝒔,𝑻. 

Since the measurement condition and design condition both share the bottom corners as 

locators (recall Figure 6-1), 𝑺𝒎𝒆𝒂𝒔 was already in contact with 𝑴𝒎𝒆𝒂𝒔 at D1 and D2. The 

transformation is shown in Figure 6-8. 
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Figure 6-8: Transformation of 𝑺𝒎𝒆𝒂𝒔 to contact D3 

Applying step 4), the coefficient 𝐶𝐷4 was used to scale 𝑽𝑫𝟒 to adjust 𝑺𝒎𝒆𝒂𝒔,𝑻 such 

that 𝑺𝒎𝒆𝒂𝒔,𝑽 contacted the D4 position of 𝑴𝒎𝒆𝒂𝒔. Since the D4 position is x = 200 mm, y 

= 100 mm, the calculation was simply 𝐶𝐷4 =
𝑀𝑚𝑒𝑎𝑠(𝑥=200,𝑦=100)−𝑆𝑚𝑒𝑎𝑠,𝑇(𝑥=200,𝑦=100)

𝑉𝐷4(𝑥=200,𝑦=100)
 

=
−1.389 𝑚𝑚 − 0.611 𝑚𝑚 

1 𝑚𝑚
= −2. Applying Equation (6.1) the mode shape adjusted 𝑺𝒎𝒆𝒂𝒔,𝑽 

is shown in Figure 6-9 to contact 𝑴𝒎𝒆𝒂𝒔 at all the locator positions. 

 
Figure 6-9: Mode shape adjusted 𝑺𝒎𝒆𝒂𝒔 to create D4 contact with 𝑴𝒎𝒆𝒂𝒔 

Applying step 6) and Equation (6.3), the profile deviation field adjusted for mode 

shapes is presented in Figure 6-10. Applying step 5) and Equation (6.2) the assembly 

forces were calculated and overlaid on Figure 6-10. 
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Comparing 𝑹𝒎𝒆𝒂𝒔 (Figure 6-10) to 𝑹𝒅𝒆𝒔 (Figure 6-5b), they appear identical. This 

indicates that the updated proposed approach successfully removed the shapes that the 

design condition fixture is capable of removing. Also, the predicted assembly forces 𝑭 

(Figure 6-10) match the “real” forces (Figure 6-4b) in the design condition fixture when 

measuring the “real” defect laden part indicating the updated proposed approach is 

capable of predicting assembly forces. In this case, since all the reaction forces are 

positive that means they are pushing up on the plate and gravity took care of forcing 

contact at all locators. Negative assembly forces would indicate an external downward 

force (applied by a clamp, perhaps) would be required to create contact at all locators. 

A summary of the updated approach applied to the saddle plate case study is 

provided in Figure 6-11. It is the updated version of Figure 6-6. 

 
Figure 6-10: Profile deviation 𝑹𝒎𝒆𝒂𝒔 (measurand) and predicted assembly forces 𝑭 from 

the updated proposed process 
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Figure 6-11: Review of updated saddle plate case study (units: mm) 
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CHAPTER 7: CASE STUDY - AUTOMOTIVE FENDER 

The saddle plate case study provided a conceptual method for overcoming the 

challenges of over-constrained design conditions. To put the updated proposed approach 

to the test on an industrially relevant part, the following chapter applies it to the 

fixtureless inspection of an automotive fender. The fender used in this case study was a 

repair section from the rear body panel of a 1973 British Motor Company MGB, as 

shown in Figure 7-1. 

 
Figure 7-1: 1973 MGB rear fender section (source: sportscarshop.com/yellow-mgb/) 

The design condition was defined as clamped to eight locators on a table top and 

was intended to mimic the fender to vehicle attachment locations. The table top had ¼”-

20 holes spaced in a 1” by 1” grid. The eight locators were constructed out of 1” diameter 

spheres mounted on standoffs ranging from 1” to 2.5” in height. The locators were 

labeled D1 through D8 as shown in Figure 7-2b. The coordinate system was constructed 

with the x-y plane through the D1, D2, and D3 sphere centers. The x axis was parallel to 
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a line through D2 and D3 and the origin was position at D1. X1, Y1, and Y2 were 

cylinders used to horizontally locate the fender in the fixture during measurement. Figure 

7-2d shows the right fender clamped in the design condition fixture. 

The measurement condition was defined as lying on a table top with just a small 

support in the middle (M2) to create a statically determinate three-point support as shown 

in Figure 7-2a. The fender in the fixtureless measurement condition along with the three 

contact points M1, M2, and M3 is shown in Figure 7-2c.  

 
Figure 7-2: a) fixtureless measurement condition, b) design condition fixture, c) fender in 

the measurement condition, and d) fender in the design condition 

7.1. CAD creation from L fender 

Since CAD data for a classic vehicle is difficult to attain, the CAD model was 

created out of scan data. The results would not be very interesting if the right fender was 

used to create the CAD model and then the right fender was inspected, as the profile 

deviations should be zero. Instead, the CAD model was generated out of the L (left) 

fender and mirrored to represent the right fender.  
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A design condition fixture for the L fender was constructed by mirroring all the 

locators over the x-z plane. The grid of holes on the table made the fixture mirroring a 

simple task. The ROMER Arm was used to attain a 4.57 million cloud of points 

representing the L fender geometry. The point cloud was converted to a mesh suitable for 

FE analysis through a process summarized in Figure 7-3. The point cloud was exported 

from Spatial Analyzer in a .txt file. MATLAB® was used to mirror the points over the x-z 

plane. The .txt file was imported to PolyWorks where an 8.67 million triangle mesh was 

generated. The mesh was exported via .stl file and imported into the GOM software 

where many smoothing and patching operations were completed. The final FEA-ready 

mesh was exported from GOM via .stl containing 151,748 nodes and 300,530 triangular 

shell elements. This mesh was considered 𝑺𝒅𝒆𝒔 for the R fender. 

 
Figure 7-3: Creation of fender CAD geometry, 𝑺𝒅𝒆𝒔 
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7.2. FEA prediction of 𝑫𝒎𝒆𝒂𝒔, 𝑫𝒅𝒆𝒔, and 𝑽 

The 300,530 element mesh was imported into Abaqus using the .stl import plug-

in. The fender was assigned mild steel material properties of Young’s modulus 200x10
9
 

Pa, Poisson’s ratio 0.3, and density 7850 kg/m
3
. The shell elements were assigned a 

thickness of 0.95 mm and the default Simpson integration rule with 5 integration points 

was used. A gravitational load of -9.7976 m/s
2
 was created in the z direction. The nodes 

closest to the fixture locator coordinates were used to define boundary conditions 

representing each locator (see Figure 7-4). A local coordinate system was created at D1 

through D8 in Abaqus such that z represented the surface normal direction. A description 

of each simulation is provided in Table 7-1 where dn represents movement in the surface 

normal direction. For all simulations X1 dx = 0, Y1 dy = 0, and Y2 dy = 0. 

Applying step 1) from section 6.3 resulted in the gravitational sags shown in 

Figure 7-5. 𝑫𝒅𝒆𝒔 and 𝑫𝒎𝒆𝒂𝒔 were represented as dxdydz displacements. The dz components 

were the largest and are used to visualize the sag in Figure 7-5. 

Applying step 2) from section 6.3 the mode shapes that the design condition 

fixture was capable of removing were predicted by FEA. D1, D2, and D3 were 

considered the primary locators while D4 through D8 were considered supplementary 

locators. One mode shape was calculated for the surface normal displacement of each 

supplementary locator (see Table 7-1). The mode shapes are shown in Figure 7-6 where 

the constrained (dn = 0 mm) locators are red and the displaced (dn = 1 mm) locator is 

green. The dz component of the dxdydz mode shapes was the largest and is used to 

visualize the mode shapes in Figure 7-6.  
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In the fixtureless measurement condition (Figure 7-2c), the fender was extremely 

flexible to rocking motions. Almost zero force was required to cause the fender to rock 

about the M2 support. A measurement condition mode referred to as 𝑽𝒎𝒆𝒂𝒔 was used to 

remove the effects of this rocking motion. 𝑽𝒎𝒆𝒂𝒔 was created by constraining M1 through 

M3 and displacing the corner of the fender 10 mm as described in Table 7-1 and shown 

in Figure 7-6. 

Table 7-1: FE simulation descriptions 

Simulation Load Boundary conditions 

𝑫𝒎𝒆𝒂𝒔 gravity M1 through M3 dz = 0 

𝑫𝒅𝒆𝒔 gravity D1 though D8 dn = 0 

𝑽𝒎𝒆𝒂𝒔 Vmeas dz = 10 mm M1 through M3 dz = 0 

𝑽𝑫𝟒 D4 dn = 1 mm D1 though D8 dn = 0, except D4 

⋮ ⋮ ⋮ 

𝑽𝑫𝟖 D8 dn = 1 mm D1 though D8 dn = 0, except D8 

 

 
Figure 7-4: FE boundary condition nodes 
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Figure 7-5: Gravitational sag in measurement (fixtureless) and design (fixtured) 

conditions, colored by the dz component 

 
Figure 7-6: Fender mode shapes colored by the dz component 

7.3. Mesh preparation for point cloud processing 

The region of interest for the profile deviation calculation is the main surface of 

the fender. The mesh also contains elements representing the ribs on the side of the 

fender which are not of interest. To improve computational efficiently, the nodes residing 

on the side ribs were ignored for the profile deviation calculation. 
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The element size and z component of the nodal normal vector were used to 

identify the nodes of the mesh corresponding to the side ribs. Element size was smaller in 

the side rib region and the normal vectors were largely horizontal. By restricting the 

profile deviation calculation to large elements with a near-vertical normal vector, the side 

rib regions can be ignored.  

Figure 7-7a shows the distribution of element size corresponding to each node. 

The first peak (side length ≈ 0.5 mm) of the bi-modal distribution represents the fine 

regions of the mesh around the ribs while the second peak (side length ≈ 2.5 mm) 

represents the main surface of the mesh. Figure 7-7b shows z component of the nodal 

normal vector distribution. Setting the element side length threshold to 1.25 mm and 

normal vector z component threshold to 0.7, the size of the mesh is decreased from 

151,748 nodes to 56,748 nodes for profile processing as represented in Figure 7-8. 

Decreasing the node count to 56,748 reduces the number of loops required in the profile 

deviation calculation by about 66%. 

 
Figure 7-7: Histograms of a) element side length and b) z component of nodal normal 

vector 

keep side length > 
1.25 mm

keep
nz > 0.7

a) b)
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Figure 7-8: Nodes kept for profile deviation processing 

7.4. 𝑹𝒎𝒆𝒂𝒔 calculation 

The point cloud (𝑴𝒎𝒆𝒂𝒔) for the measurement condition profile deviation (𝑹𝒎𝒆𝒂𝒔, 

the measurand) was measured with the fender in the fixtureless measurement condition 

(Figure 7-2c) and contained 4.60 million points. Step 3) of section 6.3 was completed by 

using a z-roll-pitch best-fit transformation of 𝑺𝒎𝒆𝒂𝒔 and addition of the 𝑽𝒎𝒆𝒂𝒔 mode to 

minimize the surface normal distances between 𝑴𝒎𝒆𝒂𝒔 and 𝑺𝒎𝒆𝒂𝒔 at D1, D2, D3, and a 

location near the bottom right of the fender. The position near the bottom right of the 

fender was chosen as an arbitrary location for 𝑽𝒎𝒆𝒂𝒔 to remove the measurement 

condition “zero force” twist.  

This process resulted in the transformed surface 𝑺𝒎𝒆𝒂𝒔,𝑻 and is shown in Figure 

7-9. Blue vectors in the figure represent the surface normal direction. Overlaying the 

coordinate systems served to roughly align 𝑴𝒎𝒆𝒂𝒔 to 𝑺𝒎𝒆𝒂𝒔 resulting in Figure 7-9a. The 

MATLAB® fminsearch function transformed 𝑺𝒎𝒆𝒂𝒔 and added C*𝑽𝒎𝒆𝒂𝒔 to minimize the 

surface normal distance at the four locations in Figure 7-9a. MATLAB®  (see code in 

Appendix C.1) reported the final 𝑽𝒎𝒆𝒂𝒔 coefficient as -0.96. Figure 7-9b shows the 

resulting 𝑺𝒎𝒆𝒂𝒔,𝑻 contacting the point cloud at the four normal vectors. 

keep ignore
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Figure 7-9: Step 3) of section 6.3, alignment of 𝑺𝒎𝒆𝒂𝒔 to 𝑴𝒎𝒆𝒂𝒔 creating 𝑺𝒎𝒆𝒂𝒔,𝑻, a) 

before and b) after  

Applying step 4) of section 6.3, 𝑺𝒎𝒆𝒂𝒔,𝑻 (Figure 7-9b) was scaled by the “modes” 

𝑽𝑫𝟒 to 𝑽𝑫𝟖 to create contact between the point cloud and CAD mesh at the 

supplementary locators D4 through D8. The resultant surface 𝑺𝒎𝒆𝒂𝒔,𝑽 is shown in Figure 

7-10. The MATLAB® code to accomplish this step is provided in Appendix C.2. 

 
Figure 7-10: Scaling of 𝑺𝒎𝒆𝒂𝒔,𝑻 to create contact between 𝑺𝒎𝒆𝒂𝒔,𝑽 and 𝑴𝒎𝒆𝒂𝒔 at D4 

through D8 (step 4) of section 6.3) 

a)

b)
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The mode coefficients required to create contact at D4 through D8 are reported in 

Table 7-2. Since each mode was created from 1 mm surface normal displacements (Table 

7-1), the coefficients are simply the surface normal distance in millimeters between 

𝑺𝒎𝒆𝒂𝒔,𝑻 and 𝑴𝒎𝒆𝒂𝒔. In Figure 7-9b for example, 8.9 mm of surface normal displacement 

is required to create contact between 𝑺𝒎𝒆𝒂𝒔,𝑻 and 𝑴𝒎𝒆𝒂𝒔 at the D8 location. After adding 

𝐶𝐷8*𝑽𝑫𝟖 contact is created at D8 in Figure 7-10. 

Table 7-2: Mode coefficients 

𝐶𝐷4 1.35 

𝐶𝐷5 1.34 

𝐶𝐷6 0.43 

𝐶𝐷7 -4.43 

𝐶𝐷8 8.90 

 
Applying step 5) of section 6.3, the coefficients from Table 7-2 are used to predict 

the assembly forces. The predicted assembly forces (using the code in Appendix C.2) are 

reported in Table 7-3. While no experimental forces were measured to compare to the 

predicted assembly forces, the negative surface normal forces (Fn) at D4, D6, and D8 

indicate a clamp is required to push the fender into contact with the locator. This is 

consistent with the required clamp locations in the fixture (Figure 7-2b) which confirms 

the sign of the predicted surface normal forces are correct. 

Table 7-3: Predicted assembly forces (units: N) 

Locator Fx Fy Fz Fn 

D1 -0.44 -2.19 4.54 5.06 

D2 -0.56 2.34 8.31 8.65 

D3 0.52 4.36 13.57 14.26 

D4 0.19 0.07 -2.20 -2.21 

D5 0.00 -0.01 -0.04 -0.04 

D6 -0.59 -1.51 -16.70 -16.78 

D7 0.41 -6.42 15.51 16.79 

D8 0.07 0.71 -0.96 -1.20 
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Finally, applying step 6) of section 6.3, the profile deviation 𝑹𝒎𝒆𝒂𝒔 was calculated 

using the MATLAB® code in Appendix C.3. The cylindrical search radius (𝑅) was set to 

1 mm, the standard deviation (𝜎𝑖) threshold to 0.05 mm, and the nearest neighbor (𝑄𝑖) 

threshold to 10. The calculations were performed on an Intel® Core i7-3720QM CPU @ 

2.60 GHz and took 5,657 seconds of CPU time and 36 minutes of physical time for the 

4.60 million point 𝑴𝒎𝒆𝒂𝒔 and 56,748 node 𝑺𝒎𝒆𝒂𝒔. The resulting 𝑹𝒎𝒆𝒂𝒔 is shown in 

Figure 7-11. 

 
Figure 7-11: Profile deviation measurand 𝑹𝒎𝒆𝒂𝒔 

7.5. 𝑹𝒅𝒆𝒔 calculation 

The point cloud (𝑴𝒅𝒆𝒔) for the design condition profile deviation (𝑹𝒅𝒆𝒔, check of 

the measurand) was measured with the fender in the design condition fixture (Figure 

7-2b) and contained 4.92 million points. The point cloud (𝑴𝒅𝒆𝒔) was aligned to the 

design condition CAD model (𝑺𝒅𝒆𝒔) through a z-roll-pitch best-fit transformation that 

minimized the sum of the squared z distances at D1, D2, D3, D5, and D7 using the 

MATLAB® fminsearch function. D4, D6, and D8 could not be used because the point 

cloud was insufficiently dense due to obstruction of the scanner view by the clamps (see 

the clamps in Figure 7-2d). 



74 

 

The profile deviation was evaluated using the code in Appendix C.3 with the 

same settings as the 𝑹𝒎𝒆𝒂𝒔 calculation. The calculations took 5,996 seconds of CPU time 

and 39 minutes of physical time for the 4.92 million point 𝑴𝒅𝒆𝒔 and 56,748 node 𝑺𝒅𝒆𝒔. 

The resulting 𝑅𝑑𝑒𝑠 is shown in Figure 7-12. 

 
Figure 7-12: Profile deviation check of measurand 𝑹𝒅𝒆𝒔 

7.6. Performance evaluation 

The measurand (𝑹𝒎𝒆𝒂𝒔, Figure 7-11) and the check of the measurand (𝑹𝒅𝒆𝒔, 

Figure 7-12) are compared in Figure 7-13. The histogram and the statistics in Table 7-4 

reveal that 95% of the deltas lie between -0.31 mm and 0.63 mm. Compared to the 6 mm 

profile deviations (Figure 7-12) and 10 mm measurement condition deflections (Figure 

7-5), this is considered a success. The proposed approach was able to attain the profile 

deviation in a fixtureless condition that matched the “true” profile deviation within 0.63 

mm, an order of magnitude lower that the background deflections or profile deviation. 
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Figure 7-13: Delta between 𝑹𝒎𝒆𝒂𝒔 and 𝑹𝒅𝒆𝒔 

Table 7-4: Statistics relating to profile deviation calculation results 

Variable Mean 
Std. 
dev. 

Min 
Percentiles 

Max 
2.5% 16% 84% 97.5% 

Rmeas - Rdes (mm) 0.15 0.22 -1.20 -0.30 -0.01 0.34 0.63 1.16 

Measurement 
condition 

σi 
(mm) 

0.029 0.013 0.000 0.012 0.019 0.039 0.058 0.366 

Qi 55.6 30.2 0 4 31 79 131 367 

Design 
condition 

σi 
(mm) 

0.026 0.016 0.000 0.010 0.016 0.034 0.057 0.628 

Qi 59.1 33.0 0 2 31 87 136 420 

 
The standard deviation per node in the measurement condition is shown in Figure 

7-14 and the statistics are listed in Table 7-4. Regions of high standard deviation occurred 

near the bottom of the fender where incidence angle and surface finish provided a 

challenging measurement for the ROMER Arm scanner. The number of nearest cloud 

point neighbors within the cylindrical search volume in the measurement condition is 

shown in Figure 7-15 and the statistics are listed in Table 7-4. Manual scanning with the 

ROMER Arm created an inhomogeneous distribution of point cloud density. Regions 

with standard deviation greater than 0.05 mm or number of points less than 10 were 

ignored causing the profile deviation data gaps in Figure 7-11. 
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Figure 7-14: Standard deviation per node for the measurement condition 

 
Figure 7-15: The number of nearest cloud point neighbors per node for the measurement 

condition 
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CHAPTER 8: CONCLUSION AND FUTURE WORK 

In 2002 the research area of fixtureless inspection for nonrigid parts emerged in 

the literature. Over the past fifteen years, over thirty papers have been published in this 

area with the goal of enabling the dimensional inspection of nonrigid parts without using 

specialized fixtures. Many methods have been tested including a range of FE and non-FE 

based approaches. This thesis sought to build on the literature by applying fixtureless 

inspection to an automotive part, using real measured data (rather than simulated data), 

completing an uncertainty analysis, and providing a means to calculate the assembly 

forces. This thesis also thoroughly documents all of the equations and processing codes 

used which could be adopted by future researchers. 

The point cloud processing method from Thiébaut et al. [34] was applied to a 

cantilevered flat plate. The profile deviation from the nonrigid inspection method agreed 

with the directly measured profile deviation to within 25 μm (Figure 4-9, Table 4-2). An 

uncertainty analysis showed that the uncertainty in the profile deviation reaches a 

maximum of 48 μm at the free end of the plate with the uncertainty in the thickness and 

modulus of elasticity being the largest contributors (Table 5-2). 

A new approach for correcting the fixtureless inspection method for mode shapes 

removed by the design condition fixture was developed by conceptually investigating the 

measurement of a saddle-shaped plate. This new approach was applied to the inspection 

of an automotive fender. The profile deviation from the fixtureless inspection method 

agreed with the directly measured profile deviation to between -0.31 mm and 0.63 mm 

(Figure 7-13, Table 7-4). This is a promising first result considering the measurement 
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condition fender sag reaches 10 mm (Figure 7-5) and the directly measured profile 

deviation reaches 6 mm (Figure 7-12). 

This method also has the potential to be computationally efficient. From section 

6.3, this method is unique from many others in the literature in that the pre-processing 

FEA steps only need to be completed once per part design. The FEA simulations take 

about 5 minutes each for the fender mesh so avoiding the need to complete FEA for every 

part is important for real-time inspection. The remaining processing steps need to be 

completed for every measured part. The computational time to process the fender data 

which contained over 50,000 nodes and over 4 million points took almost 40 minutes (see 

section 7.4). Metrologists from industry should be consulted to select a subset of the 

50,000 nodes that are important for the profile deviation measurement. For example, if 

the profile deviation measurement was limited to 100 nodes, the point cloud processing 

computational time should decrease to about 5 seconds which is acceptable for real-time 

inspection in a production environment. 

8.1. Future work 

Several activities should be completed to thoroughly evaluate the proposed 

fixtureless inspection approach. An instrumented fixture that measures the assembly 

forces at each fixture locator should be constructed to increase the confidence in the 

assembly force calculations. This activity would likely lead to a better understanding of 

assembly forces allowing the proposed approach to be adjusted for more accurate force 

prediction. The accuracy of the predicted mode shapes should also be quantified by 

modifying the fixture to bend the fender into one of the mode shapes and then measuring 

and comparing to the FE predicted mode shapes. An uncertainty analysis of the fender 
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should be completed to identify the primary factors that need to be addressed for 

improved accuracy. The approach should be applied to on an automotive part with a real 

CAD model and a real inspection fixture currently used in a production environment. 

To increase the industrial applicability, the accuracy needs to be improved such 

that the profile deviation from the nonrigid inspection method agrees with the directly 

measured profile deviation to within 0.1 mm. The scanning process should also be 

automated using a faster scanner type such as a fringe projection system. The 

computational efficiency of the initial CAD model to point cloud registration code 

(section 7.4, Appendix C.1) should also be improved. It currently takes over 30 seconds 

to execute because the MATLAB® fminsearch optimization code is used for alignment. A 

deterministic code for this alignment should be written which would likely decrease the 

computational time for the CAD to point cloud alignment to less than 1 second. If the 

point cloud processing step (section 7.4, Appendix C.3) was limited to 100 nodes such 

that the computational time decreased to 5 seconds, the entire process could be completed 

in less than 7 seconds (on a ThinkPad T530 laptop with i7-3720QM CPU). 

There are many applications yet to be explored in the literature that could benefit 

from fixtureless inspection or, more generally, the FE correction of dimensional 

metrology data. For example, the prediction of the shape of space-based structures when 

measured under the influence of gravity on earth, as briefly mentioned in ref: [6]. Also, 

nonrigid parts of much larger scale can benefit from the ability to correct dimensional 

metrology data for gravitational sag (for example ref: [42]). Any part where the design 

loads, constraints, or gravity cause part deformations greater than 1/10 of the dimensional 

tolerance can be benefit from this process. 
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APPENDIX A: PROFILE DEVIATION CALCULATION DETAILS 

A.1. Normal vector computation 

The unit normal vector computation for a given node, mentioned in section 2.2 

step 2), was completed using one of the techniques documented by Jirka and Skala [43]. 

This method simply averages the normal vectors of the elements in which the node is a 

part of to estimate the normal vector for that node. This process is described in Figure 

A-1. 

 
Figure A-1: Nodal normal vector computation 

A.2. Point cloud nearest neighbor search 

The search for the nearest neighbors, mentioned in section 2.2 step 3), is 

illustrated in Figure A-2. Let 𝑀𝑚𝑒𝑎𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑗
be the vector between the 𝑖𝑡ℎ node of 𝑺𝒎𝒆𝒂𝒔 to the 

𝑗𝑡ℎ point of the point cloud 𝑴𝒎𝒆𝒂𝒔 (recall Figure 2-3). The distance 𝐷 between 𝑀𝑚𝑒𝑎𝑠𝑗
 

and �⃗� 𝑖 can then be calculated according to Figure A-2. Now, only 𝑴𝒎𝒆𝒂𝒔 cloud points 

within the cylindrical radius 𝑅 (i.e. 𝐷< 𝑅) are stored in 𝑵 (recall Figure 2-3c) which is a 

𝑞𝑥3 matrix containing the XYZ coordinates of the nearest cloud point neighbors. The 

index into 𝑵 is 𝑘. 

: surface normal of element p
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Figure A-2: Calculation of nearest neighbor distance 

A.3. MATLAB code for profile deviation calculation 

The MATLAB code for the profile deviation calculation shown below 

accomplishes step 3) through step 8) of section 2.2. 

function [results] = process(Smeas,Mmeas,n,R,sigt,Qt) 
%n - unit surface normal vector for each node of Smeas 
%R - cylindrical search radius 
%sigt - standard deviation threshold 
%Qt - number of nearest neighbors threshold 

  
%preallocate array sizes for computational efficiency 
Rmeas = zeros(length(Smeas.Node),1); 
sig = zeros(length(Smeas.Node),1); 
Q = zeros(length(Smeas.Node),1); 

  
for i = 1:length(Smeas.Node)%check each node 
    %step 3: find nearest point cloud neighbors 
    Mmeasj = [(Mmeas(:,1)-Smeas.X(i)) (Mmeas(:,2)-Smeas.Y(i))  

        (Mmeas(:,3)-Smeas.Z(i))]; 
    Mmeasj_n = Mmeasj(:,1).*n(i,1)+Mmeasj(:,2).*n(i,2)+ 

        Mmeasj(:,3).*n(i,3);%Mmeasj dot product with n 
    Mmeasj_mag = sqrt(sum(Mmeasj.^2,2)); 
    D = sqrt(Mmeasj_mag.^2 - Mmeasj_n.^2); 
    TF = D<R;%find points within cylindrical radius 

     
    %step 4: fetch surface normal distance for each nearest neighbor     
    e = Mmeasj_n(TF);%keeps only the true elements 

     
    %step 5: calculate profile deviation 
    Rmeas(i,1) = mean(e); 

     
    %step 6: calculate standard deviation 
    sig(i,1) = std(e); 

     
    %step 7: store number of nearest neighbors 
    Q(i,1) = length(e); 
    i%output node number for status update 
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end 

  
%step 8: check Qt and sigt thresholds 
fail = Q<Qt | sig>sigt; 
Rmeas(fail) = NaN;%ignore deviations which don't meet thresholds 

  
vars = {'Rmeas','sig','Q'}; 
results = table(Rmeas,sig,Q); 
results.Properties.VariableNames = vars; 
end 
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APPENDIX B: CANTILEVERED FLAT PLATE MATLAB CODE 

B.1. MATLAB code for point cloud simplification 

The following MATLAB code finds the cloud points from 𝑴𝒎𝒆𝒂𝒔 within a 1mm 

XY radius of the 𝑺𝒎𝒆𝒂𝒔 mesh nodes. The identified cloud points are then averaged to 

return a single cloud point for that node.  The resulting simplified point cloud called 

𝑴𝒎𝒆𝒂𝒔,𝒏𝒐𝒅𝒆 is an 𝑚𝑥3 matrix containing the XYZ coordinates.  An equivalent code was 

used to convert 𝑴𝒅𝒆𝒔 and 𝑺𝒅𝒆𝒔 into 𝑴𝒅𝒆𝒔,𝒏𝒐𝒅𝒆. Refer to section 4.3 to see how this fits 

into the narrative. 

load('Smeas.mat') 
load('Mmeas.mat') 
[Mmeas_node] = process(Smeas,Mmeas,1); 

  
function [cloud_node] = process(mesh,cloud,R) 
for i = 1:length(mesh.Node)%check each Pi (node) 
    X = mesh.X(i); Y = mesh.Y(i); 
    r = sqrt((cloud.X-X).^2 + (cloud.Y-Y).^2); 
    TF = r<R;%calculate a logical array for cylinder radius 

     
    x = mean(cloud.X(TF)); 
    y = mean(cloud.Y(TF)); 
    z = mean(cloud.Z(TF)); 

     
    cloud_node(i,:) = [x y z]; 
end 
end 

 
B.2. MATLAB code for point cloud registration 

The following MATLAB code was used for the transformation of the simplified 

𝑴𝒎𝒆𝒂𝒔 (output from the Appendix B.1 code) to 𝑺𝒎𝒆𝒂𝒔 by using the MATLAB fminsearch 

function to minimize the sum of the squared Z deltas.  Rotations about X and Y and 

translations in Z were used.  The code output trans which contained the resulting best fit 

XY rotations and Z translation. An equivalent code was used to transform the simplified 

𝑴𝒅𝒆𝒔 to 𝑺𝒅𝒆𝒔. Refer to section 4.3 to see how this fits into the narrative. 
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trans0 = [0 0 0];%all initial guesses = 0 
options = optimset('TolFun',1e-7,'MaxFunEvals',1e4,'TolX',1e-7); 
[trans,fval,exitflag,output] = fminsearch(@transform,trans0,options) 

  
function [sum_squares] = transform(trans) 
%O denotes original coordinate system 
%T denotes transformed coordinate system 
load('Smeas.mat') 
load('Mmeas_node.mat') 

  
z = trans(1); 
alpha = trans(2); 
beta = trans(3); 

  
R_OTy = [cos(beta) 0 -sin(beta); 0 1 0; sin(beta) 0 cos(beta)]; 
R_OTx = [1 0 0; 0 cos(alpha) sin(alpha); 0 -sin(alpha) cos(alpha)]; 
O_T = [0 0 z]'; 

  
Mmeas_node_T = O_T + R_OTx*R_OTy*Mmeas_node'; 
Mmeas_node_T = Mmeas_node_T'; 

  
squares = (Mmeas_node_T(:,3)-Smeas.Z).^2; 
sum_squares = sum(squares,'omitnan'); 
end 
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APPENDIX C: FENDER MATLAB CODE 

C.1. MATLAB code for 𝑺𝒎𝒆𝒂𝒔,𝑻 

The following MATLAB code transforms 𝑺𝒎𝒆𝒂𝒔 to contact 𝑴𝒎𝒆𝒂𝒔 at D1 to D3 

and adds C*𝑽𝒎𝒆𝒂𝒔 to create contact at an arbitrary node near the bottom right of the 

fender (see Figure 7-9b). 𝑺𝒎𝒆𝒂𝒔,𝑻 is output. The initial guess listed in the code below is 

the final result output from the code after many iterations. This code accomplishes step 3) 

of section 6.3. Refer to section 7.4 to see how this fits into the narrative. 

load('Smeas.mat') 
load('n.mat') 
Mmeas = readtable('Mmeas.txt'); 

  
trans0 = [16.0799    0.0489   -0.0007   -0.9596];%initial guesses 
options = optimset('TolFun',1e-7,'MaxFunEvals',1e4,'TolX',1e-7); 
trans = transform1(trans0,options,Smeas,n,Mmeas) 

  
function trans = transform1(trans0,options,Smeas,n,Mmeas) 
nodes = [808 24607 140118 146186]%node numbers for D1,D2,D3, and Vmeas 
R=1;%search radius (mm) 
[trans,fval,exitflag,output] = fminsearch(@transform,trans0,options) 

  
function [sum_surf_norms] = transform(trans) 
%O denotes original coordinate system 
%T denotes transformed coordinate system 
 

%fetch transformation values  
z = trans(1);%z translation (mm) 
alpha = trans(2);%x rotation (rad) 
beta = trans(3);%y rotation (rad) 
C = trans(4);%Vmeas coefficient (unitless) 

  
R_OTy = [cos(beta) 0 -sin(beta); 0 1 0; sin(beta) 0 cos(beta)]; 
R_OTx = [1 0 0; 0 cos(alpha) sin(alpha); 0 -sin(alpha) cos(alpha)]; 
O_T = [0 0 z]';%vector from T origin to O origin 

  
Smeas_T(:,1) = Smeas.x + C*V.meas.dx;  

Smeas_T(:,2) = Smeas.y + C*V.meas.dy;  

Smeas_T(:,3) = Smeas.z + C*V.meas.dz; 
Smeas_T = O_T + R_OTx*R_OTy*Smeas_T'; 
Smeas_T = Smeas_T'; 

  
for i = 1:4%complete loop for D1,D2,D3,and Vmeas 
    dx = Mmeas.x-Smeas_T(nodes(i),1); 
    dy = Mmeas.y-Smeas_T(nodes(i),2); 
    XY = abs(dx)<10 & abs(dy)<10;%find cloud points within 10 mm in xy 
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    Mmeasj = [(Mmeas.x(XY)-Smeas_T(nodes(i),1)) (Mmeas.y(XY)- 

  Smeas_T(nodes(i),2)) (Mmeas.z(XY)-Smeas_T(nodes(i),3))]; 
    Mmeasj_n = Mmeasj(:,1).*n(nodes(i),1)+Mmeasj(:,2).*n(nodes(i),2) 

+Mmeasj(:,3).*n(nodes(i),3);%Mmeasj dot product with n 
    Mmeasj_mag = sqrt(sum(Mmeasj.^2,2)); 
    D = sqrt(Mmeasj_mag.^2 - Mmeasj_n.^2); 
    TF = D<R;%find points within cylindrical radius 

       
    e = Mmeasj_n(TF);%keeps only the true elements 
    surf_norm(i,1) = mean(e);%surface normal distance 
end 
sum_surf_norms = sum(abs(surf_norm)) 

 
end 
end 

 
C.2. MATLAB code for 𝑺𝒎𝒆𝒂𝒔,𝑽 

The following MATLAB code scales 𝑺𝒎𝒆𝒂𝒔,𝑻 by the mode shapes to contact 

𝑴𝒎𝒆𝒂𝒔 at D4 to D8. The assembly forces are also calculated. 𝑺𝒎𝒆𝒂𝒔,𝑽 and 𝑭 are output. 

This code accomplishes step 4)  and 5) of section 6.3. Refer to section 7.4 to see how this 

fits into the narrative. 

load('Smeas_T.mat') 
load('n.mat') 
Mmeas = readtable('Mmeas.txt'); 
load('V') 
nodes = [808 24607 140118 10805 60127 129011 124310 73325]%node numbers  

 for D1 to D8 

  
R=2;%search radius, when R = 1 mm, C_D8 is NaN, C4 to C7 change by less  

than 1% when R is increased from 1 mm to 2 mm 
for i = 4:8%complete loop for D4 to D8 
    dx = Mmeas.x-Smeas_T.x(nodes(i)); 
    dy = Mmeas.y-Smeas_T.y(nodes(i)); 
    XY = abs(dx)<10 & abs(dy)<10;%find points within +-10 mm in xy 

     
    Mmeasj = [(Mmeas.x(XY)-Smeas_T.x(nodes(i))) (Mmeas.y(XY)- 

Smeas_T.y(nodes(i))) (Mmeas.z(XY)-Smeas_T.z(nodes(i)))]; 
    Mmeasj_n = Mmeasj(:,1).*n(nodes(i),1)+Mmeasj(:,2).*n(nodes(i),2) 

+Mmeasj(:,3).*n(nodes(i),3);%Mmeasj dot product with n 
    Mmeasj_mag = sqrt(sum(Mmeasj.^2,2)); 
    D = sqrt(Mmeasj_mag.^2 - Mmeasj_n.^2); 
    TF = D<R;%find points within cylindrical radius 

       
    e = Mmeasj_n(TF);%keeps only the true elements 
    surf_norm(i,1) = mean(e);%surface normal distance 
    C(i,1) = surf_norm(i,1);%coefficients for scaling Smeas_T 
end 
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save('C','C') 

  
Smeas_V = table; 
Smeas_V.x = Smeas_T.x + C(4)*V.D4.dx + C(5)*V.D5.dx + C(6)*V.D6.dx + 

C(7)*V.D7.dx + C(8)*V.D8.dx; 
Smeas_V.y = Smeas_T.y + C(4)*V.D4.dy + C(5)*V.D5.dy + C(6)*V.D6.dy +  

 C(7)*V.D7.dy + C(8)*V.D8.dy; 
Smeas_V.z = Smeas_T.z + C(4)*V.D4.dz + C(5)*V.D5.dz + C(6)*V.D6.dz +  

 C(7)*V.D7.dz + C(8)*V.D8.dz; 
save('Smeas_V','Smeas_V') 
 

load('F') 
F_asm = table; 
F_asm.Fx = F.Sdes.Fx - C(4)*F.VD4.Fx - C(5)*F.VD5.Fx - C(6)*F.VD6.Fx –  

C(7)*F.VD7.Fx - C(8)*F.VD8.Fx; 

F_asm.Fy = F.Sdes.Fy - C(4)*F.VD4.Fy - C(5)*F.VD5.Fy - C(6)*F.VD6.Fy –  

C(7)*F.VD7.Fy - C(8)*F.VD8.Fy; 

F_asm.Fz = F.Sdes.Fz - C(4)*F.VD4.Fz - C(5)*F.VD5.Fz - C(6)*F.VD6.Fz –  

C(7)*F.VD7.Fz - C(8)*F.VD8.Fz; 

F_asm.Fn = n(nodes,1).*F_asm.Fx + n(nodes,2).*F_asm.Fy +  

n(nodes,3).*F_asm.Fz; 

save('F_asm','F_asm') 

 
C.3. MATLAB code for 𝑹𝒎𝒆𝒂𝒔 

The following MATLAB code calculates the profile deviation by processing 

𝑺𝒎𝒆𝒂𝒔,𝑽 against 𝑴𝒎𝒆𝒂𝒔, accomplishing step 6) of section 6.3. Refer to section 7.4 to see 

how this fits into the narrative. 

load('n.mat') 
Mmeas = readtable('Mmeas.txt'); 
load('Smeas_V.mat') 
 

R = 1;%cylindrical radius for search, units: mm 
sigt = 0.05;%upper limit on acceptable standard deviation, units: mm 
Qt = 10;%lower limit on acceptable nearest neighbor point count 

  
[meas] = process(Smeas_V,Mmeas,n,R,sigt,Qt); 
save('meas','meas');%save processed data 

  
function [results] = process(Smeas_V,Mmeas,n,R,sigt,Qt) 
%n - unit surface normal vector for each node of Smeas_V 
%R - cylindrical search radius 
%sigt - standard deviation threshold 
%Qt - number of nearest neighbors threshold 

  
%preallocate array sizes for computational efficiency 
Rmeas = zeros(length(Smeas_V.x),1); 
sig = zeros(length(Smeas_V.x),1); 
Q = zeros(length(Smeas_V.x),1); 

  
for i = 1:length(Smeas_V.x)%check each node 
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    %steps are numbered to match thesis section 2.2 
    %step 3: find nearest point cloud neighbors 
    dx = Mmeas.x-Smeas_V.x(i); 
    dy = Mmeas.y-Smeas_V.y(i); 
    XY = abs(dx)<10 & abs(dy)<10;%find points within 10 mm in xy plane 

     
    Mmeasj = [(Mmeas.x(XY)-Smeas_V.x(i)) (Mmeas.y(XY)-Smeas_V.y(i))  

(Mmeas.z(XY)-Smeas_V.z(i))]; 
    Mmeasj_n = Mmeasj(:,1).*n(i,1)+Mmeasj(:,2).*n(i,2)+Mmeasj(:,3).* 

n(i,3);%Mmeasj dot product with n 
    Mmeasj_mag = sqrt(sum(Mmeasj.^2,2)); 
    D = sqrt(Mmeasj_mag.^2 - Mmeasj_n.^2); 
    TF = D<R;%find points within cylindrical radius 

     
    %step 4: fetch surface normal distance for each nearest neighbor     
    e = Mmeasj_n(TF);%keeps only the true elements 

     
    %step 5: calculate profile deviation 
    Rmeas(i,1) = mean(e); 

     
    %step 6: calculate standard deviation 
    sig(i,1) = std(e); 

     
    %step 7: store number of nearest neighbors 
    Q(i,1) = length(e); 
    i%output node number for status update 
end 

  
%step 8: check Qt and sigt thresholds 
fail = Q<Qt | sig>sigt; 
Rmeas_unfiltered = Rmeas; 
Rmeas(fail) = NaN;%ignore deviations which don't meet thresholds 

  
vars = {'Rmeas_unfiltered','Rmeas','sig','Q'}; 
results = table(Rmeas_unfiltered,Rmeas,sig,Q); 
results.Properties.VariableNames = vars; 
end 
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