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ABSTRACT

YUE WANG. Preserving differential privacy in complex data analysis. (Under the
direction of DR. XINTAO WU)

Omnipresent databases from various resources, such as social networks, electronic com-

mercial websites, and health related wearable devices, have provided researchers with un-

precedented opportunities to analyze complex social phenomena. While society would

like to encourage such scientific endeavors, we are faced with the problem of providing

researchers with a fairly precise picture of the quantities or trends of complex data with-

out disclosing sensitive information about individuals. In this dissertation, we investigate

how to apply differential privacy model in complex data analysis. Differential privacy is a

paradigm of post-processing the output of queries or mining tasks on databases such that

the inclusion or exclusion of a single individual from a database makes no statistical differ-

ence to the results found. It provides formal privacy guarantees that do not depend on an

adversary’s background knowledge. There has been extensive research on how to enforce

differential privacy in analyzing tabular data and several mechanisms have been develope-

d to achieve differential privacy protection. However, there are significant challenges to

achieve differential privacy protection on complex data including social networks and bio-

logical sequence data mainly due to high sensitivity of desired statistics and the complexity

of mining tasks. In this dissertation, we focus on how to enable accurate analysis of com-

plex data while preserving differential privacy. We firstly propose a general divide and

conquer framework to deal with complex computation tasks by decomposing a complex

target computation into several less complex unit computations connected by basic mathe-
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matical operations (e.g., addition, subtraction, multiplication, division), and perturbing the

output of each unit with Laplace noise derived from its own sensitivity value and the dis-

tributed privacy threshold. Next, we develop solutions to more complicated applications:

differential privacy graph generation and differential privacy preserving spectral analysis of

network topology. We examine the state-of-the-art differential privacy preserving mecha-

nisms including the exponential mechanism and the smooth sensitivity and develop feasible

solutions to these problems. Additionally, we consider the potential information disclosure

from differential privacy preserving outputs. We propose two attacking models to show

how genome-wide association studies (GWAS) results can be used to infer the trait or the

identity of individuals even if those results are under differential privacy protection. We

also provide the countermeasure for model inversion attacks where the released regression

model under the differential privacy protection can still be exploited by the attacker to de-

rive information about sensitive attributes used in the model. We develop a novel approach

for releasing differential private regression models by leveraging the functional mechanis-

m to perturb coefficients of the polynomial representation of the objective function while

balancing the privacy budgets for sensitive and non-sensitive attributes in learning the re-

gression models. Our approach can effectively retain the models’ utility while preventing

model inversion attacks. Finally, we consider the problem of enforcing differential privacy

at the client-side against an untrusted server in the data collection scenario. Our proposed

technique which uses the randomized response technique incurs less utility loss than the

traditional output perturbation mechanism especially when the sensitivity of desired com-

putation is high, and also provides the individuals a simple manner to protect their sensitive

information by themselves against anyone with ulterior motives.
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CHAPTER 1: INTRODUCTION

Big data is used to describe the data growth challenges and opportunities in three dimen-

sions: volume, velocity and variety. Specific technology and analytical methods are now

being developed to transform the information assets with high volume, velocity and variety

into value. The collection and manipulation of such large and complex datasets can bring

enormous real-world benefits in various fields, such as healthcare, scientific research, agri-

culture, logistics, urban design, energy, retailing, crime reduction, and business operations.

Typical examples of the applications based on complex data analysis include: Google Flu

Trends that uses aggregated Google search data to estimate flu activity in United States;

Microsoft Band that can monitor health related physiological indicators and give insights

about happiness and well-being; and Facebook’s interest based advertising that targets mar-

keters’ ads based on the not only what people do on Facebook, but also the websites Face-

book users visit and the apps they use when they are not on the social network.

However, privacy and intellectual property laws have not kept up with the pace of tech-

nological change. No one can really answer the question: who has right to the data. It

is often advertised by social network or social media platforms that the users own right to

their own content. But the ambiguous or even opposite claims on how that content is used

or shared with third parties are often listed somewhere in the long installation agreement

which users would directly ignore. Consequently, as people post, they actually give up the

control over how the post content, as long as the location, device and other information, is
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used in future.

To protect individuals’ privacy as well as promoting complex data analysis, we are faced

with the problem of providing researchers with a fairly precise picture of the quantities or

trends of complex data without disclosing sensitive information about participants. Differ-

ential privacy [29,32] was recently proposed to provide formal privacy guarantees that can

maximize the query accuracy from statistical databases while minimizing the identifying

risk of a participant’s record. In this dissertation, we investigate how to apply differential

privacy model in the applications based on complex data analysis. Particularly, the term

‘complex’ indicates that we will mostly focus on the challenges due to the high variety of

data.

1.1 Differential Privacy

The privacy preserving data mining community has expended great effort in develop-

ing sanitization techniques to effectively anonymize data so that the sanitized data can be

published or shared with others. Researchers have proposed various privacy models such

as k-anonymity [96], l-diversity [80], and t-closeness [76] and developed various saniti-

zation approaches including suppression, generalization, randomization, permutation, and

synthetic data generation. The aim is that an honest analyst should be able to perform a

variety of ad hoc analysis and derive accurate results whereas a malicious attacker should

be unable to exploit the published data to infer private information about individuals.

All these sanitization approaches adopt the idea of pre-processing the raw data such that

each individual’s record or her sensitive attribute values are hidden within a group of other

individuals. However there is no guarantee to achieve strict privacy protection since they

could not completely prevent adversaries from exploiting various auxiliary information
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(e.g., via background knowledge attacks [27, 82] and composition attacks [40]) to breach

privacy. A well-known instance of the failure of sanitization approaches is the ‘Linkage

Attack’ on the Netflix database. Netflix offered $1, 000, 000 prize for a 10% improvement

in its recommendation system. In order to protect customer privacy, Netflix had removed

all personal information as well as the real customer ids when it released a training dataset.

But such strategy failed to protect privacy since attackers could partially de-anonymize the

Netflix training database, compromising the identity of users, by linking it with another

movie rating database, IMDB, using the date of rating by a user.

Differential privacy [29, 32] was then proposed to provide formal privacy guarantees

that do not depend on an adversary’s background knowledge (including access to other

databases) or computational power. Differential privacy is a paradigm of post-processing

the output of queries such that the inclusion or exclusion of a single individual from the

data set makes no statistical difference to the mining results found.

Differential privacy is usually achieved by directly adding calibrated noise on the output

of a specific computation f . The calibrating process includes the calculation of the global

sensitivity of the computation f that bounds the possible change in the computation output

over any two neighboring databases. The added noise is then generated from a Laplace

distribution with the scale parameter determined by the global sensitivity of f and the user-

specified privacy threshold ϵ.

Most previous research on differential privacy theoretically studied the problem of en-

forcing differential privacy in relational databases [8, 12, 13, 17, 30, 32, 33, 39, 40, 42, 53,

65, 97, 123]. The applicability of enforcing differential privacy in real world applications

has also been studied, e.g., the application of differential privacy to collaborative recom-
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mendation system [85], logistic regression [17], publishing contingency tables [8, 124] or

data cubes [25], privacy preserving integrated queries [84]. However, there are significant

challenges to achieve differential privacy protection on complex data including social net-

works and biological sequence data mainly due to high sensitivity of desired statistics and

the complexity of mining tasks.

In this dissertation, we focus on how to enable accurate analysis of complex data while

preserving differential privacy. We first propose several techniques to apply differential

privacy model into the process of mining social network topology (in Chapters 2,3 and

4). We then study how and to what extend attackers can learn sensitive information from

data analysis results which are under the protection of differential privacy and propose

countermeasures to the possible attacks (in Chapters 5 and 6). At last, we propose a solution

to the problem of enforcing differential privacy at the client-side against an untrusted server

in the data collection scenario. Our proposed approach enables individuals to protect their

sensitive information by themselves against anyone with ulterior motives (in Chapter 7).

1.2 Mining Social Network Topology

Social networks are of significant importance in various application domains. The man-

agement and analysis of these networks have attracted interests in various research com-

munities such as sociology, statistics, and data mining. Studies are mostly focused on

revealing interesting properties of networks and discovering efficient and effective analysis

approaches [6, 10, 43, 63, 66, 67, 69, 78, 79, 98, 100, 103, 116, 118, 121, 125, 128, 129].

Social networks often contain some private attribute information about individuals as

well as their sensitive relationships. In particular, privacy disclosure risks arise when the

data owner wants to publish or share the social network data with another party for research
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or business-related applications. The privacy concerns associated with data analysis over

social networks have incurred the recent research. A detailed survey of the recent work on

this topic can be found in [122].

In this dissertation, we study the problem of how to protect privacy in the process of

analyzing social network topology under the framework of differential privacy. The general

noise injection technique to achieve differential privacy works well for traditional aggregate

functions (e.g., count and sum) over tabular data. In social network data analysis, various

graph features such as cluster coefficient and modularity often have much higher sensitivity

value (proportional to the number of nodes) than the traditional aggregate functions on

tabular data do. In addition, for graph topology itself, direct noise injection according to

global sensitivity may break the constraints on the data (e.g., the adjacency matrix should

have binary entries) or destroy the underlying characters of the data. Furthermore, for some

computations such as spectral decomposition, the classic noise injection approach cannot

be applied since there is no explicit formula to calculate global sensitivity. We propose

techniques to meet such challenges in this dissertation.

1.2.1 General Graph Feature Calculation

A divide and conquer approach (denoted as D&C in this dissertation) has been suggested

in the literature [32] for computing complicated mining functions. The basic procedure of

this approach is to first decompose the target computation f into several less complex

unit computations f1, · · · , fm connected by basic mathematical operations (e.g., addition,

subtraction, multiplication, division), then perturb the output of each fi with Laplace noise

derived from its own sensitivity value and the distributed privacy threshold ϵi, and finally

combine those perturbed outputs as the perturbed output of computation f .
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However, this straightforward adaptation could lead to poor performance especially

when multiplication or division operations are involved. And there is no theoretical study

on calculating the unbiased estimate of f from perturbed results of fis. In Chapter 2,

we theoretically examine how various operations affect the accuracy of complex compu-

tations. When unit computations have large global sensitivity values, we enforce the dif-

ferential privacy by calibrating noise based on the smooth sensitivity [90], rather than the

global sensitivity. By doing this, we achieve the strict differential privacy guarantee with

smaller magnitude noise. We illustrate our approach by learning clustering coefficient (a

popular graph feature used in social network analysis) from private networks. Empirical

evaluations on five real social networks and various synthetic graphs generated from three

random graph models show the developed divide and conquer approach outperforms the

direct approach.

1.2.2 Graph Generation

Graph topologies play an irreplaceable role in the network analysis. Attempts [87, 95]

have been made in enforcing differential privacy in graph topology generation and publish-

ing. The idea is to enforce differential privacy on graph model parameters learned from the

original network and then generate the graphs for releasing using the graph model with the

private parameters. The released graphs then can be used for various analyses. The authors

in [87] tried to generate differentially private graph topology with the stochastic Kronecker

graph generation model [73]. However, the stochastic Kronecker graph generation model

often cannot accurately capture graph properties of real social networks due to its simplic-

ity in the generation process. The authors in [95] developed a private dK-graph model.

The dK-graph model [81], which constructs graphs to satisfy a family of properties based
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on various types of node degree correlations, has been shown an effective graph genera-

tion model. However, the private 2K-graph model proposed in [95] was based on the local

sensitivity of degree correlations due to the large global sensitivity. As a result, the model

could not achieve rigorous differential privacy protection.

In Chapter 3, we propose a private 2K-graph generation model that achieves rigorous dif-

ferential privacy. Our idea is to enforce the differential privacy by calibrating noise based

on the smooth sensitivity [90]. By doing this, we achieve the strict differential privacy guar-

antee with smaller magnitude noise. We conduct experiments on four real networks and

compare the performance of our private dK-graph models with the stochastic Kronecker

graph generation model in terms of utility and privacy tradeoff. Empirical evaluations

show the effectiveness of our proposed private dK-graph models.

1.2.3 Spectral Analysis

We then focus on differential privacy preserving spectral graph analysis. Spectral graph

analysis deals with the analysis of the spectra (eigenvalues and eigenvector components) of

the graph’s adjacency matrix or its variants.

In Chapter 4, we develop two approaches to computing the ϵ-differential private spectra,

the first k eigenvalues and the corresponding eigenvectors, from the input graph G. The

first approach, denoted as LNPP, is based on the Laplace Mechanism [32] that calibrates

Laplace noise on the eigenvalues and every entry of the eigenvectors based on their sensi-

tivities. We derive the global sensitivities of both eigenvalues and eigenvectors based on the

matrix perturbation theory [101]. Because the output eigenvectors after perturbation are no

longer orthogonormal, we postprocess the output eigenvectors by using the state-of-the-art

vector orthogonalization technique [41]. The second approach, denoted as SBMF, is based
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on the exponential mechanism [86] and the properties of the matrix Bingham-von Mises-

Fisher density for network data spectral analysis [55]. We prove that the Gibbs sampling

procedure [55] achieves differential privacy. We conduct empirical evaluation on a real

social network data and compare the two approaches in terms of utility preservation (the

accuracy of spectra and the accuracy of low rank approximation) under the same differen-

tial privacy threshold. Our empirical evaluation results show that LNPP generally incurs

smaller utility loss.

1.3 Potential Information Disclosure from Private Outputs

After exploring techniques of protecting the mining results from complex data especially

social network topology with differential privacy, we are then exploring whether those dif-

ferentially private results are secure enough to prevent the attackers from learning sensitive

information accurately. In this section, we introduce two pieces of work about possible

attacks on the private mining outputs and the countermeasures for those attacks.

1.3.1 Trait and Identity Inference using Results from GWAS

Except for graph data from social network, another type of commonly studied sensi-

tive data is the human genome sequence data. Intensive attention has been attracted to

Genome-wide association studies (GWAS) due to the rapid decrease of genotyping costs

and promising potential in genetic diagnostics. GWAS focus on associations between

single-nucleotide polymorphisms (SNPs) and human traits like common diseases.

The biomedical community generally used to agree that statistics (e.g., allele frequency)

learned from SNP data(not like the SNP sequence itself) are safe to directly release to

public since they cannot be used to identify individuals. However, the findings in [56]

showed that GWAS statistics do not completely conceal identity since it is straightforward
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to assess the probability a person participated in a GWA study.

In Chapter 5, we study a related but different privacy protection problem, i.e., whether

and to what extent GWAS statistics can be exploited by an attacker to learn private infor-

mation of regular people (rather than those GWAS participants). Specifically, we formulate

two potential attacks: 1) trait inference attack that aims to infer the probability of a target

developing some private trait when the target’s SNP profile is available to the attacker; and

2) identity inference attack that aims to infer the probability of a record in an anonymized

genebank database belonging to the target when some traits of the target are available.

Both attacks pose a serious threat to individuals when their SNP profiles are exploited

by attackers. Our results show that unexpected privacy breaches can occur because aggre-

gation statistics (or even perturbed statistics under differential privacy) provide no explicit

security guarantees and these statistics could be exploited by attackers to identify individ-

uals or derive private information.

1.3.2 Regression Model Release against Model Inversion Attack

Similar to the GWAS statistics learned from DNA sequence data, regression models may

also be exploited by an adversary to breach privacy of both participant individuals in the

datasets and regular non-participant individuals, even if the released model is under the

protection of differential privacy.

Differential privacy preserving regression models guarantee protection against attempts

to infer whether a subject was included in the training set used to derive a model. However,

a recently proposed model inversion attack [38] indicates that such models can’t provide

effective protection to the sensitive attribute value of a target individual. In model inversion

attack, given the released regression model, an adversary with some background knowledge
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about the target individual can make accurate prediction on some sensitive attribute value,

as long as such attribute is used as input in the regression model. Model inversion attack

may fail when the privacy threshold ϵ is very small; but in that way, the regression model

also loses acceptable accuracy.

In Chapter 6, we develop a novel approach which leverages the functional mechanism

to perturb coefficients of the polynomial representation of the objective function but ef-

fectively balances the privacy budget for sensitive and non-sensitive attributes in learning

the differential privacy preserving regression models. Theoretical analysis and empirical

evaluations demonstrate our approach can effectively prevent model inversion attacks and

retain the model utility.

1.4 Private Data Collection

In previous sections, we introduce several approaches to preserve individuals’ privacy

in the data publishing scenario, as in which a trusted server releases datasets of individual

information or answers queries on such datasets. In this section, we introduce our work on

how to enforce differential privacy in the data collection scenario, as in which an untrusted

server collects personal information from individuals. Our work is based on the randomized

response strategy, a client-based privacy solution that does not rely upon a trusted third-

party server. Such strategy puts control over data back to clients.

Given a client’s value, the client runs the randomized algorithm to get a corresponding

perturbed value and reports it to the untrusted server. The use of randomized response in

surveys enables easy estimations of accurate population statistics while preserving the pri-

vacy of the individual respondents. In Chapter 7, we study the privacy guarantee provided

by randomized response under the differential privacy model. We also compare the per-
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formance of randomized response with that of the standard Laplace mechanism which is

based on query-output independent adding of Laplace noise.

One advantage of the use of the randomized response in the data collection is that the

collected data can be released for as much analysis as needed without worrying further

privacy disclosure. This is different from the output perturbation where each additional

analysis consumes further privacy budget. Moreover, the use of the randomized response

for collecting data incurs less utility loss than the output perturbation when the sensitivity

of functions is high, as demonstrated in our experiment where we calculate the number of

triangles in the social network while preserving differential privacy.

1.5 Paper Organization

The dissertation is organized as follows:

In Chapter 2, we introduce the divide and conquer approach of ensuring differential

privacy protection in accurate data analysis of data collected from social network. Using

cluster coefficient as an example, we illustrate our divide and conquer approach framework

for decomposing complex target computations and calibrating noise based on either smooth

sensitivity [90] or global sensitivity, finally combining private unit computation results to

get the private analysis result for the original target computation.

In Chapter 3, we propose a differentially private dK-graph generation model that en-

forces rigorous differential privacy while preserving utility. We conduct theoretical analysis

and empirical evaluations to show that the developed private dK-graph generation models

significantly outperform the approach based on the stochastic Kronecker generation model.

In Chapter 4, we present two approaches, LNPP and SBMF, to enforce differential pri-

vacy in spectral graph analysis. We apply and evaluate the Laplace Mechanism [32] and
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the exponential mechanism [86] on the differential privacy preserving eigen decomposition

on the graph topology.

In Chapter 5, we study whether and to what extent GWAS statistics (even under the pro-

tection of differential privacy) can be exploited by an attacker to learn private information

of general population, not limited to GWAS participants. We propose two potential attacks,

trait inference attack and identity inference attack. Both attacks exploit the released GWAS

statistics about the associations between SNP genotypes and human traits.

In Chapter 6,we develop a novel approach to learn regression model under differential

privacy. Our proposed approach is based on the functional mechanism which perturbs co-

efficients of the polynomial representation of the objective function. By effectively balanc-

ing the privacy budget for sensitive and non-sensitive attributes, we can effectively prevent

model inversion attacks and retain the model utility.

In Chapter 7, we study how to enforce differential privacy by using the randomized re-

sponse in the process of collecting sensitive data. Our research starts from the simple case

with one single binary attribute and extends to the general case with multiple polychoto-

mous attributes. We provide the explicit formula of the mean squared error of various

derived statistics based on the randomized response theory and prove the randomized re-

sponse outperforms the classic Laplace mechanism.

In Chapter 8, we offer our concluding remarks and discuss future work.



CHAPTER 2: COMPUTING GRAPH TOPOLOGY STATISTICS UNDER
DIFFERENTIAL PRIVACY

2.1 Introduction

As introduced in the previous chapter, differential privacy [29, 32] provides formal pri-

vacy guarantees that do not depend on an adversary’s background knowledge (including

access to other databases) or computational power. And it is usually achieved by directly

adding calibrated laplace noise on the output of the computation f .

In social network analysis, various graph features such as cluster coefficient and modu-

larity often have a high sensitivity (proportional to the number of nodes), which is different

from traditional aggregate functions on tabular data. Calibrating noise according to such

high global sensitivity will leads to poor mining performance, since the results found is

mostly tortured by noise. And for some mining functions, we may not have explicit for-

mula to calculate global sensitivity.

In this chapter, we propose a divide and conquer approach to deal with graph feature

calculation under differential privacy protection. We theoretically examine how various

operations affect the accuracy of complex computations. We achieve the strict differential

privacy guarantee with smaller magnitude noise leveraging noise injection with smooth

sensitivity [90] rather than global sensitivity when unit computations have large global

sensitivity values. We illustrate our approach by learning clustering coefficient from private

networks topologies.
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2.2 Background

We first revisit the formal definition differential privacy and the classic mechanism of

enforcing differential privacy by calibrating Laplace noise based on global sensitivity in

Section 2.2.1. We then introduce the smooth sensitivity framework [90] when global sensi-

tivity yields unacceptable high noise levels in Section 2.2.2. The smooth sensitivity frame-

work can calibrate the instance-specific noise with smaller magnitude than the worst-case

noise based on the global sensitivity. In Section 2.2.3, we introduce complex graph models

by which we generate various synthetic graphs for our empirical evaluation in Section 2.5.

2.2.1 Differential Privacy

In prior work on differential privacy, a database is treated as a collection of rows, with

each row corresponding to the data of a different individual. Here we focus on how to

compute graph features from private network topology described as its adjacency matrix.

We aim to ensure that the inclusion or exclusion of a link between two individuals from the

graph make no statistical difference to the results found.

Definition 1. (Differential Privacy [29]) A graph analyzing algorithm Ψ that takes as input

a graph G, and outputs Ψ(G), preserves (ε, δ)-differential edge privacy if for all closed

subsets S of the output space, and all pairs of neighboring graphs G and G′ from Γ(G),

Pr[Ψ(G) ∈ S] ≤ eϵ · Pr[Ψ(G′) ∈ S] + δ, (1)

where

Γ(G) = {G′(V,E ′)|∃!(u, v) ∈ G but (u, v) /∈ G′}. (2)

A differentially private algorithm provides an assurance that the probability of a partic-
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ular output is almost the same whether or not any individual edge is included. The privacy

parameter pair (ϵ, δ) controls the amount by which the distributions induced by two neigh-

boring graphs may differ (smaller values enforce a stronger privacy guarantee).

A general method for computing an approximation to any function f while preserving ϵ-

differential privacy is given in [32]. The mechanism for achieving differential privacy com-

putes the sum of the true answer and random noise generated from a Laplace distribution.

The magnitude of the noise distribution is determined by the sensitivity of the computation

and the privacy parameter specified by the data owner. The sensitivity of a computation

bounds the possible change in the computation output over any two neighboring graphs

(differing at most one link).

Definition 2. (Global Sensitivity [32]) The global sensitivity of a function f : D → Rd

(G ∈ D),in the analysis of a graph G, is

GSf (G) := max
G,G′s.t.G′∈Γ(G)

||f(G)− f(G′)||1 (3)

Theorem 1. (The Mechanism of Adding Laplace noise [32]) An algorithm A takes as input

a graph G, and some ϵ > 0, a query Q with computing function f : Dn → Rd, and outputs

A(G) = f(G) + (Y1, ..., Yd) (4)

where the Yi are drawn i.i.d from Lap(GSf (G)/ϵ). The Algorithm satisfies (ϵ, 0)-differential

privacy.

Differential privacy maintains composability, i.e., differential privacy guarantees can be

provided even when multiple differentially-private releases are available to an adversary.

Theorem 2. (Composition Theorem [31]) If we have n numbers of (ϵ, δ)-differentially pri-
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vate mechanisms M1, · · · ,Mn, computed using graph G, then any composition of these

mechanisms that yields a new mechanism M is (nϵ, nδ)-differentially private.

Differential privacy can extend to group privacy as well: changing a group of k edges

in the data set induces a change of at most a multiplicative ekϵ in the corresponding output

distribution. In this dissertation, we mainly focus on the edge privacy. We can extend the

algorithm to achieve the node privacy by using the above composition theorem [31].

2.2.2 Smooth Sensitivity

It may be hard to derive the global sensitivity of a complex function or global sensitivity

yields unacceptable high noise levels. Nissim et al. [90] introduces a framework that cali-

brates the instance-specific noise with smaller magnitude than the worst-case noise based

on the global sensitivity.

Definition 3. (Local Sensitivity [32, 90]) The local sensitivity of a function f : D → Rd,

(G ∈ D) is

LSf (G) := max
G′s.t.G′∈Γ(G)

||f(G)− f(G′)||1. (5)

Under the definition of local sensitivity, we only consider the set of G′ for a given and

predetermined G, such that the inclusion or exclusion of a single link between individuals

cannot change the output distribution appreciably. We would emphasize that the release

f(G) with noise proportional to LSf (G) cannot achieve rigorous differential privacy as the

noise magnitude might reveal information about the database. Refer to Example 1 in [90]

for an illustrative example. To satisfy the strict differential privacy, Nissim et al. [90]

proposes the β-smooth sensitivity and shows that adding noise proportional to a smooth

upper bound on the local sensitivity yields a private output perturbation mechanism.
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Definition 4. (Smooth Sensitivity [90]) For β > 0, the β-smooth sensitivity of f : D → Rd

(G ∈ D),in the analysis of a given graph G, is

S∗
f,β(G) = max

G′∈D

(
LSf (G

′) · e−βd(G,G′)
)

(6)

where d(G,G′) is the distance between graphs G and G′.

Nissim et al. [90] introduces how to compute smooth sensitivity based on the local sen-

sitivity at distance s (measuring how much the sensitivity can change when up to s entries

of G are modified).

Definition 5. (Computing Smooth Sensitivity)The sensitivity of f at distance s is

LS
(s)
f (G) = max

G′∈D:d(G,G′)≤s
LSf (G

′) (7)

The β-smooth sensitivity can be expressed in terms of LS(s)
f (G) as

S∗
f,β(G) = max

s=0,1,··· ,n
e−sβ

(
max

G′:d(G,G′)=s
LSf (G

′)

)
= max

s=0,1,··· ,n
e−sβLS

(s)
f (G) (8)

Theorem 3 shows the mechanism of calibrating noise to the smooth bound to achieve

(ϵ, δ)-differential privacy.

Theorem 3. (Mechanism to Add Noise Based on Smooth Sensitivity [90]) For a function

f : D → Rd(G ∈ D), the following mechanism achieves (ϵ, δ)-differential privacy (ϵ >

0, δ ∈ (0, 1)):

A(G) = f(G) +
S∗
f,β(G)

α
· (Z1, · · · , Zd) (9)

where α = ϵ/2, β = ϵ
4(d+ln(2/δ))

, and Zi (i = 1, · · · , d) is drawn i.i.d from Lap(0, 1).
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Specifically when d=1, β can be reduced as β = ϵ
2ln(2/δ)

.

2.2.3 Graph Generation Models

Several network models have been proposed for studying the topological properties of

real networks. Among them, the Erdös and Rényi random graphs, the Watts and Stro-

gatz small world model, and the Barabási-Albert scale-free networks have been widely

used [23]. In our work, we use the above three models with various parameters to generate

synthetic graphs for empirical evaluation.

The Erdös and Rényi Random Graph [34] is the most basic model of complex networks

which defines a graph with n vertices and a probability p of connecting each pair of vertices.

In this model, the average degree of each node is p(n − 1) and the degree distribution is a

Poisson distribution. The global cluster coefficient of the graph equals p. We refer to this

model as the ER model in this chapter.

The Small-World Model of Watts and Strogatz [115] is the most popular model of ran-

dom networks with the small-world property, i.e., most vertices can be reached from others

through a small number of edges. The Watts and Strogatz model can also generate graphs

with the presence of a large number of triangles. In contrast, ER networks have the small

world property but a small average clustering coefficient. We can construct a small-world

network by staring with a regular lattice of n nodes in which each node is connected to k

nearest neighbors in each direction. Next each edge is randomly rewired with probability

p. When p near zero, the generated graph tends to have a high number of triangles but large

distances; when p gets close to 1, the generated graph becomes a random graph with short

distances but few triangles. The degree distribution for small-world networks is similar to
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that of random networks, with average degree 2k. The cluster coefficient of the graph is

correlated to 3(k−1)
2(2k−1)

(1− p)3 [23]. We refer to this model as the WS model in this chapter.

The Scale-free Networks of Barabási and Albert [7] was proposed after the WS model

in order to capture the characteristics of some networks whose degree distributions follow

a power law. In scale-free networks, some vertices are highly connected while others have

few connections. The Barabási and Albert model generates a graph by starting with a set of

m0 nodes, afterwards, at each step of the construction the network grows with the addition

of new nodes. For each new node, m1 new edges are added between the new node and

some previous nodes. The nodes which receive the new edges are picked following a linear

preferential attachment rule so that the most connected nodes have greater probability to

receive new nodes as neighbors. The degree distribution of graphs generated by this model

is P (d) ∼ d−3. The average degree is 2m1. The cluster coefficient of the graph is correlated

to n−0.75. We refer to this model as the BA model in this chapter.

2.3 A Divide and Conquer Algorithm

Our divide and conquer approach is to express a function f in terms of unit computations

f1, · · · , fm such that f can be calculated from results of fi (i = 1, · · · ,m) via basic mathe-

matical operations ⊙. In this chapter, we limit ⊙ as linear combination, multiplication, and

division. In our future work, we will extend our study to other mathematical operations

such as root square and logarithm which are often used in data mining algorithms. For

each unit computation fi, we introduce noise in order to maintain its differential privacy

requirement (ϵi, δi). Specifically, we can run the randomization mechanism with noise

distribution on each fi to achieve (ϵi, δi)-differential privacy. Using Theorem 2, we can

achieve (ϵ, δ)-differential privacy of f where ϵ =
∑m

i=1 ϵi and δ =
∑m

i=1 δi.
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Input: Graph G, a target graph statistic function f , privacy parameters (ϵ, δ)
Output: f̃(G) satisfies (ϵ, δ)-differential privacy

1: Decompose f into unit computations f1, · · · , fm connected by basic mathematical op-
erations ⊙

2: Distribute (ϵi, δi) for each fi such that ϵ =
∑

ϵi and δ =
∑

δi
3: FOR i = 1 → m
4: IF GSfi(G) is uncomputable or too large for perturbation
5: Derive the formula of LS(s)

fi
(G)

6: Using the (ϵi, δi) to compute (β, α) //Theorem 3
7: Compute the β-smooth sensitivity S∗

fi,β
(G) using β, LS

(s)
fi
(G) //Equation 8

8: Compute f̃i(G) using α, S∗
fi,β

(G) //Equation 9
9: ELSE

10: Compute f̃i(G) using GSfi(G) // Theorem 1
11: ENDIF
12: ENDFOR
13: Integrate f̃1(G), · · · , f̃m(G) into the (ϵ, δ)-differential private estimator of f : f̃(G).

Algorithm 1: Differentially private graph statistics learning: D&C Approach

Algorithm 1 illustrates our divide and conquer approach. In Line 2, the total privacy bud-

get (ϵ, δ) is distributed among unit computations such that each fi has a privacy threshold

(ϵi, δi). It is a challenging problem to determine the optimal distribution of privacy budget

such that the combined output f̃ achieves the optimal approximation of f . In this chapter,

we simply distribute privacy budget equally among all unit computations, i.e., ϵi = 1
m
ϵ and

δi =
1
m
δ. In our evaluation, we show that the accuracy of the output f̃ varies significantly

when we have different privacy budget distributions among fi. In Lines 3-12, we enforce

(ϵi, δi)-differential privacy on each fi. For fi that has small global sensitivity GSfi(G), we

apply Theorem 1 directly (Line 10). For fi that may still have large global sensitivity or

may not have an explicit formula for deriving global sensitivity, we first calculate its local

sensitivity at distance s (Line 5), derive the smooth sensitivity parameter (β, α) based on

the (ϵi, δi) (Line 6), compute its β-smooth sensitivity (Line 7), and finally enforce (ϵi, δi)-

differential privacy on fi by following Theorem 3 to calibrate noise based on the derived
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smooth sensitivity (Line 8). In Line 13, we output (ϵ, δ)-differential private f̃ by integrating

f̃i (i = 1, · · · ,m).

Next we show that our divide and conquer approach achieves unbiased estimate of f

when operations ⊙ contain linear combination, multiplication, and division. For simplic-

ity, we choose one pair of functions, fi and fj . We assume the true value of fi (fj) on a

given data set is a (b) and fi (fj) is perturbed by a Laplace noise Lap(0, a′) (Lap(0, b′)).

In other words, f̃i = a + Lap(0, a′) and f̃j = b + Lap(0, b′). Lemma 1 shows the linear

combination of Laplace noise perturbed results (f̃i and f̃j) is an unbiased estimate for the

linear combination of the original variables (fi and fj). This lemma covers the mathemat-

ical operations of addition and subtraction. Similarly, Lemma 2 and Lemma 3 shows the

result for multiplication and division, respectively.

Lemma 1. The linear combination of two perturbed values with Laplace noise is an unbi-

ased estimate for the linear combination of the two original values without the perturba-

tions.

E(u · (a+ Lap(0, a′)) + v · (b+ Lap(0, b′))) = E(u · a+ v · b) (10)

Assuming that a, b, a′, b′ ∈ R; and u, v ∈ R are parameters of the linear combination.

Proof.

E(u · (a+ Lap(0, a′)) + v · (b+ Lap(0, b′)))

= E(u · a+ v · b) + u · E(Lap(0, a′)) + v · E(Lap(0, b′))

Since E(Lap(0, a′)) = 0 and E(Lap(0, b′)) = 0, we have

E(u · (a+ Lap(0, a′)) + v · (b+ Lap(0, b′))) = E(u · a+ v · b)
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Lemma 2. The product of two perturbed values with independent Laplace noise is an unbi-

ased estimate for the product of the two original values without the perturbations.

E((a+ Lap(0, a′)) · (b+ Lap(0, b′))) = E(a · b) (11)

Assuming that a, b, a′, b′ ∈ R and a, b are independently perturbed.

Proof.

E((a+ Lap(0, a′)) · (b+ Lap(0, b′)))

= E(a · b+ b · Lap(0, a′) + a · Lap(0, b′) + Lap(0, a′) · Lap(0, b′))

= E(a · b) + b · E(Lap(0, a′)) + a · E(Lap(0, b′)) + E(Lap(0, a′) · Lap(0, b′))

E(Lap(0, a′)) = E(Lap(0, b′)) = 0; besides, E(Lap(0, a′) · Lap(0, b′)) = E(Lap(0, a′)) ·

E(Lap(0, b′)) since a, b are independently perturbed with Laplace noise; hence

E((a+ Lap(0, a′)) · (b+ Lap(0, b′))) = E(a · b)

Lemma 3. The quotient of two perturbed results with Laplace noise is an unbiased estimate

for the quotient of the two original values without the perturbation.

E(
a+ Lap(0, a′)

b+ Lap(0, b′)
) = E(

a

b
) (12)

Assuming that a, b, a′, b′ ∈ R and b ̸= 0.
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Proof.

E(
a+ Lap(0, a′)

b+ Lap(0, b′)
) = E(

a

b
) + E(

a+ Lap(0, a′)

b+ Lap(0, b′)
− a

b
)

Since E(Lap(0, a′)) = 0 and E(0, Lap(b′)) = 0, we have

E(
a+ Lap(0, a′)

b+ Lap(0, b′)
− a

b
)

= E(
(a+ Lap(0, a′)b− a(b+ Lap(0, b′)))

b · (b+ Lap(0, b′))
)

= E(
b · Lap(0, a′)

b · (b+ Lap(0, b′))
)− E(

a · Lap(0, b′)
b · (b+ Lap(0, b′))

) = 0

2.4 Learning Vertex Clustering Coefficient

In this section, we illustrate our D&C-based differential privacy preserving approach

by learning vertex clustering coefficient, a widely used graph metric in social network

analysis. Specifically, we show how to derive the local sensitivity at distance s (a key step

in Algorithm 1 Line 5) for vertex clustering coefficient. We would emphasize here that

our approach works naturally with other graph metrics such as graph modularity and data

mining tasks (where functions can be decomposed by unit computations connected by basic

mathematical operations).

The vertex clustering coefficient of vertex i in a graph quantifies how close i’s neighbors

are to being a clique (complete graph). This measure was first introduced by Watts and

Strogatz in 1998 [114] to determine whether a graph is a small-world graph.

Ci =
N∆(i)

N3(i)
=

N∆(i)

di(di − 1)/2
(13)
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Table 1: Notations of graph metrics used in Chapter 2

The original graph with n nodes and m edges G(n,m)

Adjacent matrix of G A

An entry in A aij
The degree of a node i di
The maximum node degree in G dmax

The clustering coefficient of a node i Ci

The set of the neighboring nodes of node i Ngb(i)

Number of triangles involving node i N∆(i)

Number of connected triples (i as the central node) N3(i)

The vector of all Ci C

The vector of all di D

The vector of all N∆(i) N∆

The vector of all N3(i) N3

where N∆(i) is the number of triangles involving vertex i, N3(i) is the number of connected

triples having i as the central vertex, and di is the degree of vertex i.

We can see that Ci can be naturally expressed as a quotient of two unit computations

N∆(i) and N3(i) or a quotient of N∆(i) and di(di − 1)/2. In social network analysis, data

miners often query for the vector C=(C1, · · · , Cn)′, which contains the clustering coeffi-

cients of all the vertices. For example, the average vertex clustering coefficient among all

the vertices, which is defined as C̃ = 1
n

∑
i Ci, is a widely used metric for graph analysis.

We can see that C can also be expressed by two vectors, N∆=(N∆(1), · · · , N∆(n))′ and

N3=(N3(1), · · · , N3(n))′. Similarly, N3 could be further decomposed to D=(d1, · · · , dn)′.

Table 1 shows the notations used in this chapter.

Table 2 shows the global sensitivity and local sensitivity for the vertex clustering coeffi-

cient Ci (as well as its decomposed unit computations N∆(i), N3(i), di) and all vertices’s

clustering coefficients C (as well as its decomposed unit computations N∆, N3, D). We

skip the proof details in this chapter since most of them are either well known or can be

easily derived. We would point out that degree sequence D has a low global sensitivity
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Table 2: Global sensitivity and local sensitivity of graph metrics

Function f GSf LSf

Ci 1 2/di
N∆(i) n− 2 maxaij=1 |Ngb(i) ∩Ngb(j)|
N3(i) n− 2 di − 1

di 1 1

C n− 1 dmax

N∆ 3(n− 2) 3maxaij=1 |Ngb(i) ∩Ngb(j)|
N3 2n− 4 2dmax − 2

D 2 2

while other functions such as N∆ have very high global sensitivity value.

To apply our D&C algorithm, we need to derive the formulas of the local sensitivity at

distance s for all above computations. Result 1 shows the formula of the local sensitivity

at distance s for the vertex clustering coefficient Ci and Result 2 shows the formulas of the

local sensitivity at distance s for N∆(i) and N3(i). We omit the proof of Result 2 since it

is straightforward.

Result 1. The local sensitivity at distance s for the vertex clustering coefficient Ci is

LS
(s)
Ci
(G) =


2

di−s
for di − s > 2

1 otherwise

(14)

Proof. In order to derive LS
(s)
Ci
(G), we first consider the case for s = 0, i.e. , LSCi

(G).

Let G and G′ respectively denote the original graph G and its neighbor graph by delet-

ing an edge from G. For a given node i: let N∆(i) and N3(i) denote the attributes of i

in G; while N ′
∆(i) and N ′

3(i) denote the same attributes in G′. By definitioan, we have

0 ≤ N∆(i) ≤ N3(i) = 2/(di(di − 1)), When deleting an edge from G, N∆(i) would be
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decreased by at most di − 1; while N3(i) would be decreased by exactly di − 1. Therefore,

LSCi
(G) =

N∆(i)

di(di − 1)/2
− N ′

∆(i)

di(di − 1)/2− (di − 1)
(15)

When 0 ≤ N∆(i) ≤ di − 1, we have

LSCi
(G) ≤ N∆(i)

di(di − 1)/2
≤ di − 1

di(di − 1)/2
= 2/di

When di − 1 ≤ N∆(i) ≤ di(di − 1)/2, we have

LSCi
(G) ≤ N∆(i)

di(di − 1)/2
− N∆(i)− (di − 1)

di(di − 1)/2− (di − 1)

=
2

di − 2
− 4N∆(i)

di(di − 1)(di − 2)

≤ 2

di − 2
− 4(di − 1)

di(di − 1)(di − 2)
= 2/di

So that LSCi
(G) = 2

di
.

In general case, for s > 0, we have (Equ. 7)

LS
(s)
Ci
(G) = max

G′∈D:d(G,G′)≤s
LSCi

(G′) =
2

di − s

for di − s > 2; and LS
(s)
Ci
(G) = GSCi

(G) = 1 otherwise.

Result 2. ( [90]) The local sensitivity at distance s for N∆(i) is

LS
(s)
N∆(i)(G) = max

i̸=j;j∈[n]
cij(s) (16)

where

cij(s) = min(|Ngb(i) ∩Ngb(j)|+ ⌊s+min(s, bij)

2
⌋, n− 2)

and bij =
∑

k∈[n] aik ⊕ akj is the number of half-built triangles involving edge(i,j).
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The local sensitivity at distance s for N3(i) is

LS
(s)
N3(i)

(G) = min(di + s− 1, n− 2) (17)

Result 3 shows the formula of the local sensitivity at distance s for the clustering coef-

ficient vector C and Result 4 shows the formulas of the local sensitivity at distance s for

vector N∆ and N3.

Result 3. The local sensitivity at distance s for C=(C1, · · · , Cn)′ is

LS
(s)
C (G) = max

i̸=j;i,j∈[n]
{min(dmax + ⌊s+min(s, bij)

2
⌋, n− 1)} (18)

where bij =
∑

k∈[n] aik ⊕ akj is the number of half-built triangles involving edge(i,j)

Proof. We first consider the situation of s = 0,

LSC(G) = max
aij=1

{
2

di
+

2

dj
+

∑
aikajk=1

1

dk(dk − 1)/2

}

≤ max
aij=1

{
2

di
+

2

dj
+

2(dmax − 1)

dk(dk − 1)

}
≤ 2

(
1

2
+

1

2
+

2(dmax − 1)

2 ∗ (2− 1)

)
= dmax

LS
(s)
C (G) = LSC(G) + s for s ≤ bij because we may add one edge to complete a half-

built triangle involving edge(i, j) which makes the sensitivity increased by at most one;

meanwhile, LS(s)
C (G) = LSC(G) + ⌊ s+bij

2
⌋ for s > bij because we have to add two edges

to form a triangle to make the sensitivity increased by one, after completing all the bij half

built triangles involving edge(i, j). Besides, LS(s)
C (G) ≤ GSC(G) = n − 1. So we have

Equ. 18.
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Result 4. The local sensitivity at distance s for N∆ is

LS
(s)
N∆

(G) = 3 · max
i̸=j;j∈[n]

cij(s)

where

cij(s) = min(|Ngb(i) ∩Ngb(j)|+ ⌊s+min(s, bij)

2
⌋, n− 2)

and bij =
∑

k∈[n] aik ⊕ akj is the number of half-built triangles involving edge(i,j) (This

result was appeared in [90]).

The local sensitivity of N3 at distance s is

LS
(s)
N3
(G) = max

i ̸=j;i,j∈[n]

{
2n− 4,min(dmax + dsencondmax − 2 + ⌊s+min(s, bij)

2
⌋)
}

where bij =
∑

k∈[n] aik ⊕ akj is the number of half-built triangles involving edge(i,j).

Proof. In addition to the proof of Result. 2 given in [90], LS(s)
N∆

(G) = 3 ·maxi̸=j;j∈[n] cij(s)

because each of the two entries corresponding to vertex i and j will be decreased by at most

maxi̸=j;j∈[n] cij(s), when edge (i, j) is deleted from G. Besides, there are maxi̸=j;j∈[n] cij(s)

other entries whose value will be decreased by one, corresponding to the neighbours in

common by vertex i and j.

For N3, we first consider the situation of s = 0,

LSN3(G) = max
aij=1

{
di(di − 1)

2
− (di − 1)(di − 2)

2
+

dj(dj − 1)

2
− (dj − 1)(dj − 2)

2

}
≤ max

aij=1
{di − 1 + dj − 1} ≤ dmax + dsecondmax − 2

In general case, LS(s)
N3
(G) = LSN3(G)+s for s ≤ bij and LS

(s)
N3
(G) = LSN3(G)+⌊ s+bij

2
⌋

for s > bij which are similar as those of LS(s)
C (G), and LS

(s)
N3
(G) ≤ GSN3(G) = 2n − 4.

So we have the form for LS(s)
N3
(G).
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For vertex clustering coefficient Ci, we have two decomposition strategies: (N∆(i),

N3(i)) or (N∆(i), di). Similarly for clustering coefficient vector C, we can also have two

decomposition strategies: (N∆, N3) or (N∆, D). When we apply the second decomposition

strategy, we use the global sensitivity of di or D because they are very small. However, we

should adjust our estimate of di(di − 1)/2, as shown in Lemma 4, if we use the same d̃i

twice in the calculation. Of course, we can query twice to get two perturbed values of di and

calculate the unbiased estimate of di(di−1)/2 based on Lemma 2. In this case, two queries

of di should split the privacy budget assigned to di. This example illustrates the importance

of deriving unbiased estimate of f from its perturbed values of unit computations.

Lemma 4. The unbiased estimate for the product of the linear combinations of the same

perturbed value with Laplace noise is

E((u1 · a+ v1)(u2 · a+ v2)) = E((u1 · ã+ v1)(u2 · ã+ v2))− u1 · u2 · a′2

Assuming that a ∈ R and ã = a+ Lap(0, a′).

Proof. Since E(Lap(0, a′)) = 0 and E(Lap2(0, a′)) = a′2, ã = a+ Lap(0, a′),therefore

E((u1 · ã+ v1)(u2 · ã+ v2)) = E((u1 · a+ v1)(u2 · a+ v2)) + u1 · u2 · E(Lap2(0, a′))

+ (u1 · (u2 · a+ v2) + u2 · (u1 · a+ v1))E(Lap(0, a′))

= E((u1 · a+ v1)(u2 · a+ v2)) + u1 · u2 · a′2
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Table 3: General relativity and quantum cosmology collaboration network dataset statistics

Number of nodes 5242
Number of edges 28980
Nodes in the largest connected component 4158
Edges in the largest connected component 26850
Average clustering coefficient 0.5296
Number of triangles 48260
Fraction of closed triangles 0.6298
Diameter 17

2.5 Empirical Evaluation

In this section, we conduct evaluations to compare the utility of the direct approach and

the D&CD approach on five real graphs and several synthetic graphs generated with three

graph models, ER model, WS model and BA model (refer to section 2.2.3).

The five real graphs are denoted respectively as GrQc, Enron, Polbooks, Polblogs, YesI-

Well. GrQc is the General Relativity and Quantum Cosmology collaboration network from

the SNAP Stanford [60]. Table 3 gives some published statistics of the GrQc dataset. We

mainly use the GrQc graph data when comparing the utility preservations of different ap-

proaches in Section 2.5.1 and exploring the privacy budget distribution in Section 2.5.2.

Enron1 is an email network collected and prepared by the CALO Project and it has 148

nodes and 869 edges; Polbooks2 is a network of books about US politics published around

the time of the 2004 presidential election and sold by Amazon.com and it has 105 nodes and

441 edges; Polblog [1] is a network of hyperlinks between weblogs on US politics; YesI-

Well is a human physical activities related social network dataset with 185 nodes and 684

edges, which is part of the data gained from the YesIWell study3 conducted in 2010-2011

1http : //www.cs.cmu.edu/ enron/
2http : //www − personal.umich.edu/ mejn/netdata/
3http : //aimlab.cs.uoregon.edu/smash/
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as collaboration among several health laboratories and universities to help people maintain

active lifestyles and lose weight.

Synthetic graphs are generated using the software Gephi4 with the Complex Generators

plugin. For each graph model (ER, WS, and BA), we generate several graphs by varying

graph generation parameters. Table 4 shows some basic characteristics of the generated

graphs, where n denotes the number of nodes, m denotes the number of edges, c̄ is the

average cluster coefficient, n∆ is the total number of triangles in the graph, fr∆ is the

fraction of the closed triangles, which is defined as the total number of triangles divided by

the total number of length two paths. The generation parameters for the ER model are listed

as (n, p), those for the WS model as (n, k, p) and those for the BA model as (n,m0,m1)

(refer to Section 2.2.3). For all synthetic graphs, we fix the number of nodes as 1000.

2.5.1 Utility

We compare our divide and conquer approach with the direct approach that directly adds

calibrated laplace noise on the output of the computation of f . For vertex cluster coefficient

Ci, to examine how different decomposition strategies affect the accuracy of the final output

C̃(i), we include evaluation results on two decomposition strategies: (N∆(i), N3(i)) and

(N∆(i), di).

Table 5 shows comparisons of these three methods, denoted as direct, D&CN3(i), and

D&Cdi respectively. In our experiments, we fix δ = 0.01 and vary ϵ ∈ {0.01, 0.1, 1, 10}.

We choose the node with the largest degree (di = 81) for the vertex cluster coefficient. For

each of three methods with every privacy setting, we repeat the randomization process for

3,000 times. We report the the mean and standard deviation of the absolute error between

4https : //gephi.org/
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Table 4: Statistics for datasets used in Chapter 2

Graphs n m c̄ n∆ fr∆ Generation parameters
ER1 1000 25094 0.0496 20787 0.0496 (1000, 0.05)

ER2 1000 50129 0.1002 167671 0.1002 (1000, 0.1)

ER3 1000 249755 0.5000 20768657 0.4999 (1000, 0.5)

WS1 1000 25000 0.0661 27153 0.0659 (1000, 50, 0.7)

WS2 1000 25000 0.1280 52354 0.1272 (1000, 50, 0.5)

WS3 1000 25000 0.3886 158301 0.3863 (1000, 50, 0.2)

WS4 1000 50000 0.4080 672623 0.4069 (1000, 100, 0.2)

WS5 1000 250000 0.5679 23694389 0.5696 (1000, 500, 0.2)

BA1 1000 24975 0.0759 64660 0.1274 (1000, 50, 25)

BA2 1000 49950 0.1462 443582 0.2189 (1000, 100, 50)

BA3 1000 249750 0.6171 31524992 0.6748 (1000, 500, 250)

BA4 1000 4995 0.0156 617 0.0308 (1000, 10, 5)

BA5 1000 5975 0.0483 20355 0.4162 (1000, 50, 5)

BA6 1000 9450 0.1068 162689 0.7614 (1000, 100, 5)

BA7 1000 127250 0.6459 20711072 0.9861 (1000, 500, 5)

Enron 151 869 0.5018 1700 0.3441 –
Polbook 105 441 0.4875 560 0.3484 –
Polblog 1222 16714 0.3203 101043 0.2260 –
YesIWell 185 342 0.2018 223 0.1710 –

Table 5: Mean and standard deviation (mean± std) of the absolute error for the clustering
coefficient of one node(δ = 0.01)

ϵ direct D&CN3(i) D&Cdi

0.01 0.4986± 0.1369 0.3656± 0.1568 0.4651± 0.1510

0.1 0.4695± 0.1594 0.3578± 0.1800 0.3772± 0.1942

1.0 0.0338± 0.0332 0.0629± 0.0611 0.0549± 0.0533

10 0.0036± 0.0036 0.0062± 0.0057 0.0055± 0.0053
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C̃i and Ci in Table 5.

Table 6: Mean and standard deviation (mean ± std) of all the absolute error for the clus-
tering coefficient vector (δ = 0.01)

ϵ direct D&CD D&CN3

0.01 0.3257± 0.0045 0.2971± 0.0045 0.3269± 0.0040

0.1 0.1043± 0.0021 0.1069± 0.0028 0.1398± 0.0029

1.0 0.0118± 0.0002 0.0145± 0.0005 0.0182± 0.0006

10 0.0012± 0.0001 0.0015± 0.0001 0.0019± 0.0001

Similarly for clustering coefficient vector C, we use D&CN3 and D&CD to denote divide

and conquer approaches based on two decomposition strategies. We set ϵ′ here with the

magnitude of n · ϵ, where ϵ ∈ {0.01, 0.1, 1, 10}. As a result, each entry of the vector

achieves the same (ϵ, δ)-differential privacy as the previous experiment. Table 6 shows our

comparisons.

Note that in our experiments, we also use the β-smooth sensitivity in the direct approach.

This is because the utility is significantly lost if we use the global sensitivity. For example,

if we use the the global sensitivity for Ci when ϵ = 1 the error is 0.3558 ± 0.1915, which

is significantly larger than 0.0338± 0.0332 (shown in Table 5) of the direct approach using

the smooth sensitivity.

We have following observations from our evaluation results. First, in general, the D&C

approach achieves equivalent utility as, if not better than, that of the direct approach. This

result indicates that we can still enforce differential privacy by decomposing a complex

function into unit computations even though the complex function may have a large global

sensitivity or may not have an explicit formula of its global sensitivity. Second, for the

D&C approach, querying for the degree sequence D instead of the N3 vector will probably

lead to better utility. This is because the degree sequence has a low global sensitivity.
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Third, under the same privacy threshold, it is much better to query for the vector of all the

clustering coefficients at once rather than to query for the vertex clustering coefficient one

by one.

2.5.2 Distribute Privacy Budget

Note that in our previous experiments, we adopted a simple strategy, i.e., distributing pri-

vacy budget equally among unit computations. One conjecture is that the D&C approach

would achieve much better utility preservation if we have a better strategy of distributing

privacy budget. For example, in our D&CD method that obtains the clustering coefficient

vector C by querying for the vectors N∆ and D, the sensitivity magnitude of the vector

N∆ is much larger than that of the vector D. Hence we expect to achieve better utility if

we distribute more privacy budget to N∆ than to D. On the other hand, one characteristic

of the division is that the denominator is more sensitive than the numerator, having more

influence on the quotient result. As a result, the denominator vector D may need more

privacy budget under certain conditions.

Figure 1 shows how preservation of utility (in terms of approximation error shown as

X-axis) varies when we change the ratio of the privacy budget on N∆ (numerator) and the

privacy budget on D (shown as Y-axis) when we apply our D&CD method with the total

budget ϵ = 0.1, 1.0, 10. The red lines correspond to the direct method and the blue curves

correspond to the D&CD method. The points of those blue curves that are under the red

line show the privacy budget distributions with which the D&CD method outperforms the

direct method. Our evaluation results (shown as the third column in Table 6) correspond

to the first point (with ratio=1) in each figure. In our future work, we will study the use of

Newton iterative method to find out the optimal ratio so that we can achieve optimal utility
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Figure 1: Average entrywise absolute error change with the distribution ratio of ϵ′, given
varying , ϵ, δ

preservation in our divide and conquer approach.

2.5.3 Evaluation on other real graphs and synthetic graphs

In this section, we conduct evaluations to compare the utility of the direct approach and

the D&CD approach on the other four real graphs and various synthetic graphs generated

by the three graph models (ER, WS, and BA). In all our experiments, we fix δ = 0.01 and

set ϵ′ here with the magnitude of n·ϵ, where ϵ ∈ {0.01, 0.1, 1, 10}. As a result, each entry of

the vector achieves the same (ϵ, δ)-differential privacy as the previous experiment. For the

D&CD approach, we simply distribute privacy budget equally, i.e., setting the distribution

ratio of privacy budget as 1. As illustrated in Section 2.5.2, we would achieve even better

utility preservation for the D&C approach when we adopt a better strategy of distributing

privacy budget.

The evaluation results are shown in Table 7. Specifically, we have the following obser-

vations.
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Table 7: The average entrywise absolute error for the clustering coefficient vector (δ =
0.01)

Graphs
ϵ = 0.01 ϵ = 0.1 ϵ = 1.0 ϵ = 10

direct D&CD direct D&CD direct D&CD direct D&CD

ER1 0.4920 0.0753 0.2499 0.0016 0.0438 4.08e-5 0.0055 4.07e-6
ER2 0.4947 0.0281 0.3402 2.56e-4 0.0793 2.58e-5 0.0096 2.57e-6
ER3 0.4968 0.0013 0.4697 1.27e-4 0.2832 1.26e-5 0.0393 1.27e-6
WS1 0.4730 0.0472 0.2633 0.0011 0.0423 5.78e-5 0.0049 5.81e-6
WS2 0.4844 0.0904 0.2522 0.0010 0.0455 9.09e-5 0.0047 9.10e-6
WS3 0.4830 0.0721 0.2881 0.0015 0.0424 1.55e-4 0.0042 1.54e-5
WS4 0.4864 0.0162 0.3729 7.55e-4 0.0823 7.55e-5 0.0083 7.57e-6
WS5 0.4967 0.0015 0.4682 1.54e-4 0.2769 1.55e-5 0.0382 1.55e-6
BA1 0.4856 0.1270 0.3389 0.0042 0.0754 4.26e-4 0.0102 4.53e-5
BA2 0.4890 0.0189 0.4005 0.0019 0.1274 1.93e-4 0.0164 1.93e-5
BA3 0.4969 0.0033 0.4739 3.28e-4 0.3071 3.29e-5 0.0499 3.30e-6
BA4 0.1899 0.1377 0.0623 0.0141 0.0094 5.51e-4 0.0011 5.48e-5
BA5 0.2136 0.1433 0.1110 0.0180 0.0182 0.0025 0.0023 2.45e-04
BA6 0.2473 0.1573 0.1634 0.0370 0.0334 0.0057 0.0043 5.86e-04
BA7 0.4792 0.2297 0.4357 0.1813 0.2012 0.0550 0.0284 0.0063

Enron 0.4758 0.4535 0.4283 0.1873 0.2026 0.0436 0.0253 0.0048

Polbook 0.4968 0.4860 0.4263 0.3442 0.1492 0.0438 0.0163 0.0045

Polblog 0.4025 0.2808 0.3537 0.1118 0.1392 0.0336 0.0161 0.0040

YesIWell 0.2253 0.2210 0.1866 0.1586 0.0583 0.0247 0.0065 0.0026
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• For the ER model with parameters n and p, ER1, ER2, and ER3 are generated with

the same number of nodes n = 1000 with increasing p values, 0.05, 0.1, 0.5. The

number of edges (m), the average cluster coefficient (c̄), and the fraction of triangle

(fr∆) of these three graphs increase with the increasing of p. For the direct approach,

we can see that the entrywise absolute error increases with p. On the contrary, the

entrywise absolute error decreases for the D&CD approach. Thus we can conclude

that the D&CD approach tends to achieve much better utility preservation than the

direct approach for ER random graphs. The utility of D&CD approach increases as

p increases.

• For the WS model with parameters n, k and p, from Section 2.2.3, we know that

the graph tends to have more triangles and larger distance when p is near 0 and the

graph is more random with less triangles and shorter distance when p approaches 1.

WS1, WS2, and WS3 are generated with the same parameters n and k but decreasing

p as 0.7, 0.5 and 0.2 respectively. These three graphs have the same density but

increasing c̄ and fr∆. We see no clear trend of the absolute entrywise error change

for both approaches. WS3, WS4, and WS5 are generated with the same parameters

n and p (0.2) but increasing k as 50, 100, and 500 respectively. As a result, these

three graphs have increasing m, c̄, and fr∆. For the direct approach, we can see that

the entrywise absolute error increases with k whereas the entrywise absolute error

decreases for the D&CD approach. Thus we can conclude that the D&CD approach

tends to achieve much better utility preservation than the direct approach among WS

small world graphs and the utility of the D&CD approach increases as k increases.
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• For the BA model with parameters n, m0, and m1, BA1, BA2, and BA3 are generated

with the same parameter n and increasing m1 as 25, 50, and 250 respectively. Recall

that in the BA model m1 denotes the number of newly added edges between each new

node and existing nodes. Note that when the ratio between m0 and m1 is fixed, the

increase of m1 indicates the increases of m, c̄, and fr∆. For the direct approach, we

can see that the entrywise absolute error increases with the increase of m1 whereas

the entrywise absolute error decreases for the D&CD approach. Thus we can con-

clude that the D&CD approach tends to achieve much better utility preservation than

the direct approach among BA small world graphs with large density.

• For the BA model with parameters n, m0 and m1, BA4, BA5, BA6, and BA7 are

generated with the same parameters n and m1 = 5 but increasing m0 as 10, 50, 100,

and 500 respectively. Recall that in the BA model m0 denotes the number of nodes

in the starting set. When m1 is fixed, the increase of m0 indicates the increases of

c̄ and fr∆. We can see that the utility of the D&CD approach is still better than

that of the direct approach but not as significant as the graphs BA1, BA2, and BA3.

The absolute entrywise error for the D&CD approach is increasing as parameter m0

increases, which shows the same trend as that of the direct approach. Thus we can

conclude that the D&CD approach still tends to achieve better utility preservation

than the direct approach among BA small world graphs with low density but its

advantage decreases when m0 is larger.

• For all four real networks (Enron, Polbook, Polblog and YesIWell), we can see that

the D&CD approach outperforms the direct approach. The extent of the advantage
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of the D&CD approach is similar as that observed in BA graphs with low density

(BA4, BA5, BA6, and BA7).

In summary, we draw the following conclusions. First, the D&CD approach outperforms

the direct approach in all graphs (15 synthetic graphs and four real graphs). Second, the

D&CD approach shows overwhelming superiority in all three graphs generated by the ER

model, all five graphs generated the WS model, and the first three graphs (BA1, BA2,

BA3) from the BA model. In the above eleven graphs, the entrywise error of the output of

D&CD approach tends to much smaller (by several orders of magnitude) than that of the

direct approach. Third, for real graphs (Enron, Polbook, Polblog, and YesIWell), and the

last four graphs (BA4, BA5, BA6 and BA7) generated with the BA model, the advantage

of the D&CD approach is still obvious and the entrywise error of the output of D&CD

approach is still smaller (by 10% with small ϵ or by one order of magnitude with large ϵ

than that of the direct approach. We observe that in the four real networks and the last four

BA graphs are relatively sparse and most nodes tend to have a very small magnitude of

degree (less than 10) and hence a small number of triangles. When calibrating the noises to

N∆ and D in our D&CD approach, the influence due to the distortion is large. As a result,

the advantage of our D&CD approach decreases when the graphs have low density.

2.6 Summary

Enabling accurate analysis of graph data while preserving differential privacy is of great

importance and poses great challenge due to potential high global sensitivity. In this chap-

ter, we have presented a divide and conquer approach that can be used to enforce differ-

ential privacy for complex functions. We have conducted theoretical analysis and exten-
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sive empirical evaluations to show that the developed divide and conquer approach gener-

ally outperforms the approach of directly enforcing differential privacy in terms of utility

preservation. This result is especially promising for data mining or exploration tasks with

interactive processes, in which a user can adaptively query the system about the data. The

user now has options of reusing previous intermediate query results rather than submitting

to the system ‘new’ queries that can be expressed by previous ones. Some preliminary

results of this work can be found in [112] and [113].



CHAPTER 3: PRESERVING DIFFERENTIAL PRIVACY IN
DEGREE-CORRELATION BASED GRAPH GENERATION

3.1 Introduction

Graph topologies play an irreplaceable role in the network analysis. Previous research

in security and privacy has shown potential risks for individual identification with the real

graph topologies or the anonymized graph topologies of social networks [5, 52, 126].

There have been attempts [29, 31, 32, 90] to formalize notions of differential privacy in

releasing aggregate information about a statistical database and the mechanism to providing

privacy protection to participants of the databases. Directly enforcing differential privacy

in computing graph properties is challenging due to the high sensitivity. Previous attempts

to enforce differential privacy on graph data include computing graph properties such as

degree distributions [51] and clustering coefficient [93]. Recently, attempts [87, 95] have

been made in enforcing differential privacy in graph generation. The idea is to enforce

differential privacy on graph model parameters learned from the original network and then

generate the graphs for releasing using the graph model with the private parameters. The

released graphs then can be used for various analysis. The authors in [87] tried to generate

differentially private graph topology with the stochastic Kronecker graph generation model

[73]. However, the stochastic Kronecker graph generation model often cannot accurately

capture graph properties of real social networks due to its simplicity in the generation

process. The authors in [95] developed a private dK-graph model. The dK-graph model
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[81], which constructs graphs to satisfy a family of properties based on various types of

node degree correlations, has been shown an effective graph generation model. However,

the private 2K-graph model proposed in [95] was based on the local sensitivity of degree

correlations due to the large global sensitivity. As a result, the model could not achieve

rigorous differential privacy protection.

In this chapter, we present a private 2K-graph generation model that achieves rigorous

differential privacy. Our idea is to enforce the differential privacy by calibrating noise based

on the smooth sensitivity [90]. By doing this, we achieve the strict differential privacy guar-

antee with smaller magnitude noise. We conduct experiments on four real networks and

compare the performance of our private dK-graph models with the stochastic Kronecker

graph generation model in terms of utility and privacy tradeoff. Empirical evaluations

show the effectiveness of our proposed private dK-graph models.

3.2 Background

We omit the formal definition and the mechanism of differential privacy here and all of

them can be referred from chapter 2. Here we only go over the classic graph generation

models.

3.2.1 Graph Generation Models

Over the years, researchers have proposed various graph models to generate graphs that

match properties of real networks. Among them, the simplest and most convenient one

is the classical E-R random graph Gn,p [34], which lays the foundation for the typical

stochastic approach [14, 21, 81] to generate graphs. With a given expected average degree

d̄, we can reproduce an n-sized graph by connecting every pair of n nodes with probability

d̄/n. In this section, we revisit two widely used graph generation models: the dK-graph
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model [81] and the stochastic Kronecker graph model (SKG) [73].

3.2.1.1 dK Graph Model

The dK graph model for graph construction mainly applies pseudograph approach, the

most common class of graph generation algorithms [3,88], in constructing graphs matching

a desired family of properties called the dK-series in [81]. The dK-series is a finite set of

graph properties to describe and constrain random graphs in successively finer detail with

the increasing values of d.

The dK-series is defined as the series of properties constraining the generated graph’s

dK-distribution to be the same form as in a given graph G. dK-distributions are degree cor-

relations within non-isomorphic simple connected subgraphs of size d. For a given graph

G, the 0K distribution is simply the average node degree; the 1K distribution is the degree

distribution; the 2K-distribution is the joint degree distribution of G which represents the

probability that two nodes of degrees k and k′ are connected; the 3K-distribution of G is

the interconnectivity among triples of nodes. Overall, the dK-series of larger values of d

would capture more and more complex detailed properties of the original graph G. In the

limit, the dK-distribution describes any given graph completely.

For a given input graph G, the output synthetic 0K-graphs require maintaining the 0K-

distribution of G, that is the average node degree; while the output synthetic 1K-graphs

reproduce the original graph node degree distribution, and so forth. It is worth pointing out

that the degree distribution is different from the degree sequence. The degree sequence is

the sequence of length n where each entry D(i) = di corresponds to each node’s degree

whereas the the degree distribution is a distribution vector where each entry P1(di) = Ndi

represents the number of nodes whose degree is di. Generally, the set of (d + 1)K-graphs
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is a subset of dK-graphs. In the whole space of random graphs, the number of possible

graphs satisfying the constrain of dK-series would decrease abruptly with the increase of

the value of d.

Figure 2: An example of dK-distributions

Figure 2 shows as an example of computing the dK-distributions from a graph G of size

5. For simplicity, the entry value of a dK-distribution is the total number of corresponding

d-sized subgraphs. For the given graph G, the 0K-distribution, P0 = 2, is G’s average

degree; the 1K-distribution, P1, is G’s node degree distribution: P1(2) = 3 means that

there are three nodes with degree two; the 2K-distribution, P2, is the graph G’s joint degree

distribution; P2(2, 3) = 3 means that G contains three edges between 2- and 3-degree

nodes; for the 3K-distribution, there are two types of three-sized subgraphs, the triangle

and triple that does not form a triangle. In Figure 2, P3∠(2, 3, 2) = 2 denotes that there are

two non-triangle triples where the mid node’s degree is three and degrees of the other two

nodes are two; while P3∆(2, 2, 3) = 1 denotes that there is one triangle formed by three

nodes whose degrees respectively are 2, 2, 3.

The dK-graph model [81] shows surprisingly great performance in capturing global

graph structure properties like spectrum and betweenness.

3.2.1.2 Stochastic Kronecker Graph Model

Kronecker graphs [73] are based on a recursive construction process. The process

starts with an initiator graph G1 with N1 nodes. By a recursive procedure, larger graphs
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G2, ..., Gn are generated. The rth graph generated in the rth recursion, Gr, has about (N1)
r

nodes. Usually, we set N1 = 2. This procedure (Definition 7) is formalized by introducing

the concept of Kronecker product (Definition 6) of the adjacency matrices of two graphs.

Definition 6. (Kronecker Product) Given two matrices A and B of size n×m and n′ ×m′

respectively, their Kronecker Product is a matrix C of dimensions (n ·n′)×(m ·m′) defined

as

C = A⊗B =



a11B a12B · · · a1mB

a21B a22B · · · a2mB

...
... . . . ...

an1B an2B · · · anmB


(19)

Definition 7. (Kronecker Power) Given a Kronecker initiator matrix Θ1, the kth power of

Θ1 is defined by

Θ
[k]
1 = Θ

[k−1]
1 ⊗Θ1 = Θ1 ⊗Θ1 · · · ⊗Θ1 (20)

The Stochastic Kronecker graph (SKG) model was proposed in [73]. In the SKG model,

each entry of the initiator matrix Θ takes values in the range [0, 1] instead of binary val-

ues, representing the probability of that edge being present. Thus following Definition 7

to compute the Kronecker power of Θ1, each entry of the reproduced stochastic adjacency

matrices represents the probability of that particular edge appearing in the correspond-

ing graph. The final synthetic stochastic Kronecker graph is obtained by choosing edge

independently with a probability specified by the corresponding entry in the stochastic ad-

jacency matrix(Definition 8).

Definition 8. (Stochastic Kronecker Graphs [73])If Θ is an N1×N1 probability matrix such
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that Θij ∈ Θ denotes the probability that edge (i, j) is present, Θij ∈ [0, 1]. Then the kth

Kronecker power P = Θ[k], is a stochastic matrix where each entry Puv ∈ P encodes the

probability of edge (u, v) appearing. This stochastic matrix encodes a stochastic Kronecker

graph. To obtain a graph G∗, an instance or realization of the distribution, denoted as R(P ),

an edge (u, v) is included in G∗ = R(P ) with probability Puv.

Applying SKG model to a given graph G, i.e. learning model parameters from G, re-

quires the assumption that G is generated by an SKG model with a specific initiator matrix

Θ. Extensive researches [44, 72, 87] have been conducted to studying the problem of the

estimation of the true parameter, the initiator matrix Θ for G. In [44], the authors proposed

an estimation algorithm which made it possible to enforce differential privacy into SKG

generation. Based on their approach, recently, differential privately SKG generation [87]

has been achieved by first computing the differentially private degree sequence and the to-

tal number of triangles from the original graph, and then using them to compute the private

input parameters {E,H, T,∆} of Moment based estimation [44] which are used to finally

generate the private graphs.

3.3 Private dK-Graph Model

In this section, we respectively propose the approaches to enforcing differential privacy

into the 1K- and 2K-distributions based dK-graph generation models. The basic definitions

and terminologies of a graph used in our work are listed in Table 8.

3.3.1 DP-1K Graph Model

The basic idea of our approach to generate differentially private graphs based on the 1K-

graph model is to firstly enforce differential privacy in the calculation of the 1K-distribution



47

Table 8: Basic definitions and terminologies used in Chapter 3

The original graph G

Number of nodes in G n

Adjacent matrix of G A

An entry in A aij
The degree of a node i di
The vector of all di D

The degree/1K- distribution P1

The 2K-distribution P2

The neighboring node set of a node i Ngb(i)

Nodes in Ngb(i) but not in Ngb(j) Ngb(i)−Ngb(j)

and then use the private 1K-distribution as the input of the 1K-graph generator to generate

the private 2K-graphs.

In order to enforce differential privacy in the calculation of the 1K-distribution, we firstly

give the sensitivity of the 1K-distribution in Claim 1. Based on the global sensitivity, we

follow Theorem 1 to add Laplacian noise to the real 1K-distribution computed from the

original graph with a given privacy parameters ϵ (δ = 0 in this case). Taking the perturbed

1K-distribution as input, the 1K graph model generator could then generate lots of synthetic

graphs while satisfying (ϵ, 0)-differential privacy. In our work, we use the graph model

generator software provided in [81]. We conclude this process into Algorithm 2.

Claim 1. The global sensitivity of degree distribution (1K-distribution) of a graph G is

GSP1(G) = 4.

Proof. When deleteing an arbitrary edge (i, j) from graph G, the following four entries of

the degree distribution will be changed by exactly one: di,dj ,di − 1,dj − 1. So that the

global sensitivity is 4.

Another possible approach to compute the private 1K-distribution is firstly querying the

private degree sequence(the vector containing each node’s degree), whose global sensitiv-
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Input: Graph G, privacy parameters (ε)
Output: G̃ satisfies (ε, 0)-differential privacy

1: Compute the 1K-distribution P1(G)of G
2: Using ε to perturb P1(G) and acquire ϵ-differentially private P̃1(G) //Theorem 1
3: Call procedure 1K graph generation(P̃1(G)) to generate G̃.

Algorithm 2: Private Generation of 1K-graph

ity is 2, and then computing the private 1K-distribution from the private degree sequence.

However, the degree sequence is a much longer vector than the 1K-distribution; addition-

ally, every entry of the degree sequence vector would have smaller value than that of the

1K degree distribution. Therefore, the degree sequence vector would suffer more from the

relative error though with smaller global sensitivity. With those considerations, we directly

query the 1K-distribution from the private graph database server for perturbation.

3.3.2 DP-2K Graph Model

Algorithm 3 illustrates the detail of our differentially private 2K-graph model, DP-2K.

The idea is first computing the differentially private 2K-distribution from the original graph,

and then using the private 2K-distribution as the input of the 2K-graph generator to generate

the private 2K-graphs.

One challenge here is that the global sensitivity of the 2K-distribution is 4n − 7 (as

shown in Claim 2), which is too large to be used for calibrating noise. In [95], the authors

explored the use of the local sensitivity to calibrate noise to the 2K-distribution and devel-

oped a private 2K-graph model. However, the approach based on the local sensitivity can-

not achieve rigorous differential privacy, as shown in [29,90]. In our algorithm, we use the

smooth sensitivity, which is proved to achieve the rigorous differential privacy. We firstly

derive the local sensitivity at distance s for the original 2K-distribution LS
(s)
P2
(G)(Claim
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2); then compute the smooth sensitivity parameters (β, α) with the given (ϵ, δ) (Line 2)

based on Theorem 3; derive the β-smooth sensitivity for P2 with β, LS
(s)
P2
(G) (Line 3);

calibrate noise based on the derived smooth sensitivity and acquire the (ϵ, δ)-differentially

private 2K-distribution ˜̃P2 (Line 4); and finally generate private 2K-graphs (Line 5) with

the package provided by [81]. Through this process, our Algorithm 3 achieves rigorous

(ϵ, δ)-differential privacy.

Claim 2. The global sensitivity of 2K-distribution is

GSP2(G) = 4n−7. The local sensitivity of 2K-distribution is LSP2(G) = maxi,j∈[n] 2(di + dj)− 3.

The local sensitivity at distance s of 2K-distribution is LS(s)
P2
(G) = min{maxi,j∈[n]{2(di +

dj)− 3 + 2 ∗ s}, GSP2(G)}

Proof. When deleting an arbitrary edge (i, j) from graph G, the total value change among

entries used to involve di as one parameter is di, for the reason that i leaves the node set of

degree di; similarly those used to involve dj will also decrease by dj in total; specifically,

the total amount of decreased value of the above two cases is di + dj − 1 since the entry

P2(di, dj) should be only counted once. After deleting edge (i, j), the degree of i, j will be

di − 1, dj − 1, so that the value of entries that used to involve parameter di − 1 or dj − 1

will be increased by di − 1 + dj − 1 in total. So that the local sensitivity is LSP2(G) =

maxi,j∈[n] 2(di + dj)− 3. When di = dj = n−1, we have GSP2(G) = 4n−7. Every time

s increase by one, the di or dj will increase by at most one, so that we have LS
(s)
P2
(G) =

min{maxi,j∈[n]{2(di + dj)− 3 + 2 ∗ s}, GSP2(G)}.
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Input: Graph G, privacy parameters (ε)
Output: G̃ satisfies (ε, 0)-differential privacy

1: Compute the 2K-distribution P2(G) of G
2: Using the (ε, δ) to compute (β, α) //Theorem 3
3: Compute the β-smooth sensitivity S∗

P2,β
(G) using β, LS

(s)
P2
(G) //Equation 8

4: Compute P̃2(G) using α, S∗
P2,β

(G) //Equation 9
5: Call procedure 2K graph generation(P̃2(G)) to generate G̃.

Algorithm 3: Private Generation of 2K-graph

3.3.3 DP-3K Graph Model

Through in the limit, the dK-series are expected to describe any given graph completely.

In principle, we can develop private dK-graph models for varying d. However, when d >=

3, the representation of the dK-distribution is complex, which causes the sensitivity (both

global sensitivity and smooth sensitivity) significantly large.

Claim 3 shows the sensitivity values of the 3K-distribution. Recall that P3∠(d1, d2, d3)

and P3∆(d1, d2, d3) respectively represent the two types of three-sized subgraphs: the tri-

angle and the triple that does not form a triangle. When an arbitrary edge (i, j) is deleted

from graph G, many entries in the 3K-distribution will be affected.

Claim 3. The global sensitivity of the 3K-distribution is

GSP3(G) = 3
2
(n− 2)2 + 2(n− 2).
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The local sensitivity of the 3K-distribution is

LSP3(G) = max
i,j∈[n]

{|S1|+ 2|S2|

+ 2(
∑
k∈S1

(dk − 1)−

∑
k1,k2∈Ti,k1<k2

(ak1k2)−
∑

k1,k2∈Tj ,k1<k2

(ak1k2))}

where S1 = Ti ∪ Tj = {{Ngb(i)−Ngb(j)} ∪ {Ngb(j)−Ngb(i)}} and S2 = {Ngb(i)∩

Ngb(j)}.

The local sensitivity at distance s of the 3K-distribution is

LS
(s)
P3
(G) = min{GSP3(G), LSP3(G) + s

+ 2 max
kq∈S3,t∈i,j

(
s∑

q=1

(dkq −
∑

kp∈S1t

akqkp)

−
∑

q1,q2∈[s];q1<q2

akq1kq2 (aikq1aikq2 + ajkq1ajkq2 )}

where S3 = {V − {i, j} −Ngb(i)−Ngb(j)}

Proof. We use V to denote the vertex set of original graph G; Ti = Ngb(i) − Ngb(j)

denotes the set of nodes i’s neighbor excluding those being j’s neighbor at the same time;

Tj = Ngb(j)−Ngb(i) denotes the set of j’s neighbor excluding those being i’s neighbor;

and S1 = Ti ∪ Tj is the set of nodes which are either i’s neighbor or j’s neighbor but not

both; S2 = Ngb(i) ∩ Ngb(j) is the set of common neighbors of i and j; S3 is the set of

nodes which are neither i’s neighbor nor j’s neighbor.

In the local sensitivity, when edge (i, j) is deleted, there are three cases of change among
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entries of P3.

Firstly, some non-triangle triples will no longer form three-sized subgraphs. Each of such

triple involves i,j and one node is S1. They are used to be counted in P3<(di, dj, dk)

(k ∈ S1). There are |S1| of them , causing P3 changed by |S1|.

Secondly, some triangle triples will become non-triangle triples. Such triangle is formed

with i,j and one of their shared neighbors. They used to be counted in P3∆(di, dj, dk)

(k ∈ S2). After deleting (i,j), they are counted in P3<(di − 1, dj − 1, dk)(k ∈ S2). There

are |S2| of them , causing P3 change by 2|S2|.

Thirdly, some triples(no matter it is triangle or not) involve only one of i and j. The entries

of P3 counting them are changed since i and j jumps from the sets of respectively di and

dj to those ofdi − 1 and dj − 1. The rest part of LS(s)
P3
(G) describes this amount.

Therefore we derive the local sensitivity in the form above.When the local sensitivity gets

to its maximum,i.e., di = dj = 1
2
(n − 2) + 1, |S2| = 0, every pair of nodes in S1 is

connected by an edge, we have

GSP3(G) = 2× (n− 2)(n− 1− 1)− 2C2
n−2
2

+ 0 + (n− 2)

=
3

2
(n− 2)2 + 2(n− 2).

For the local sensitivity at distance s, every time s increases by one, we choose one node

kq from S3 and add one edge to connect kq to i or j, it will cause the change of the first

case by one, and that of the second case by zero, and that of the third case by two times of

the number new three-sized subgraphs brought in by kq. Thus we have the above form of

the smooth sensitivity at distance s.
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Another challenge is that there is no known algorithm to generate dK-graphs for d >= 3

given a dK-distribution. The authors in [81] developed an algorithm, the 3K-rewire, for

generating 3K-graphs. However, the idea was to modify the original graph G keeping the

3K-distribution unchanged. For private dP-graph models, we can not use the original graph

to rewire since the rewired graph may contain other private information than those captured

by the dK-distribution. As a result, we only conduct evaluations based on the DP-1K and

the DP-2K models.

3.4 Empirical Evaluation

In this section, we conduct evaluations to compare the three graph generation models: the

stochastic Kronecker graph (SKG) model, the 1K-graph model, and the 2K-graph model.

For the SKG, we use Gleich’s [44] and SNAP library [60]’s codes to generate the synthetic

graphs with real parameters learned from the original graphs. For both 1K- and 2K-graph

models, we use codes provided by [95] for dK-graph generation. We also implemented

our private dK-graph models, DP-1K and DP-2K, by following Algorithms 2 and 3 respec-

tively.

We conduct experiments on four graphs: CA − GrQC (denoted as GC), AS20, Enron,

and Polbooks. GC is a co-authorship network from arXiv with 5242 nodes and 14484

edges; AS20 is a technological infrastructure network with 6474 nodes and 12572 edges;

these two datasets can be downloaded from SNAP5. Enron6 is an email network collected

and prepared by the CALO Project and it has 148 nodes and 869 edges; and Polbooks7 is

a network of books about US politics published around the time of the 2004 presidential

5http : //snap.stanford.edu/data/index.html
6http : //www.cs.cmu.edu/ enron/
7http : //www − personal.umich.edu/ mejn/netdata/
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election and sold by Amazon.com and it has 105 nodes and 441 edges.

3.4.1 Topology Metrics

Table 9: Scalar graph metrics notations in Chapter 3

Metric Notation
Number of nodes n

Number of edges m

Average degree d̄

Assortativity coefficient r

Average clustering C̄

Average distance l̄

Diameter lmax

Largest eigenvalue of adjacency matrix λ

Number of triangles ∆

Transitivity t

Betweenness b

Various metrics can be used to measure the graph utility. Refer to a survey [24] for

details. The used graph metrics are shown in Table 9.

• The nodes number(n), edges number(m) and average degree(d̄) describe the basic

scale of the graphs.

• The asssortativity coefficient(r) describes the tendency that nodes with similar degree

are connected to each other. Assortative (disassortative) networks are those where

nodes with similar (dissimilar) degrees tend to be tightly interconnected. They are

more (less) robust to both random and targeted removals of nodes and links.

• The betweenness (b) is a commonly used measure of centrality, i.e., topological im-

portance, both for nodes and links. It is a weighted sum of the number of shortest

paths passing through a given node or link. As such, it estimates the potential traf-

fic load on a node or link, assuming uniformly distributed traffic following shortest
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paths.

• The average distance (l) and the diameter (lmax) describe the separation of nodes,

which are important for evaluating the performance of routing algorithms as well as

of the speed with which worms spread in a network.

• The largest eigenvalue (λ) of the adjacency matrix describes the spectrum charac-

ter of the graph topology. Eigenvalues provide tight bounds for a number of critical

network characteristics [20, 75, 102] including network resilience and network per-

formance like the maximum traffic throughput of the network.

• The average clustering (C̄) is the average cluster coefficients of each nodes. The

transitivity (t) and the number of triangles (∆) give the graph level clustering char-

acteristics of the graph.

For each graph model, we generate 100 random graphs and choose one with the largest

average clustering coefficient C̄. This strategy was adopted in previous works (e.g., [95])

since the variation of C̄ from randomly generated graphs is often small.

3.4.2 Evaluation Result

We report all our results for four networks in Tables 10,11,12, and 13. In each table,

‘Original’ denotes the original graph; ‘SKG’, ‘1k’, and ‘2k’ respectively denote the graphs

generated by the SKG, the 1K-graph model, and the 2K-graph model without privacy pro-

tection; ‘1k(20)’, ‘1k(2)’,‘1k(0.2)’ denote the graphs generated by the private DP-1K model

with ϵ = 20, 2, 0.2 respectively. Similarly, ‘2k(2000)’, ‘2k(200)’, ‘2k(20)’ , ‘2k(2)’, and

‘2k(0.2)’ denote the graphs generated by the DP-2K model with corresponding ϵ values.
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For the DP-2K model, we use the same δ = 0.01. We do not include the results for the

private SKG model since they can be acquired from [87]. As shown in Section 3.4.2.1,

the SKG model (even without privacy requirement) incurs much larger utility loss than the

dK-graph models or the private DP-dK models.

3.4.2.1 SKG Model VS. dK-Graph Model

Our experiment results show that dK-graph models (both 1K and 2K) outperform the

SKG model whereas the 2K-graph model generally achieves better utility than the 1K-

graph model, when privacy is not taken into account.

The dK-graph models more precisely capture most of the evaluated graph properties

than the SKG model. Taking the graph AS20 (6474 nodes,12572 edges) as an example, the

2K-graph model outperforms the SKG model with nine out of the ten metrics used in our

evaluation; and the 1K-graph model outperforms the SKG model with seven metrics. The

first five columns of Table 11 show the detailed metric values. Compared to the original

graph, the relative errors of metrics n, m and d of 1K- and 2K-graph models are around

0.1%, which indicates the dK-graph models can well capture the scale of networks. On the

contrary, the SKG model generates graphs that often have different scales than the original

one. For example, the relative errors of n, m and d are 54%, 23%, 166% for the SKG model.

This is because of the limitation of the SKG model that it could only generate graph with

node number near 2r (r is the iterative parameter of the model).

Apart from the global characteristics, the dK-graph models also show better performance

in per-node metrics than the SKG model. As the evidence, Figure 3 shows the overlayed

patterns of the distribution of the node betweenness (b) and the cluster coefficient sequence

(C) of the original graph AS20 as well as its corresponding ones generated by the SKG and
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dK-graph models. Figure 3(a) plots the sorted node betweenness distribution, where both

the two lines representing 1K- and 2K-graph models are much similar and closer to the

line representing the original AS20 graph. Figure 3(b) plots the sorted cluster coefficient

sequence, where both 1K- and 2K-graph models more accurately reproduce the cluster

coefficient sequence even to the positions of every turning point in the line representing

the original graph. On the contrary, both the node betweenness distribution and the cluster

coefficient sequence from the SKG graph are significantly different from the original graph.
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Figure 3: Overlayed patterns of real network for AS20 and generated graphs

We would also point out that neither the dK-graph models nor the SKG model could

accurately capture the average cluster coefficient C̄, number of triangles ∆, and transitivity

t, where in most cases, the relative errors for them are more than 50%. For the assortativity

coefficient (r), it could only be precisely captured by the 2K-graph model. We can see from

Line 5 of Table 10 that, for graph GC (5242 nodes and 14484 edges), the relative error of r

for the 2K-graph is 2.3% while the relative errors for those generated by the SKG and the

1K-graph model are more than 90%.

Finally, we would emphasize that the SKG model cannot achieve utility preservation as

well as the dK-graph models. Even our private DP-dK models can achieve better utility
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preservation than the SKG model without privacy enforcement. For instance, as shown in

Table 12 for the Enron graph, the DP-1K model with strong privacy protection (ϵ = 2)

outperforms the SKG model in terms of utility preservation with eight metrics. The DP-2K

graph model satisfying (200, 0.01)-differential privacy also outperforms the SKG model

with eight metrics. In summary, our evaluation demonstrates that the dK-graph models

(both 1K and 2K), even with acceptable amount of perturbation, would generate graphs

with better utility than the SKG model.

3.4.2.2 Privacy vs. Utility of DP-dK Model

In this section, we focus on the tradeoff between utility and privacy of our private dK-

graph models. As shown in Section 3.3.2, the 2K-distribution often has the large sensitivity.

When enforcing strong privacy protection with small ϵ values like 0.2 or 2, the DP-2K graph

model would incur significant utility loss. For example, the generated graphs often have

extremely large scale and uncertain values of other graph metrics. However, for weak pri-

vacy protection, the private DP-2K graph model outperforms the DP-1K graph model, i.e.,

capturing more information of the original graph, especially for the assortativity coefficient

(r) and the average cluster coefficient (C̄); for other metrics like n,m, d̄, λ, l, lmax, t, the

DP-2K model shows at least the same level of accuracy as the DP-1K model.

Figure 4 shows the values of metrics n,m, t, C̄ of the Polbooks graph and its correspond-

ing graphs generated by the DP-2K model with varying ϵ values. Each pillar from left to

right corresponds to the original graph, the 2K-graph model, and the DP-2K models with

varying ϵ values from 2000 to 0.2 respectively. We observe that the magnitude of metric

values changes dramatically as ϵ decreases from 20 to 0.2 in all the four metrics, which

indicate the significant utility loss for the DP-2K model with strong privacy enforcement.
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Contrastively, Figure 5 show values for the 1K-model and the DP-1K models with varying

ϵ values. We can see that the DP-1K model well preserves the utility even with small ϵ

values like 2 and 0.2. We can also observe from Figures 4 and 5 that the DP-2K model

achieves better utility preservation than the DP-1K model under the weak privacy enforce-

ment. For example, when ϵ = 200, 2000, the DP-2K model has more accurate C̄ than the

DP-1K model (no difference for n,m, t).

Additionally, our experiment results show that the assortativity coefficient (r) can only

be precisely achieved by the DP-2K model. For example, as shown in Line 5 of Table 10

for the graph GC, the DP-2K graph model with (200, 0.01)-differential privacy incurs much

smaller loss ( with the relative error of 7.8%) than both the 1K-graph model and the DP-1K

graph models (with the relative errors more than 90%). The assortativity coefficient is an

important metric to describe the tendency that nodes with similar degree are connected.

To sum up, our evaluations indicate that the DP-2K graph model generally achieves

better utility than the DP-1K graph model for large ϵ values whereas the DP-1K graph

model would achieve better utility for small ϵ values.

Table 10: Metrics evaluation of graph GC

MetricsOriginal SKG 1k 2k 1k(20) 1k(2) 1k(0.2) 2k(2000) 2k(200) 2k(20) 2k(2)
n 5241 3522 5241 4581 5242 5239 5382 4585 4652 6106 153892
m 14484 13767 14484 12748 14509 14596 19430 12724 12949 24415 854067
d̄ 5.5272 7.8177 5.5272 5.5656 5.5356 5.5720 7.2204 5.5503 5.5671 7.9970 –
r 0.6593 0.0161 0.0177 0.6438 -0.0181 -0.0077 -0.0053 0.6453 0.6080 0.4275 –
C̄ 0.5297 0.0149 0.0082 0.0183 0.0078 0.0089 0.0159 0.0174 0.0156 0.0117 –
l̄ 3.8079 3.7890 4.2690 4.3144 4.2205 4.2260 3.8499 4.3149 4.2794 4.0762 –

lmax 17 9 11 14 13 12 10 15 16 19 –
λ45.6167 23.029618.259441.039817.594718.182327.7705 40.4608 34.347438.7852 –
∆ 48260 1585 775 17650 628 745 3035 17149 12303 12485 –
t 0.6298 0.0171 0.0101 0.2690 0.0082 0.0094 0.0179 0.2644 0.1927 0.0646 –
Q 0.8015 0.3176 0.4074 0.5039 0.4044 0.4024 0.3236 0.5069 0.4951 0.4010 –
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Figure 4: Utility change with varying ϵ on the DP-2K private model generated graphs for
Polbooks
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Polbooks
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Table 11: Metrics evaluation of graph AS20

MetricsOriginal SKG 1k 2k 1k(20) 1k(2) 1k(0.2) 2k(2000) 2k(200) 2k(20)
n 6474 2987 6474 6418 6475 6491 7006 6422 9678 49788
m 12572 15456 12571 12450 12585 15705 38431 12863 30716 240675
d̄ 3.8838 10.3488 3.8835 3.8797 3.8873 4.8390 10.9709 4.00592 6.347599.66799
r -0.1818 -0.1766 -0.1734 -0.1822 -0.1731 -0.3244 -0.5799 -0.1753 -0.1132 -0.0623
C̄ 0.2522 0.0811 0.1491 0.1640 0.1485 0.3386 0.5979 0.1134 0.0566 0.0109
l̄ 3.7050 3.0500 3.2215 3.4481 3.2779 2.9218 2.7337 3.5480 3.7059 4.0273

lmax 9 6 12 8 16 9 7 9 8 11
λ46.3179 39.602149.896242.813550.392870.7959161.7525 41.1401 51.4363 –
∆ 6584 7052 11732 4373 12143 42351 549789 3087 12830 –
t 0.0096 0.0271 0.0171 0.0065 0.01769 0.0303 0.1036 0.0047 0.0129 –
Q 0.6082 0.2505 0.4807 0.5133 0.4782 0.4023 0.2301 0.5053 0.3855 0.3594

Table 12: metrics evaluation of graph Enron

MetricsOriginal SKG 1k 2k 1k(20) 1k(2) 1k(0.2)2k(2000)2k(200) 2k(20) 2k(2) 2k(0.2)
n 148 254 148 146 147 153 281 147 146 582 6273 106976
m 869 1804 868 843 867 1024 1538 842 813 3024 29090 512785
d̄ 11.743 14.31811.73011.54811.79613.386 10.947 11.455 11.137 10.392 9.274 9.587
r -0.146 -0.223 -0.062 -0.148 -0.083 -0.077 -0.050 -0.148 -0.145 -0.062 -0.176 -0.019
C̄ 0.5120 0.21970.18930.19920.19590.2429 0.0923 0.1986 0.1850 0.05390.0032 0.0020
l̄ 2.5140 2.29622.29512.26602.28022.2403 2.6143 2.2739 2.3071 3.00793.9928 4.9975

lmax 6 4 4 4 4 5 5 4 5 6 8 8
λ 17.832 22.98617.79316.99617.64621.719 16.049 16.985 16.216 19.09919.025 20.522
∆ 1700 1687 821 684 767 1519 599 709 639 845 652 –
t 0.3441 0.12420.16710.14600.15590.2106 0.0782 0.1508 0.1502 0.04860.0040 –
Q 0.4170 0.19870.22450.23340.21680.1895 0.2568 0.2237 0.2575 0.31350.3292 0.2787

Table 13: Metrics evaluation of graph Polbooks

MetricsOriginal SKG 1k 2k 1k(20) 1k(2) 1k(0.2) 2k(2000)2k(200) 2k(20) 2k(2) 2k(0.2)
n 105 128 104 103 104 108 170 103 103 221 1374 49089
m 441 849 440 433 440 448 712 436 421 873 6459 220939
d̄ 8.40 13.163 8.442 8.408 8.462 8.296 8.377 8.466 8.175 8.275 9.402 9.002
r -0.128 -0.106 -0.094 -0.129 -0.028 -0.108 0.025 -0.129 -0.184 -0.023 0.029 -0.008
C̄ 0.4875 0.17730.16050.16920.16490.1574 0.1110 0.1737 0.1668 0.08650.0089 0.0003
l̄ 3.0787 2.13232.38312.38422.40992.3980 2.6383 2.3775 2.3859 2.77553.5576 4.9716

lmax 7 4 4 4 4 4 5 4 4 5 8 12
λ11.9326 18.01911.87111.59912.17311.586 12.569 11.695 11.104 12.75313.301 13.587
∆ 560 825 231 230 246 208 239 239 185 318 243 221
t 0.3484 0.17660.14490.14780.15380.13090.08923 0.1505 0.1273 0.10240.0097 0.0003
Q 0.5020 0.19990.26940.28660.27330.2706 0.2830 0.2891 0.2974 0.33610.3508 0.2855
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3.5 Summary

In this chapter, we have presented private dK-graph generation models that enforce rig-

orous differential privacy while preserving utility. We have conducted theoretical analysis

and empirical evaluations to show that the developed private dK-graph generation models

significantly outperform the approach based on the stochastic Kronecker generation model.

We have shown that the DP-2K graph model generally achieves better utility preservation

than the DP-1K graph model with weak privacy enforcement whereas the DP-1K graph

model would achieve better utility preservation with strong privacy enforcement. Some

preliminary results of this work can be found in [107].



CHAPTER 4: DIFFERENTIAL PRIVACY PRESERVING SPECTRAL GRAPH
ANALYSIS

4.1 Introduction

In this chapter, we focus on differential privacy preserving spectral graph analysis. Spec-

tral graph analysis deals with the analysis of the spectra (eigenvalues and eigenvector com-

ponents) of the graph’s adjacency matrix or its variants. There is a large literature on exam-

ining the eigenvectors of the adjacency eigenspace, the graph Laplacian or normal matrix

for social networks with various applications such as spectral clustering [15, 26, 49, 58, 70,

89, 91, 92, 99, 117, 119–121, 125, 127], fraud detection [118, 129], and spectral graph visu-

alization [9, 57]. In this chapter,we develop two approaches to compute the ϵ-differential

private spectra, the first k eigenvalues and the corresponding eigenvectors, from the input

graph G. The first approach, denoted as LNPP, is based on the Laplace Mechanism [32]

that calibrates Laplace noise on the eigenvalues and every entry of the eigenvectors based

on their sensitivities. We derive the global sensitivities of both eigenvalues and eigenvec-

tors based on the matrix perturbation theory [101]. Because the output eigenvectors after

perturbation are no longer orthogonormal, we postprocess the output eigenvectors by using

the state-of-the-art vector orthogonalization technique [41]. The second approach, denoted

as SBMF, is based on the exponential mechanism [86] and the properties of the matrix

Bingham-von Mises-Fisher density for network data spectral analysis [55]. We prove that

the Gibbs sampling procedure [55] achieves differential privacy. We conduct empirical
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evaluation on a real social network data and compare the two approaches in terms of utility

preservation (the accuracy of spectra and the accuracy of low rank approximation) under

the same differential privacy threshold. Our empirical evaluation results show that LNPP

generally incurs smaller utility loss.

4.2 Preliminaries

We omit the formal definition and the classic Laplace mechanism of differential privacy

here, since they can be referred from chapter 2. Here we introduce a general mechanism,

proposed in [86] by McSherry and Talwar for differential privacy that comes with guar-

antees about the quality of the output, even for functions that are not robust to additive

noise. The idea is to sample from the distribution specified by the exponential mechanism

distribution. This mechanism skews a base measure to the largest degree possible while

ensuring differential privacy, focusing probability on the outputs of highest value.

4.2.1 Differential Privacy

Exponential mechanism was proposed to achieve differential privacy for diverse func-

tions especially those with large sensitivities [86]. The exponential mechanism is driven by

a score function q that maps a pair of input(G) and output(r) from Dn×Rd to a real valued

score(q(G, r)) which indicates the probability associated with the output. Given an input

graph G, an output r ∈ Rd is returned such that q(G, r) is approximately maximized while

guaranteeing differential privacy.

Theorem 4. (The General Exponential Mechanism [86]) For any function q: (Dn ×Rd) →

R, based on a query Q with computing function f : Dn → Rd, and base measure µ over

Rd, the algorithm Υ which takes as input a graph G and some α > 0 and outputs some
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r ∈ Rd is defined as

Υα
q (G) := Choosing r with probability proportional to exp(αq(G, r))× µ(r).

Υα
q (G) gives (2α∆q)-differential privacy, where ∆q is the largest possible difference in q

when applied to two input graphs that differ only one link, for all r.

4.2.2 Spectral Analysis of Network Topologies

A graph G can be represented as a symmetric adjacent matrix An×n with Ai,j = 1 if

there is an edge between nodes i and j, and Ai,j = 0 otherwise. We denote the i-th largest

eigenvalue of A by λi and the corresponding eigenvector by ui. The eigenvector ui is a

n× 1 column vector of length 1. The matrix A can be decomposed as

A =
n∑

i=1

λiuiu
T
i . (21)

One major application of the spectral decomposition is to approximate the graph data

A by a low dimension subspace Ak that captures the main information of the data, i.e.,

minimizes ∥A − Ak∥F . Given the top-k eigenvalues and corresponding eigenvectors, we

have a rank-k approximation to A as

Ak =
k∑

i=1

λiuiu
T
i = UkΛkUk

T , (22)

where Λk is a diagonal matrix with Λii = λi and Uk = (u1, .., uk).

Uk belongs to the Stiefel manifold. Denoted as νk,n, the Stiefel manifold is defined

as the set of rank-k k × n orthonormal matrices. One of the commonly used probability

distributions on the Stiefel manifold νk,n is called the matrix Bingham-von Mises-Fisher

density (Definition 9).
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Definition 9. (The matrix Bingham-von Mises-Fisher density [55]) The probability density

of the matrix Bingham-von Mises-Fisher distribution is given by

PBMF(X|C1, C2, C3) ∝ etr{CT
3 X + C2X

TC1X}, (23)

where C1 and C2 are assumed to be symmetric and diagonal matrices, repectively.

The matrix Bingham-von Mises-Fisher density arises as a posterior distribution in latent

factor models for multivariate and relational data. Recently, a Gibbs sampling scheme was

developed for sampling from the matrix Bingham-von Mises-Fisher density with applica-

tion of network spectral analysis [55] based on the latent factor model(Definition 10).

Definition 10. (The latent factor model for network data [55]) The network data is repre-

sented with a binary matrix A so that Ai,j is the 0-1 indicator of a link between nodes i and

j. The latent factor model with a probit link for such network data is defined as:

Ai,j = δ(c,∞) (Zi,j)

Zi,j = uT
i Λuj + ei,j

Z = UΛUT + E

where E is modeled as a symmetric matrix of independent normal noise, Λ is a diagonal

matrix and U is an element of νk,n, with k generally much smaller than n. Given a uniform

prior distribution for U, we have

P(U |Z,Λ) ∝ etr(ZTUΛUT/2) = etr(ΛUTZU/2),

which is a Bingham distribution with parameters C1 = Z/2, C2 = Λ and C3 = 0.

Lemma 5. [55]A uniform prior distribution on eigenvectors U and independent normal(0,
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τ 2) prior distributions for the eigenvalues Λ give

P(Λ|Z,U) = Πk
i=1normal(τ 2uT

i Zui/(2 + τ 2), 2τ 2/(2 + τ 2))

P(U |Z,Λ) ∝ etr(ZTUΛUT/2) = etr(ΛUTZU/2),

where ‘normal(u, σ2)’ denotes the normal density with mean u and variance σ2.

The sampling scheme by Hoff [55] ensures Lemma 5 to approximate inferences for U

and Λ for a given graph topology. As suggested in [55], the prior parameter τ 2 is usually

chosen as the number of nodes n since this is roughly the variance of the eigenvalues of an

n× n matrix of independent standard normal noise.

4.3 Mechanism for Spectral Differential Privacy

In this section, we present two approaches to computing the ϵ-differential private spectra:

LNPP, which is based on the Laplace Mechanism (Theorem1), and SBMF, which is based

on the exponential mechanism [86] and the properties of the matrix Bingham-von Mises-

Fisher density for network data spectral analysis [55].

4.3.1 LNPP: Laplace Noise Perturbation With Postprocessing

In this approach, we output the first k eigenvalues, λ(k) = (λ1, λ2, ..., λk), and the cor-

responding eigenvectors, Uk = (u1, u2, ..., uk)
)
, under ϵ-differential privacy with the given

graph G and parameters k, ϵ. We first derive the sensitivities for the eigenvalues and eigen-

vectors in Results 5, 6. We then follow Theorem 1 to calibrate Laplace noise to the eigen-

values and eigenvectors based on the derived sensitivities and privacy parameter. Because

the perturbed eigenvectors will no longer be orthogonalized to each other, we finally do a

postprocess to normalize and orthogonalize the perturbed eigenvectors following Theorem
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5.

Result 5. Given a graph G with its adjacent matrix A, the global sensitivity of each eigen-

value is GSλi
(G) = 1,(i ∈ [1, n]); the global sensitivity of the first k(k > 1) eigenvalues

as a vector, λ(k) = (λ1, λ2, ..., λk), is GSλ(k)(G) =
√
2k.

Proof. We denote adding/deleting an edge between nodes i and j on the original graph G

as a perturbation matrix P added to the original adjacent matrix A. Pn×n is a symmetric

matrix where only Pi,j and Pj,i have value 1/−1 and all other entries are zeros. We denote

λi as the eigenvalue of the matrix A and λ̃i as that of matrix A+P . We have the Euclidean

norm and Frobenius norm of P respectively as ∥P∥2 = 1 and ∥P∥F =
√
2. Based on the

matrix perturbation theory [101](Chapter IV, Theorem 4.11), we have

GSλi
(G) ≤ max |λ̃i − λi| ≤ ∥P∥2 = 1

and

GSλ(k)(G) =
k∑

i=1

|λ̃i − λi| ≤
√
k

√√√√ k∑
i=1

(λ̃i − λi)2 ≤
√
k∥P∥F =

√
2k.

Result 6. Given a graph G with its adjacent matrix A, the sensitivity of each eigenvector,

ui(i > 1), is GSui
(G) =

√
n

min{|λi−λi−1|,|λi−λi+1|} , where the denominator is commonly re-

ferred as the eigen-gap of λi. Specifically, the sensitivities of the first and last eigenvector

are respectively GSu1(G) =
√
n

λ1−λ2
and GSun(G) =

√
n

λn−1−λn
.

Proof. We define the perturbation matrix P and other terminologies the same as those in

the proof of Result 5. We denote eigenvectors of matrix A,A + P respectively as column
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vectors ui and ũi (i ∈ [1, k]). Based on the matrix perturbation theory [101](Chapter V,

Theorem 2.8), for each eigenvector ui(i > 1), we have

GSui
(G) ≤

√
n∥ũi − ui∥2 ≤

√
n∥Pui∥2

min{|λi − λi−1|, |λi − λi+1|}

≤
√
n

min{|λi − λi−1|, |λi − λi+1|}
.

Specifically for i = 1 (similarly for i = n),

GSu1(G) ≤
√
n∥ũ1 − u1∥2 ≤

√
n∥P∥2

λ1 − λ2

=

√
n

λ1 − λ2

.

Theorem 5. (Orthogonalization of vectors with minimal adjustment [41]) Given a set of

non-orthogononal vectors x1, ...,xk, we could construct components u1, ..., uk such that xi

is close to ui for each i, and UTU is an identity matrix where U = (u1, ..., uk) following

U = XC,

where X = (x1, ...,xk) is the set of n × 1vectors and XTX is non-singular, C is the

symmetric square-root of (XTX)−1 and is unique.

Algorithm 4 illustrates our LNPP approach. We output the first k eigenvalues, λ̃(k) =

(λ̃1, λ̃2, ..., λ̃k), and the corresponding eigenvectors, ũ1, ũ2, ..., ũk), under ϵ-differential pri-

vacy with the given graph topology A and parameters k, ϵ. We first compute the real values

of eigenvalues λ(k) and eigenvectors ui(i ∈ [1, k]) from the given graph adjacent matrix A

(Line 1). Then we distribute the privacy parameter ϵ among λ(k) and u1, u2, ..., uk respec-

tively as ϵ0 and ϵ1, ϵ2, ..., ϵk where ϵ =
∑k

i=0 ϵi (Line 2). With the derived the sensitivities



70

Input: Graph adjacent matrix A, privacy parameter ϵ and dimension parameter k
Output: The first k eigenvalues λ̃(k) = (λ̃1, λ̃2, ..., λ̃k) and corresponding eigenvectors
ũ1, ũ2, ..., ũk, which satisfies ϵ-differential privacy.

1: Decomposition A to obtain the first k eigenvalues λ(k) = (λ1, λ2, ..., λk) and the corre-
sponding eigenvectors u1, u2, ..., uk;

2: Distribute ϵ into ϵ0, ..., ϵk, s.t.ϵ =
∑k

i=0 ϵi;
3: Follow Theorem 1 to add Laplace noise to λ(k) with ϵ0 based on GSλ(k)(G) derived in

Result 5 and obtain λ̃(k) = (λ̃1, ..., λ̃k);
4: For i:=1 to k do

Follow Theorem 1 to add Laplace noise to ui with ϵi based on GSui
(G) derived in

Result 6 and obtain x̃i;
Endfor

5: Normalize and orthogonalize x̃1, ..., x̃k to obtain ũ1, ..., ũk following Theorem 5.
6: Output λ̃1, λ̃2, ..., λ̃k and ũ1, ũ2, ..., ũk

Algorithm 4: LNPP: Laplace noise calibration approach

for the eigenvalues (GSλ(k)(G)) and each of the k eigenvectors (GSui
(G), i ∈ [1, k]) from

Results 5 and 6, next we follow Theorem 1 to calibrate Laplace noise and obtain the private

answers λ̃(k) (Line 3) and x̃1, x̃2, ..., x̃k (Line 4). Finally we do a postprocess to normalize

and orthogonalize x̃1, x̃2, ..., x̃k into ũ1, ũ2, ..., ũk following Theorem 5 (Line 5).

4.3.2 SBMF: Sampling from BMF Density

The SBMF approach to provide spectral analysis of network data is based on the sam-

pling scheme proposed by Hoff [55] as an application of their recently-proposed technique

of sampling from the matrix Bingham-von Mises-Fisher density (Definitions 9, 10). In [18],

the authors investigated differentially private approximations to principle component anal-

ysis and also developed a method based on the general exponential mechanism [86]. In

our work we focus on the eigen-decomposition of the 0-1 adjacency matrix (rather than the

second moment matrix of the numerical data) and prove that the sampling scheme from the

matrix Bingham-von Mises-Fisher density satisfies differential privacy through the gen-

eral exponential mechanism (Theorem 4). The sampling scheme proposed by Hoff [55]
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ensures Lemma 5, with the purpose to build the latent factor model (Definition 10) for net-

work data, i.e, to approximate inferences for U and Λ. We derive the privacy bounds of the

output eigenvalues and eigenvectors following the sampling scheme respectively in Claims

4 and 5, based on Lemma 5. Then following the Composition Theorem (Theorem 2), we

come to the conclusion that the SBMF approach satisfies ϵ-differential privacy (Theorem

6).

Claim 4. The sampling scheme which outputs λ(k) satisfies ϵΛ-differential privacy where

ϵΛ = k( 2τ2

2+τ2
)3/2.

Proof. We denote A and A′ as the adjacent matrix of any neighboring graph G and G′. The

calibrated noise to a function f from the Gaussian distribution normal(0, σ2), similar as

that from the Laplace distribution, provides a 2σGSf -differential privacy [32]. Based on

Lemma 5, we have for each eigenvalue λi, the sampling scheme satisfies

ϵλi
= 2σGSλi

= 2(
2τ 2

2 + τ 2
)1/2{τ 2uT

i Aui/(2 + τ 2)− τ 2uT
i A

′ui/(2 + τ 2)}

= 2(
2τ 2

2 + τ 2
)1/2

τ 2

2 + τ 2
uT
i (A− A′)ui ≤ (

2τ 2

2 + τ 2
)3/2

where the proof of uT
i (A − A′)ui ≤ 1 is straightforward. With the composition theorem

(Theorem 2), ϵΛ =
∑k

i=1 ϵλi
= k( 2τ2

2+τ2
)3/2.

Claim 5. Given the graph G’s adjacent matrix A, the sampling scheme which outputs U

satisfies ϵU -differential privacy where ϵU = k2λ1.

Proof. The sampling scheme for U can be considered as an instance for the exponential
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mechanism( Theorem 4) with α = 1 and q(A,U) = tr(ΛUTAU/2). We have

∆q(A,U) =
∣∣tr(ΛUTAU/2)− tr(ΛUTA′U/2)

∣∣ = 1

2

∣∣tr(ΛUT (A− A′)U)
∣∣

≤ 1

2
kλ1

∣∣tr(UT (A− A′)U)
∣∣ ≤ 1

2
k2λ1.

Following Theorem 4, we have ϵU = 2α∆q(A,U) = k2λ1.

Theorem 6. The SBMF approach to computing the spectra, the first k eigenvalues and the

corresponding eigenvectors of a given graph topology A satisfies ϵ = (ϵΛ+ ϵU)-differential

privacy, where ϵΛ = k( 2τ2

2+τ2
)3/2 and ϵU = αk2λ1.

In this work, we take the prior parameter τ 2 as n, which is suggested by Hoff [55] since

this is roughly the variance of the eigenvalues of an n × n matrix of independent standard

normal noise. We illustrate the SBMF approach in Algorithm 5. In the Algorithm, the

parameter α is used to change the privacy magnitude by changing ϵU (Theorems 4, 6).

Given the input graph topology A and dimension parameter k, we acquire the eigenvalues

Λ̃k and corresponding eigenvectors Ũk from the sampler application provided by Hoff [55]

with input matrix αA. The output satisfies ϵ = (ϵΛ + ϵU)-differential privacy following

Theorem 6.

Input: Graph adjacent matrix An×n, privacy magnitude α and dimension parameter k
Output: The first k eigenvalues Λ̃k and corresponding eigenvectors Ũk, which satisfies
ϵ = (ϵΛ + ϵU)-differential privacy.

1: Set the input matrix Y = αA, the parameter τ 2 = n and the number of iterations t;
2: Acquire Λ̃k and Ũk from the sampler provided by Hoff [55] with the input matrix Y ,

the output satisfies ϵ = (ϵΛ + ϵU)-differential privacy(Theorem 6);
3: Output Λ̃k and Ũk

Algorithm 5: SBMF: Sampling from BMF density approach
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4.4 Empirical Evaluation

We conduct experiments to compare the performance of the two approaches, LNPP and

SBMF, in producing the differentially private eigenvalues and eigenvectors. For the LNPP,

we implement Algorithm 4. For the SBMF, we use the R-package provided by Hoff [55].

We use ‘Enron’ (147 nodes, 869 edges) data set that is derived from an email network 8

collected and prepared by the CALO Project. We take the dimension k = 5 since it has

been suggested in previous literatures [121] that the first five eigenvalues and eigenvectors

are sufficient to capture the main information of this graph. The first two rows in Table 14

show the eigenvalues and their corresponding eigen-gaps (Result 6).

4.4.1 Performance Comparison with α = 1

In this section, we compare the performance of the LNPP approach with that of the

SBMF approach in three aspects: the accuracy of eigenvalues, the accuracy of eigenvectors

and the accuracy of graph reconstruction with the private eigen-pairs. With τ 2 = n and

α = 1, we compute that ϵλ = 14 and ϵU = 446 following Claims 4 and 5. Therefore the

SBMF approach satisfies ϵ = 460 differential privacy following Theorem 6. On the other

hand, the same ϵ is taken as the input for the LNPP approach. Different strategies have

been proposed to address the ϵ distribution problem(Line 2 in Algorithm 4) in previous

literatures [123]. In our work, we just take one simple strategy, distributing ϵ as ϵ0 = 10

to the eigenvalues and ϵi = 90, (i ∈ [1, k]) equally to each eigenvector. Therefore LNPP

approach also satisfies ϵ = 460 differential privacy.

For eigenvalues, we measure the output accuracy with the absolute error defined as

EΛ = |λ̃(k) − λ(k)|1 =
∑k

i=1 |λ̃i − λi|. The absolute errors EΛ for LNPP and SBMF are
8http://www.cs.cmu.edu/˜enron/
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Table 14: Eigenvalues comparison

λ1 λ2 λ3 λ4 λ5

eigenvalue 17.8317 12.7264 10.6071 9.7359 9.5528

eigen-gap 5.1053 2.1193 0.8712 0.1832 0.1832

LNPP 18.1978 13.2191 10.6030 9.7311 9.4650

SBMF 107.8450 88.9362 76.1712 76.0596 56.6721

Table 15: Eigenvector comparison

Approaches EU
cos⟨ũi, ui⟩ = ũ′i · ui

u1 u2 u3 u4 u5
LNPP 11.9989 0.9591 0.7925 0.4786 0.1217 0.1280

SBMF 13.4224 0.6605 0.6995 0.7336 0.2921 0.4034

respectively 0.9555 and 345.2301. One sample o eigenvalues In the third and fourth rows

of Table 14, we show the output eigenvalues from the LNPP and the SBMF approaches.

We can see that the LNPP outperforms the SBMF in more accurately capturing the original

eigenvalues.

For eigenvectors, we define the absolute error as EU = |Ũk − Uk|1. EU for LNPP and

SBMF approaches are respectively 11.9989 and 13.4224. We also define the cosine similar-

ity to measure the accuracy of each private eigenvector as cos⟨ũi, ui⟩ = ũ′
i · ui(i ∈ [1, k]).

We show the detailed values of EU and the cosine similarities in Table15. Note that the co-

sine value closer to 1 indicates better utility. We can see that LNPP generally outperforms

SBMF in privately capturing eigenvectors that close to the original ones. Specifically, the

LNPP approach is sensitive to eigen-gaps (second row in Table 14), i.e., it tends to show

better utility when the eigen-gap is large such as for u1 and u2. Thus a better strategy will

be distributing privacy parameter ϵ according to magnitudes of eigen-gaps, instead of the

equal distribution.

The SBMF approach outputs much larger eigenvalues than the original ones. It does
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not tend to accurately approximate anyone of the original eigenvectors either. The reason

is that SBMF approach is designed to provide a low rank spectral model for the original

graph rather than approximating of the original eigenvalues and eigenvectors.

We consider the application of graph reconstruction using the differentially private first

k eigenvalues and the corresponding eigenvectors. Ak =
∑k

i=1 λiuiu
T
i = UkΛkU

T
k is

commonly used as a rank-k approximation to the original graph topology A when A is

not available for privacy reasons or A’s rank is too large for analysis. Since Ak is not

an 0/1 matrix, We discretize Ak as Ã1
k by choosing the largest 2m entries as 1 and all

others as 0 (so keeping the number of edges m the same as that of the original graph). We

then compare the performance of the two approaches by the absolute reconstruction error

defined as γ = ∥A− Ã1
k∥F .The γ values for LNPP and SBMF approaches are 47.7912 and

34.1760 respectively. We can see that the result of the SBMF approach outperforms the

LNPP.

4.4.2 Performance Comparison with Varying α

In this section, we change the privacy magnitude to additionally study the performance

of the LNPP and SBMF approaches. α denotes the amplification factor of the privacy pa-

rameter ϵ used in section 4.4.1. We choose the value of α as 0.01, 0.1, 0.5, 1, 5, 10 where the

corresponding ϵ values are respectively 18.46, 58.6, 237, 460, 2244, 4474 following Theo-

rem 6.

We show the values of EΛ, EU and γ for the LNPP and the SBMF approaches in Ta-

ble 16. The accuracy of the LNPP approach increases significantly with α for both the

eigenvalues(EΛ) and graph reconstruction (γ). Note that the greater the α, the weaker

privacy protection, and hence the more utility preservation. However, the accuracy of
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Table 16: Comparison of two approaches for varying privacy magnitudes

α 0.01 0.1 0.5 1 5 10

EΛ
LNPP 60.1586 4.0160 2.1452 0.9555 0.2528 0.0527
SBMF 51.6551 89.0678 90.9442 345.2301 69.6852 96.8904

EU
LNPP 12.7419 13.2455 13.9874 11.9989 13.3967 12.7033
SBMF 14.3155 13.7518 14.0238 13.4224 14.5114 13.6087

γ
LNPP 56.2139 55.4617 51.1859 47.4912 41.3763 39.7492
SBMF 56.8155 55.8211 56.7450 34.1760 56.3715 56.9210

eigenvectors measured by EU is not changed much with α, as shown in Figure 6. This

is because of the normalization of eigenvectors in the postprocess step. While the SBMF

approach cannot accurately capture eigenvalues for any α value; as to graph reconstruction,

the case of α = 1 shows the best utility.
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Figure 6: Utility comparison for varying privacy magnitude

4.5 Summary

In this chapter we have presented two approaches to enforcing differential privacy in

spectral graph analysis. We apply and evaluate the Laplace Mechanism [32] and the expo-

nential mechanism [86] on the differential privacy preserving eigen decomposition on the

graph topology. Some preliminary results of this work can be found in [111].



CHAPTER 5: USING AGGREGATE HUMAN GENOME DATA FOR INDIVIDUAL
IDENTIFICATION

5.1 Introduction

Genome-wide association studies (GWAS) have received intensive attention due to the

rapid decrease of genotyping costs and promising potential in genetic diagnostics. GWAS

typically focus on associations between single-nucleotide polymorphisms (SNPs) and hu-

man traits like common diseases. It has been shown that many chronic diseases and various

cancer types have genetic disposition factors.

High-density genotyping microarrays, and recently next-generation sequencing tech-

nologies, have been developed for geneticists to identify common genetic variants that

predispose an individual to diseases. In biomedical community, there is a considerable

push to make experimental data publicly available so that the data can be combined with

other studies or reanalyzed by other researchers. However, genotype data is classified as

sensitive and should be handled by complying with specific restrictions, e.g., the Health

Insurance Portability and Accountability Act of 1996 (HIPAA) that protects the privacy of

individually identifiable health information in the USA. It was shown that only 30-80 out of

30 million SNPs are needed to uniquely identify an individual [77]. Therefore, in addition

to the HIPPA privacy rule, the USA Genetic Information Nondiscrimination Act of 2008

(GINA) requires data collectors and supervisory organization must guarantee that the data

analysts meet privacy restrictions, and organizations should protect against all forms of ge-
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netic discrimination from using individuals’ genetic information. Hence, genotype profiles

for GWAS participants are only accessible to researchers after confidentiality agreements

are signed.

However, Homer et al. [56] developed a method to determine whether a person with

known genotypes at a number of markers was part of a sample from which only allele

frequencies are known. They showed that GWAS statistics do not completely conceal

identity since it is straightforward to assess the probability a person who participated in a

particular GWAS cohort. Their study prompted concerns about the public dissemination of

genotype data and aggregate statistics from GWAS. Consequently NIH regulated that the

database of Genotypes and Phenotypes (dbGaP) 9 has to be accessed by controlled access.

Subsequently, another group [83] investigated the limitation of the method in [56] and

analytically assessed the likelihood that an individual who is not in the mixture is mis-

takenly classified as being a member. These results showed that the method has a high

false-positive rate in practice due to its sensitivity to underlying assumptions, limiting its

utility for inferring the presence of an individual. An study in [105] proposed two attacks

based on the statistics released from GWAS. The first attack extended Homer’s attack [56]

by utilizing a more powerful statistics (r2) which describes the correlation among different

SNPs, rather than the allele frequencies in Homer’s attack. In this attack, only the informa-

tion of a few hundred of SNPs are needed while in Homer’s attack at least 10,000 SNPs are

necessary from the target. The other attack gave a way to recover the un-released SNPs of

participants by analyzing the r2 between pairwise SNPs. In [132], the researchers studied

the risk of identity inference and genotype recovery of participants by firstly examining

9http://www.ncbi.nlm.nih.gov/gap
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the common aggregate dataand identifying the typical threat they are faced; and secondly

studying possible scenario of attacks on different types of data: the identify attack and the

recovery attack. In general, such attacks are hard to succeed due to the lack of enough

information or high computation cost. It may still work with special reference population

which leads to a small solution space of the problem. Several research works [37, 61] have

been conducted for the safe release of aggregate GWAS statistics without compromising a

participant’s privacy. Their ideas were based on differential privacy [32]. Differential pri-

vacy is a paradigm of post-processing the output and is agnostic to auxiliary information an

adversary may possess, and provides guarantees against arbitrary attacks. A differentially

private algorithm provides an assurance that the output cannot be exploited by the attacker

to derive whether or not any individual’s record is included. In summary, all of the previous

work listed above solely focused on the privacy protection of GWAS participants.

In this chapter, we investigate a related but different privacy protection problem, i.e.,

whether and to what extent GWAS statistics can be exploited by an attacker to learn pri-

vate information of regular people (rather than those GWAS participants). Specifically, we

study two potential attacks: 1) trait inference attack that aims to infer the probability of a

target developing some private trait when the target’s genotype profile is available to the

attacker; and 2) identity inference attack that aims to infer the probability of a record in an

anonymized genotype database that belongs to the target, when some traits of the target are

available.

In trait inference attack, the attacker such as an insider from the organizations is assumed

to know the whole or part of a target individual’s SNP profile and aims to predict some sen-

sitive trait (e.g., disease) of the target individual. In identity inference attack, we assume
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the attacker such as an outsider has access to the anonymized genotype profile which con-

tains the target individual’s record and aims to identify the target individual’s record from

the anonymized dataset. We also assume the attacker knows some traits of the target in-

dividual. For example, private traits and attributes of individuals can be predictable from

easily accessible digital records of behavior such as Facebook Likes [68]. Other patient

social networks and online communities like ‘patientlikeme.com’ provide a platform for

users (mostly patients) to connect with others who have the same disease or condition and

share their own experiences. The data generated in such process may also have potential

risks in that the data can be used by the attacker to learn the private traits and attributes of

individuals.

Both attacks in our study pose a serious threat to individuals when their genotype pro-

files are exploited by attackers. Many organizations such as biobanks, hospitals, research

consortia and pharmaceutical companies collect and publish DNA sequence and genotype

data. For example, the 1000 Genome Project (1000GP) [104] provides the public with free

services like browsing and downloading DNA sequences, SNP genotypes and other types

of data from over a thousand anonymous participants in different populations. Although

without any specific traits, these data can be exploited by attackers where they can combine

such public information with health records and other online information. One of such stud-

ies [48] demonstrated end-to-end identification of individuals with only public information

and showed that full identities of personal genomes can be exposed via surname inference

from recreational genetic genealogy databases followed by Internet searches. They con-

sidered a scenario in which the genomic data are available with the target’s year of birth

and state of residency, two identifiers that are not protected by HIPAA. From a different



81

angle but along the same line, our study here further shows that the re-identification of

anonymized genotype data still hold a real threat to regular individuals who are not GWAS

participants using published data.

The contributions of our study is as follows. 1) We develop a method to build a two-layer

bayesian network from the released GWAS statistics. The constructed bayesian network

explicitly reveals the conditional dependency between SNPs and traits, and can be used to

compute the probability distribution for any subset of network variables given the values or

distributions for any subset of the remaining variables. 2) We then formulate two attacks,

namely trait inference attack and identity inference attack, as two inference problems based

on the dependency relationship captured in the bayesian network, and develop efficient for-

mulas and algorithms to infer the probability of attacks. 3) We conduct empirical evalu-

ations of the proposed methods. Our results show that unexpected privacy breaches can

occur because aggregation statistics (or even perturbed statistics under differential privacy)

provide no explicit security guarantees and these statistics could be exploited by attackers

to identify individuals or derive private information.

5.2 Background

5.2.1 GWAS Catalog and Statistics

Case-control studies under the GWAS framework are usually conducted by comparing

the genotypes of two groups of participants: individual with the disease (case group) and

matched individuals without the disease (control group). Each individual is genotyped by

microarray or sequencing platforms. Dependent on genotyping platform, the number of

SNPs genotyped in a GWAS setting typically ranges from tens of thousands to tens of

millions. From genotype data, we can view that an SNP locus has two possible alleles, a
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risk allele and a non-risk allele. The risk allele is the allele that is more frequent in the case

group comparing with the control group.

Figure 7: Typical process of a genome-wide association study

Figure 7 shows a typical GWAS process. Firstly, SNP profile data is generated by geno-

typing the individuals in cases and controls. Secondly, Allele frequency for each of those

SNPs over the case group and the control group is calculated respectively and a statistical

test is performed on a contingency table to investigate if the allele frequencies are signifi-

cantly different in cases versus controls. The upper-right table in Figure 7 depicts a 2 × 2

contingency table for allele counts in case and control groups. The odds ratio, which is de-

fined as the ratio of the proportion of individuals in the case group having a specific allele,

and the proportion of individuals in the control group having the same allele, is often used

to report the difference. When the allele frequency in the case group is much higher than

in the control group, the odds ratio will be higher than 1. Additionally, a p-value for the

significance of the odds ratio is typically calculated using a simple chi-squared test. Find-

ing SNPs whose odds ratios are significantly different from 1 is the objective of the GWAS

because those SNPs are associated with the trait. Finally, those SNPs that are associated
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with the trait, along with the statistics (e.g. p-value and odds ratio) are reported. These

reported SNPs, along with information about the study, the trait, specific SNP information

(e.g. identifier, position, and the risk allele type), and statistics, are later collected and cu-

rated at the National Human Genome Research Institute (NHGRI) GWAS catalog [54], as

shown in the lower table in Figure 7.

5.2.2 Bayesian Network Revisited

A bayesian network G = (V,E) is a Directed Acyclic Graph (DAG), where the nodes in

V represent the variables and the edges in E represent the dependence relationships among

the variables. The dependence/independence relationships are graphically encoded by the

presence or absence of direct connections between pairs of variables. Hence a Bayesian

network shows the (in)dependencies between the variables qualitatively, by means of the

edges, and quantitatively, by means of conditional probability distributions which specify

the relationships. In general, a bayesian network represents the joint probability distribu-

tion by specifying a set of conditional independence assumptions together with sets of local

conditional probabilities. The edges represent the assertion that the variable is condition-

ally independent of its nondescendants in the network given its immediate predecessors

in the network. A conditional probability table is given for each variable, describing the

probability distribution for that variable given the values of its immediate predecessors.

Formally, for each variable Xi ∈ V , we have a family of conditional probability distri-

butions P (Xi|Parent(Xi)), where Parent(Xi) represents the parent set of the variable

Xi in G. From these conditional distributions we can compute the joint probability for

any desired assignment of values < x1, x2, · · · , xn > to the tuple of network variables
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X1, X2, · · · , Xn by the formula:

P (x1, x2, · · · , xn) =
n∏

i=1

P (xi|Parent(Xi)) (24)

Note the values of P (xi|Parent(Xi)) are precisely the values stored in the conditional

probability table associated with variable Xi. Bayesian networks can perform efficiently

reasoning tasks and there are several algorithms (including exact inference methods and

approximate inference methods) to compute the posterior probability for any variable given

the observed values of the other variables in the graph.

5.3 Constructing a Bayesian Network from GWAS

Figure 8: Infringement of individual privacy for GWAS participants and regular individuals

In this section, we describe the implementation of our methods that potentially disclose

individual privacy for GWAS participants and regular individuals as well. As illustrated in

Figure 8, we consider the infringement of individual privacy for both GWAS participants

(e.g., whose genotypes are stored in dbGaP and under controlled access) and regular indi-

viduals (including but not limited to individuals whose genotypes are publicly available).

Specifically, we extract summary statistics of risk alleles from GWAS catalog [54], build
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a two-layered bayesian network from the aforementioned GWAS catalog, and present how

an attacker can attack the identity of regular individuals by inferring on the constructed

bayesian network with aid of publicly available background information.

We elaborate how to build a two-layered bayesian network using the statistics extracted

from the aforementioned GWAS catalog. The constructed bayesian network, which explic-

itly captures the conditional dependency between SNPs and their associated traits, will be

used as background knowledge for inference attacks.

5.3.1 Knowledge from GWAS Catalog

We use the information publicly available from the GWAS catalog [54] to construct

the bayesian network. Such information includes trait/disease name, the associated SNPs

and corresponding risk allele type, the risk allele frequency in control group, and statistics

(e.g., odds ratio and p-value) in the association test of each SNP. Specifically, we extract

the following data from the GWAS catalog: a trait set T, which contains m traits, and an

SNP set S, which contains n SNPs. For each specific trait Tk ∈ T, we have a subset of

associated SNPs. For each associated SNP Sj , we can extract its corresponding risk allele

type (rSNPkj) associated trait Tk, the odds ratio Okj of the association test, and the risk

allele frequency in the control group f t
kj .

Though not directly given in the GWAS catalog, the risk allele frequency in the case

group can be derived from the corresponding odds ratio and the risk allele frequency in the

control group. For an SNP Sj associated with a trait Tk, its odds ratio is

Okj =
f c
kj(1− f t

kj)

f t
kj(1− f c

kj)
(25)

With the released values of the odds ratio (Okj) and the risk allele frequency in the control
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group f t
kj , the risk allele frequency in the case group f c

kj can be derived as

f c
kj =

Okj · f t
kj

Okj · f t
kj + 1− f t

kj

(26)

Lemma 6. The background knowledge that an attacker can obtain from the GWAS cata-

log [54] includes: a trait set T, an SNP set S, the risk allele type (rSNPkj), the odds ratio

Okj , and the risk allele frequency in the control group f t
kj for each pair of trait and its

associated SNPs.

5.3.2 Two-layered Bayesian Network Construction

In GWAS, we can distinguish between two different sets of variables: the set T of the m

traits, Tk, and the set S of the n SNPs, Sj . Each trait Tk is a binary random variable taking

values in the set {tk, t̄k}, where tk(t̄k) stands for the presence (absence) of the trait of a

participant. Similarly, each SNP Sj has its domain in the set {sj, s̄j}, where sj stands for

the SNP has the risk allele and s̄j otherwise.

We construct a bayesian network to represent the conditional dependencies between

traits and SNPs, with background knowledge shown in Lemma 6. The constructed net-

work is composed of two layers, the trait layer and the SNP layer, with edges only going

from trait nodes to SNP nodes. As shown in Figure 9, in such a network, each node at the

top level denotes a specific trait; while each node at the second level denotes an SNP. If an

SNP(Sj) is associated with a trait(Tk), a directed edge is added from Tk to Sj . Focusing on

the network structure, we consider the following guidelines to determine network topology:

• For each trait in the GWAS catalog, there is a directed link from the node representing

that trait to each of its associated SNP node.
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• The traits are marginally independent from each other, which implies that there are

no links between trait nodes. All trait nodes are root nodes.

• There are no links between the SNP nodes. The relationships between SNPs only

occur through the associated traits. SNPs are conditionally independent given the

traits that they are associated with.

Figure 9: A two-layered Bayesian network of traits and associated SNPs

The next step to completely specify a bayesian network is to determine the conditional

probability table stored at each node. Firstly, we need to acquire the prior probability of

each trait node at the top level of the network. The prevalence of a trait Tk in the population

can be obtained from the literature or internet. We treat it as the prior probability that one

individual has this trait, denoted as P (tk). Secondly, we need to determine the conditional

probability table of each SNP node at the second level. There are two types of SNP nodes

in terms of dependency relationship with traits: a) SNP nodes which have a single parent

trait node, e.g., S1, S2 in Figure 9; and b) SNP nodes which have more than one parent trait

node, e.g., Sj in Figure 9.

Figure 10 shows the histogram distribution of SNPs which are associated with more

than one trait in the GWAS catalog. Specifically, among the 10, 027 unique SNPs, there
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Table 17: Probability function for SNPs with single parent trait

P (S1|T1)
T1

t1 t̄1

S1
s1 f c

11 f t
11

s̄1 1− f c
11 1− f t

11

are 9, 447 SNPs associated to a single trait, 368 SNPs associated with two traits, and at the

most, two SNPs associated with 11 traits.
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Figure 10: Distribution of SNP-trait associations

For those SNP nodes with a single parent trait node, we can specify the values of the

conditional probability table associated with each SNP node by its risk allele frequency in

the control group and the risk allele frequency in the case group. An example for node

S1 is shown in Table 17. The probability of the risk allele of SNP S1 given the presence

of the trait T1, P (s1|t1) equals the risk allele frequency in the case group f c
kj . Note that

the conditional probability table of S2 can be specified in the same way as S1, although S2

shares the parent trait node T2 with other SNP nodes (i.e., S3 and S4).

For the SNP nodes with multiple parent trait nodes, the conditional probability table

cannot be built from the GWAS catalog directly. Instead, the value of each cell in the con-
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Table 18: Probability function for an SNP with two parent traits

P (Sj |Tk, Tl)
Tk, Tl

tk, tl tk, t̄l t̄k, tl t̄k, t̄l

Sj
sj

fc
kjf

c
lj

fsj

fc
kjf

t
lj

fsj

f t
kjf

c
lj

fsj

f t
kjf

t
lj

fsj

s̄j
(1−fc

kj)(1−fc
lj)

1−fsj

(1−fc
kj)(1−f t

lj)

1−fsj

(1−f t
kj)(1−fc

lj)

1−fsj

(1−f t
kj)(1−f t

lj)

1−fsj

ditional probability table, which represents one of the possible combinations of its parent

nodes being true or false, can be calculated based from Lemma 7.

Lemma 7. (Conditional probability for SNPs with multiple parent trait nodes) For a specific

risk SNP Sj associated with a subset of traits Parent(Sj), we have

P (Sj|Parent(Sj)) =

∏
Tk∈Parent(Sj)

P (Sj|Tk)

P q−1(Sj)
, (27)

where q is the number of elements in Parent(Sj). Specifically, when Sj is associated with

two traits Tk, Tl, we have

P (Sj|Tk, Tl) =
P (Sj|Tk) · P (Sj|Tl)

P (Sj)
(28)

Proof.

P (Sj|Tk, Tl) =
P (Tk, Tl|Sj) · P (Sj)

P (Tk, Tl)
(Bayes′sLaw)

=
P (Tk|Sj) · P (Tl|Sj) · P (Sj)

P (Tk)P (Tl)
(Conditionalindependence)

=

P (Sj |Tk)P (Tk)

P (Sj)
· P (Sj |Tl)P (Tl)

P (Sj)
· P (Sj)

P (Tk)P (Tl)
(Bayes′sLaw)

=
P (Sj|Tk) · P (Sj|Tl)

P (Sj)

The proof for the general case is straightforward.

Table 18 shows an example for node Sj which has two parent trait nodes, Tk and Tl.

Note that values in Table 18 are suitable for the situation where the risk allele type of Sj
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for Tl is the same as that for Tk; otherwise we should exchange all the f c
lj with 1 − f c

lj in

each cell of the table. When we calculate the first cell value in the conditional probability

table, P (sj|tk, tl), we simply set P (sj|tk) = f c
kj , P (sj|tl) = f c

lj , and P (sj) = fsj where f c
kj

and f c
lj denote the risk allele frequency in each case group and fsj denotes the probability

of Tj’s risk allele appearing in the population. In Lemma 7, we assume that the traits are

conditionally independent with each other, given the SNPs they are both associated with.

The probability that one allele of an SNP appears in the population, fsj , can be found from

an NCBI website10.

With the bayesian network constructed from the GWAS catalog, we can calculate the

joint probability for any desired assignment of values to variables sets S (SNPs), T (traits),

for example < s1, s2, ..., s|S|, t1, t2, ...t|T| >, following Lemma 8. In the original reasoning

process in the bayesian network, we need to involve all of the other variables to calculate

P (S,T). By marginalization of summing out ‘irrelevant’ variables, we achieve the form in

Lemma 8.

Lemma 8. The joint probability for any desired assignment of values to variables sets S

(SNPs), T (traits), for example < s1, s2, ..., s|S|, t1, t2, ...t|T| >, can be calculated using

Equation 29. Note that we can apply this equation to any other assignment of values,

simply changing si/tj to s̄i/t̄j accordingly.

P (S,T) = P (s1, s2, ..., s|S|, t1, t2, ...t|T|)

=
∑

Tk∈{tk,t̄k}

(

|S|∏
i=1

P (si|Parent(Si))

|T|∏
j=1

P (tj)

|T′|∏
k=1

P (Tk))

(29)

where T′ denotes the set of all the other parent traits of the SNPs in S except for those

10http : //www.ncbi.nlm.nih.gov/snp/
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already contained in T.

Additionally, we can calculate the conditional joint probability for any desired assign-

ment of values to variables sets Sx,Tx given the observed assignment of variables sets

Sy,Ty following Theorem 7. Note that Sx and Sy denote the set of SNPs; while Tx, Ty

denote the set of traits.

Theorem 7. (Inference via a GWAS Bayesian Network) The joint probability for any de-

sired assignment of values to variables in Sx,Tx given the (observed) assignment of values

to variables in Sy,Ty can be derived from Equation 30.

P (Sx,Tx|Sy,Ty) =
P (Sx,Tx,Sy,Ty)

P (Sy,Ty)
(30)

where the joint probability P (Sx,Tx,Sy,Ty) and P (Sy,Ty) can be calculated following

Lemma 8.

5.4 Inference Attacks based on a Two-layered Bayesian Network

5.4.1 Trait Inference Attack

In this attack scenario, we assume that an attacker has stolen genotype profile of the

target and aims to derive the probabilities that the victim has specific traits using the con-

structed bayesian network. Formally, we represent the genotype of a target v as a vector,

rv = (rv1, rv2, · · · , rvn), with each entry rvj denoting the allele type of SNP j. The attacker

aims to learn the posteriori probability P (tk|rv) that the target has a specific trait Tk given

the target’s genotype profile rv using the constructed bayesian network.

Definition 11. (Trait Inference Attack) Assume that the attacker has the genotype profile rv

of the target v. The attacker aims to learn the posteriori probability P (tk|rv) that the target
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has a specific trait Tk given the target’s genotype profile rv using the constructed bayesian

network.

The probability of the prevalence of a specific trait, which is retrievable from the liter-

ature or the internet, is used as the prior probability that the target has the specific trait.

The attacker can improve his/her guess by calculating the posterior probability of the target

having the trait by inferring from with the target’s genotypes.

The attacker can calculate the posterior probability of the target having a particular trait

(P (tk|rv)), using the victim’s genotype information (rv) and Lemma 9.

Lemma 9. (Trait Development Risk Estimation With Several Related SNPs) The posteriori

probability P (tk|rv) can be calculated following Equation 30, specifically with Sx,Ty = ∅,

Tx = Tk = tk. Based on conditional independence, we have Sy that contains only the

SNPs associated with Tk, where the value assignment of SNP genotypes is equal to the

corresponding genotype record of the target individual.

In the attack scenario described in Algorithm 6, the attacker intends to find out the possi-

bility that the victim has certain trait ,according to his/her genotype and the GWAS catalog

information.

5.4.2 Identity Inference Attack

In identity inference attack, we assume that the attacker has access to an anonymized

genotype dataset that contains the target’s genotype record and the attacker knows a subset

of traits the target has. Formally, we denote the anonymized genotype profile dataset as r,

where each record ri = (ri1, ri2, · · · , rin) represents the genotype profile of an anonymized

individual i. We assume that the genotype profile of the target rv is contained in r, and the



93

Input: The genotype profile rv of an individual v, the GWAS Bayesian Network G, the
trait set T
Output: The probability P (Tk|rv) that the individual has any trait in
T

1: FOR each trait Tk in T
2: Search G for Tk and obtain the associated SNPs {Sj} (j=1..m) and corresponding risk

allele type;
3: Extract the subgraph of Tk, SNP set {Sj} (j=1..m) and all the other parent traits of

these SNPs from the constructed bayesian network.
4: Obtain the binary values of rvj for each j from 1 to m according to whether the victim

has the risk allele type of each Sj in rv;
5: Calculate P (Tk|rv) following Lemma 9.
6: ENDFOR

Algorithm 6: Trait Inference

attacker knows TS , a subset of traits the target has.

Definition 12. (Identity Inference Attack) Given the anonymized genotype profile dataset r

which contains the target’s genotype record rv, and a subset of the target’s traits, TS , the

attacker aims to learn the posteriori probability P (ri = rv|TS) that the genotype record ri

corresponds to the target using the constructed bayesian network.

With the bayesian network constructed in the previous section, we can naturally acquire

the probability that an individual has a specific allele type for an SNP given his/her asso-

ciated trait information. Lemma 10 shows how to calculate the possibility that a record in

the dataset belongs to the target given his specific traits. The proof is straightforward based

on Theorem 7.

Lemma 10. For each genotype record, the probability that ri belongs to the target v is

P (ri = rv|TS) =

∏|ri|
j=1 P (rij|TSj

)∑|r|
i=1

∏|ri|
j=1 P (rij|TSj

)
(31)

where TSj
denotes the parent trait nodes of Sj in the bayesian network. P (rij|TSj

) can be



94

acquired from the bayesian network.

Input: The genotype profile dataset r = {r1, r2, ..., rn} containing the target individual’s
genotype record(rv), the trait set {T1, T2, ..., Tl} that the target individual has, the GWAS
catalog bayesian network G.
Output: The probability of each record in R belonging to the target individual P (ri =
rv).

1: FOR each trait Tk in set {T1, T2, ..., Tl}
2: Search G for Tk and obtain the associated SNPs Sj(j ∈ [1,m]) and the corresponding

risk allele type;
3: ENDFOR
4: FOR each record ri in r
5: Calculate the probability that ri belongs to the target individual following Lemma 10.
6: ENDFOR

Algorithm 7: Identity Inference

Algorithm 7 describes a possible approach an attacker could take to identify the target

individual’s record in the dataset. Based on this approach, the attacker can also infer other

private information of the target individual. For example, after deriving the probability that

each record in the genotype dataset belongs to the target individual, the attacker can further

derive any other trait that the target may have, based on the genotype information contained

in the dataset. We formalize such new trait inference in Lemma 11.

Lemma 11. Assume that the genotype profile of the target, rv, is contained in a genotype

profile dataset r. The attacker has access to r where each record ri = (ri1, ri2, · · · , rin)

denotes the genotype profile of an individual i. The attacker also knows the target individual

has a subset of traits, TS . The probability that the target has a new trait Tnew can be derived

as

P (Tnew|rv ∈ R,TS) =

|r|∑
i=1

P (ri = rv)× P (Tnew|ri)

=

|r|∑
i=1

P (ri = rv|TS)× P (Tnew|ri)

(32)
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where P (Tnew|ri) can be derived following Lemma 9 and P (ri = rv|TS) can be derived

following Lemma 10.

5.5 Differentially Private GWAS Statistics

As introduced in previous chapters, differential privacy [32] is a paradigm of post-

processing the output of queries and is agnostic to auxiliary information an adversary may

possess, and provides guarantees against arbitrary attacks. In prior work on differential

privacy, a database is treated as a collection of rows, with each row corresponding to the

data of a different individual. Here we focus on how to compute GWAS statistics under

differential privacy. The aim here is to ensure that the inclusion or exclusion of an individ-

ual in the GWAS dataset makes no statistical difference to the results found. We also study

how differential privacy protection may prevent the proposed attack. We omit the formal

definition of differential privacy and the classic Laplace mechanism to achieve differential

privacy here, since they can be referred from chapter 2.

Differential privacy research has been significantly studied from the theoretical perspec-

tive, e.g., [11, 17, 53, 65, 71, 130]. The applicability of enforcing differential privacy in

genomic data has been recently studied in [37,61] where statistics (e.g., the allele frequen-

cies of cases and controls, chi-square statistic and p-values) and logistic regression were

explored on GWAS data.

We use x = {x1, x2, ..., xnc+nt} to denote a SNP data set that contains nc cases and nt

controls. Each SNP profile xi contains N SNPs. The purpose of a typical GWAS study

is to discover K SNPs that are most significantly related with the trait under study. For

each SNP, we can easily derive that the risk allele frequency in the case (control) group
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f c (f t) has a global sensitivity of 1
nc

( 1
nt

) where nc(nt) is the number of individuals in the

case (control) group. The sensitivity of various statistics used for statistical tests between a

given SNP and the trait can also be derived straightforwardly. For example, the sensitivity

values of chi-square statistic and p-value were derived in [37] and those sensitivity values

are small. For those statistics with large sensitivity values (e.g., the sensitivity of odds ratio

is infinity), we can use perturbed risk allele frequencies to indirectly calculate them.

One naive approach for differentially private releasing K most significant SNPs based

on a given statistics Φ (e.g., chi-square statistic) is to add the Laplace noise Lap(N
ϵ
GSΦ)

to the true statistic value of each of N SNPs and then output K SNPs with most significant

perturbed statistics values. The approach achieves ϵ differential privacy based on Theorem

2. However, this naive approach is infeasible in GWAS because the noise magnitude of

Lap(N
ϵ
GSΦ) is very large due to the large number of SNPs (N ).

In [11], the authors developed an effective differential privacy preserving method on

how release the most significant patterns together with their frequencies in the context of

frequent pattern mining. The authors in [37] adapted this method to GWAS. We summarize

their algorithm below.

1. Compute the sufficient statistics Φ for each of the N SNPs and perturb each real

value with the Laplace noise of mean zero and magnitude of Lap(4K
ϵ
GSΦ).

2. Pick K most relevant SNPs in terms of the noisy values and denote the corresponding

set of SNPs by Γ.

3. Perturb the true Φ value of each SNP in Γ with the new Laplace noise with mean

zero and magnitude of Lap(2K
ϵ
GSΦ) and output Γ as well as their frequencies.
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The algorithm still achieves ϵ differential privacy. However, the magnitude of the added

noise is proportional to K rather than N . Note than the number of significant SNPs (K)

is much smaller than the number of total SNPs (N ). In our evaluation, we are not able to

access the raw SNP data and the set of significant SNPs Γ is given in the released GWAS

catalog. Thus we add the Laplace noise directly to the statistics of those SNPs Γ. In

particular, for each significant SNP, we add the Laplace noise of mean zero and magnitude

of Lap( 2K
ϵnc

) (Lap(2K
ϵnt

)) to the risk allele frequency in the case group f c ( in the control

group f t), and then use the perturbed frequencies to calculate the odds ratio. Recall that the

risk allele frequency in the case (control) group f c (f t) has a global sensitivity of 1
nc

( 1
nt

).

The perturbed odds ratio values are used to construct the two-layered bayesian network. In

the next section, we will show how the perturbed statistics affect the performance of both

the trait inference attack and the identity inference attack.

5.6 Evaluation

We first discuss our evaluation setup in Section 5.6.1. We then evaluate the performance

of our proposed trait inference attack in Section 5.6.2 and that of the identity inference

attack in Section 5.6.3 using the directly released statistics in GWAS catalog. In Sec-

tion 5.6.4, we evaluate how the differential privacy preserving GWAS statistics affect the

performance of the above two attacks.

5.6.1 Experimental setup

We evaluate our methods using data extracted from the online NHGRI GWAS catalog

[54] as of May 21, 2013. This version of the GWAS catalog includes 1,607 publications

and 12,520 records about 10,133 SNPs associated with 834 traits. Publications included in

such a catalog are limited to those attempted to assay at least 100,000 SNPs in the initial
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stage. SNP-trait associations listed are limited to those with p-values less than 10−5. Out of

the 12,520 records, there are 9,461 records with exact odds ratio values and the remaining

ones with odds ratio entry listed as ‘pending’ or ‘NR’.

It is worth pointing out here that the risk allele type for a specific SNP is defined to

indicate that this allele type appears more frequently in the case group than in the control

group, therefore the corresponding odds ratio should be greater than 1. As described in

the GWAS catalog website, odds ratio values less than 1 in the original publications are

converted to odds ratio values greater than 1 for the alternate alleles. However, we identify

that 4,469 records of SNP-trait associations with odds ratios less than 1 in this catalog;

thus we treat them in our evaluation in the same way as claimed by the GWAS catalog,

referring the alternate allele as the risk allele with an odds ratio converted to be greater

than 1. In this chapter, we preprocess all of the 9,461 records with exact odds ratio values

to build a knowledge database about traits and the associated risk SNP allele types. To

evaluate the performance of the trait inference attack and the identity inference attack, we

use the genotype profiles in the 1000 Genomes Project [104]. In our experiment, we extract

two datasets. The first dataset, referred as ‘CEU’, consists of the 85 HapMap individuals

from Utah residents with Northern and Western European ancestry (CEU) in the 1000

Genomes Project. The second dataset, referred as ‘Random’, consists of 85 randomly

selected individuals from the 1,092 samples in the 1000 Genomes Project.

5.6.2 Trait Inference Attack

Table 19 shows the information and statistics of a snapshot of our constructed two-layer

bayesian network from the GWAS catalog. There are 6 traits and 9 associated SNPs, which

were reported from from six previous GWAS publications. For each SNP-trait pair, the risk
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Table 19: Attack background information

Index Trait Sj − sj f t
kj Okj f c

kj P (tk)

1
Chronic obstructive pulmonary disease

rs9394152− C 0.4122.220.9392
0.052 rs73717741−G0.07 11.9 0.4725

3 rs10928927− C 0.1617.540.7696

4 Drug-induced liver injury (flucloxacillin) rs2395029−G 0.05 45 0.703 0.00008

5 Jaw Osteonecrosis rs1934951− T 0.1212.75 0.63 0.056

6 Osteoarthritis rs12982744− C 0.6111.110.9456 0.036

7
Height(taller than 90% of population)

rs12982744−G 0.4 33.330.9569
0.108 rs7853377−G 0.23 50.0 0.9372

9 rs7567288− C 0.2 33.330.8929

10 Eye color(Green) rs12913832−A0.23 8.43 0.7158 0.16

allele type, risk allele in the control group and the odds ratio are shown in Columns 3-5.

We calculate the risk allele frequency in the case group for each SNP-trait pair and show

the result in Column 6. Note that there is a big gap (around 0.5) between the risk allele

frequency in the case group and that in the control group. We also acquire from the original

studies or Wikipedia the prior probability (prevalence) of each trait, P (tk), and show the

result in Column 7.

Note that the SNP, rs12982744, is related to two traits with row indices of 6 and 7

in Table 19. Since it is unavailable of the detailed probability that the alleles of this SNP

appear in people who have these two traits, we follow Lemma 7 to calculate the conditional

probability table. The prior probabilities that alleles C and G appear in the population, are

0.79 and 0.21 respectively.

With the constructed bayesian network, the attacker can then run the trait inference at-

tack(Algorithm 6) to calculate the posterior probability that the target individual has a trait

given his/her genotype profile.

Table 20 shows the estimation results calculated from Lemma 9. Each row in Table 20

corresponds to the row with the same index in Table 19. Column P (tk|rij) gives the av-
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Table 20: Posterior probability of certain trait considering one SNP

Index n1 P (T |rij = sj) n0 P (T |rij = s̄j) P (tk|rij)
1 58 0.1076 27 0.0054 0.0751
2 15 0.2621 70 0.0290 0.0701
3 20 0.2020 65 0.0142 0.0584

4 10 0.0011 75 2.5E − 5 1.5E − 4

5 27 0.2389 58 0.0240 0.0923

6 28 0.0546 57 0.0203 0.0316

7 57 0.1744 28 0.0078 0.1195
8 6 0.3117 79 0.0100 0.0313
9 3 0.3316 82 0.0175 0.0286

10 37 0.3721 48 0.0657 0.1991

erage probability that the 85 CEU participants from the 1000 Genomes Project has each

trait. We can see that most of the average probabilities (with bold font) are higher than the

corresponding prior probability of having a trait. Columns n1 and n0 respectively repre-

sent the number of individuals who have and do not have the risk allele type listed in the

corresponding row of Table 19. Columns P (tk|rij = sj) and P (tk|rij = s̄j) respectively

represent the the posterior probability of one individual has a trait if he/she has the risk

allele type, or does not have the risk allele type of one specific SNP corresponding to the

trait.

5.6.3 Identity Inference Attack

For the identity inference attack, we use both ‘CEU’ and ‘Random’ datasets. In our

experiment, we assume that the target has the trait of green eyes, top 10% height, and all

other traits listed in Table 19. That is to say, the trait set for the target has six elements.

We randomly generate the genotype record for the target individual. The generating

strategy is that for each SNP Sj associated with one trait Tk, we generate rij = sj with the

probability P (sj|tk). Particularly, SNP rs12982744 is associated with both osteoarthritis

and height where the allele C is risky for osteoarthritis and allele G is positively associated
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with height. We refer to allele C as sj when considering them together, and then generate

the target individual’s allele type rij = sj with the probability calculated following Lemma

7. Next we blend the generated record into the ‘CEU’ dataset (containing the genotype

records of the 85 CEU individuals) and the ‘Random’ dataset(containing the randomly

selected 85 records) respectively. Finally, we calculate the probability that the generated

record is correctly identified as belonging to the target individual, given the background

trait information. We also compare the inference capability with different amount of back-

ground knowledge, i.e., with the size of trait set ranging from one to six.
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Figure 11: Average probability of identity inference attack with different amount of back-
ground knowledge

We run this whole process for 10,000 times for each dataset. Figure 11 shows the average

value of the resulted probabilities. As shown in Figure 11, the red line is the baseline repre-

senting the probability (1/86) that the generated record is inferred as belonging to the target

individual without any background knowledge, whereas the blue (cyan) line represents the

resulted probability on ‘CEU’ ( ‘Random’) dataset. The first point in the blue (cyan) line
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represents the average probability that the generated record is correctly referred given any

one of the six traits on ‘CEU’ ( ‘Random’) dataset. Similarly, the second point represents

the average probability that the generated record is correctly referred given any two traits

from all the six traits, and so on. We can see that in general, for both the ‘CEU’ and ‘Ran-

dom’ datasets, the probability of correctly identifying the target individual increases as the

background knowledge increases, while the inference probability given only one trait is

much larger than that of the situation without any background knowledge. The bar at each

point shows the standard deviation of the resulting probabilities of 10,000 times of test.
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Figure 12: Probability distribution of identity inference attack on ‘CEU’ dataset with dif-
ferent amount of background knowledge

Figure 12 shows the distribution of the inference probability among the 10,000 times of

identity inference test for the ‘CEU’ dataset and Figure 13 shows the similar distribution

for the ‘Random’ dataset. As the amount of background traits increases, the peaks of the

process count would be located at positions with larger identifying probabilities. This in-

dicates that in general, the more background knowledge we have, the more probably that
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Figure 13: Probability distribution of identity inference attack on ‘Random’ dataset with
different amount of background knowledge

the target individual’s record is correctly identified. Specifically, the highest peak in the

wave of |Ts| = 6 locates near the line of P = 1, which represents that when knowing all

six traits, the attacker could successfully identify the target individual with a confidence of

more than 90% in most times of test. On the other hand, multiple peaks in each line repre-

sent the different identifying probabilities due to the different combinations of background

traits as well as the different possible genotype records being randomly generated.

We also notice that the overall inference probability on the ‘Random’ dataset is slightly

lower than that on the ‘CEU’ dataset. This is due to the different risk allele frequencies

between the ‘CEU’ dataset and the ‘Random’ dataset. As in ‘CEU’ dataset, we have known

more specifics about the population background, while ‘ALL’ dataset includes individuals

from other populations and the population pool is larger. Figure 14 shows the risk allele

frequencies for each of the nine involved SNPs between the ‘CEU’ dataset and the whole

dataset (referred as ‘ALL’) of 1092 individuals from the 1000 Genome Project.The blue
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Figure 14: Risk allele frequency in the subset of 85 CEU individuals and in whole dataset
of 1092 individuals

(red) bars represent the risk allele frequencies in the ‘CEU’ (‘ALL’) dataset. The SNP

index corresponds to the index in Table 19. From Figure 14, we can see that for four

out of the nine associated SNPs, the risk allele frequencies in the whole dataset of 1092

individuals are much higher than those in the subset of ‘CEU’ records. For other SNPs,

there is no remarkable difference of the risk allele frequency in the two datasets. Thus in

the ‘Random’ dataset, some risk alleles are more frequently occurred than that in ‘CEU’

dataset, making the probability of inferring the target individual slightly lower. However,

the results demonstrate that even in a dataset with no race information available, the attacker

can still correctly infer the target individual with high confidence by exploiting known traits

of the target.

5.6.4 Attack using differentially private GWAS statistics

We conduct experiments to evaluate how the trait inference attack and the identity infer-

ence attack work based on the bayesian network constructed from the differentially private
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Table 21: Differential private posterior probability of certain trait considering one SNP

Index P (tk) P (tk|rij) P (tk|rij)(ϵ = 2) P (tk|rij)(ϵ = 0.2)

1
0.05

0.0751 0.0749 0.0749
2 0.0701 0.0670 0.0679
3 0.0584 0.0581 0.0571

4 8E-5 1.54E − 4 1.59E − 4 1.49E − 4

5 0.056 0.0923 0.0934 0.2637

6 0.036 0.023 0.023 0.023

7
0.10

0.2031 0.2054 0.2055
8 0.0303 0.0360 0.0360
9 0.0258 0.0300 0.0301

10 0.16 0.1991 0.1992 0.1986

statistics. Our evaluation is still based on the 85 CEU participants from the 1000 Genomes

Project. In our experiments, we choose two privacy threshold values, ϵ = 2 and ϵ = 0.2,

which represent two settings for reasonable privacy preservation in GWAS. For each ϵ, we

follow the procedure in Section 5.5 to derive the differential privacy preserving statistics

and then construct the bayesian network.

Table 21 shows the comparison of the trait inference attack. Each row in Table 21 cor-

responds to one trait-SNP pair with the same index in Table 19. Column P (tk) shows the

prevalence of the trait in population. Columns P (tk|rij), P (tk|rij)(ϵ = 2), and P (tk|rij)(ϵ =

0.2) show the average probability that the 85 CEU participants from the 1000 Genomes

Project has each trait under three compared scenarios, using directly released GWAS statis-

tics, 2-differentially private statistics, and 0.2-differentially private statistics, respectively.

We can see that most of the average probabilities (with bold font) are higher than the corre-

sponding prior probability of having a trait. We are interested in how the derived posterior

probabilities using perturbed statistics are different from those using the original statistics.

We define the average absolute relative error as γ(ϵ) = 1
K

∑K
j=1

|P (tk|rij)−P ϵ(tk|rij)|
P (tk|rij)

. Our re-

sults show γ(2) = 0.0408 and γ(0.2) = 0.2282, which indicate the more rigorous privacy
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Table 22: Average probability of identity inference attack with different amount of back-
ground knowledge

|TS |
P (ri = rv|TS)

Original ϵ = 2 ϵ = 0.2
ave std ave std ave std

1 0.0697 0.0321 0.0645 0.0275 0.0325 0.0075

2 0.1493 0.0312 0.1320 0.0576 0.0646 0.0229

3 0.2503 0.1138 0.2118 0.0916 0.0978 0.0497

4 0.3725 0.1578 0.3032 0.1348 0.1230 0.0923

5 0.5158 0.2047 0.4079 0.1911 0.1360 0.1484

6 0.6792 0.2565 0.5323 0.2657 0.1340 0.2200

protection incurs more loss of attack performance in terms of accuracy.

We also use the differentially private statistics to run the identity inference attack again

on ‘CEU’ dataset. In Table 22, each row corresponds to some certain number of traits the

target individual has. The columns under label ‘Original’, ‘ϵ = 2’ and ‘ϵ = 0.2’ denote the

average probability of correctly identifying the target individual P (ri = rv|TS) calculated

with original value of GWAS statistics, the 2-differentially private GWAS statistics, and

the 0.2-differentially private GWAS statistics respectively. For each scenario, we use ‘ave’

and ‘std’ to denote the mean and the standard deviation. We can easily observe that the

average probability of correctly identifying the target individual P (ri = rv|TS) increases

as the number of known traits increases under three scenarios. This observation shows that

the more background knowledge the attacker has, the more likely the target individual can

be identified. We are interested in how the performance of the identity inference attack is

affected by the perturbed GWAS statistics. We can see that the attack performance is sig-

nificantly decreased when GWAS statistics are distorted under rigorous privacy protection.

For example, as the last row shows, when |TS| = 6, the accuracy of the attack decreases

from 0.6792 to 0.5323 (ϵ = 2), and further to 0.1340 (ϵ = 0.2). However, the probability
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(0.1340) that the target individual being correctly identified under ϵ = 0.2 is still an order

high than the probability of random guess (0.0116).

5.7 Summary

In summary, we studied whether and to what extent GWAS statistics can be exploited

by an attacker to learn private information of general population, not limited to GWAS par-

ticipants. We developed two potential attacks, trait inference attack and identity inference

attack. Both attacks exploit the released GWAS statistics about the associations between

SNP genotypes and human traits. Our evaluations showed that the proposed attacks (even

with perturbed GWAS statistics under differential privacy) have made re-identification

of anonymized genotype data a real threat. In this work and our early conference ver-

sion [109], we were focused on a different and new privacy protection problem not covered

by previous research, i.e., whether and to what extent GWAS statistics can be exploited by

an attacker to learn private traits of regular people rather than those GWAS participants.

The technical report version of this work can be found in [110].



CHAPTER 6: REGRESSION MODEL FITTING UNDER DIFFERENTIAL PRIVACY
AND MODEL INVERSION ATTACK

6.1 Introduction

In many applications, sensitive datasets such as financial transactions, medical records,

or genetic information about individuals are often only disclosed to authorized users, yet

the models learned from them are made public. The released models may be exploited by

an adversary to breach privacy of both participant individuals in the datasets and regular

non-participant individuals.

In [38], the authors developed a model inversion attack where an adversary uses the re-

leased model to make predictions of sensitive attributes (used as input to the model) of a

target individual when some background information about the target individual is avail-

able. The authors showed that differential privacy mechanisms prevent model inversion

attacks only when the privacy budget is very small. However, for privacy budgets effective

at preventing attacks, the utility in terms of performing simulated clinical trials is signifi-

cantly lost.

Hence it is imperative to develop mechanisms to achieve differential privacy protection

for participants and prevent model inversion attacks while retaining the utility of the re-

leased models. In this chapter, we focus on regression models which have been widely

applied in many applications. Regression studies often involve continuous data (e.g., blood

lipid levels or heights) in addition to categorical attributes (e.g., gender, race and disease).
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Various regression models including linear regression, logistic regression, and lasso mod-

els have been developed. There are generally two approaches to derive differential privacy

preserving regression models. The first approach is to directly perturb the output coef-

ficients of the regression models. However, this approach requires an explicit sensitivity

analysis of the regression models, which is often infeasible. The second approach, called

the functional mechanism, is to add noise to the coefficients of the objective function used

to derive regression models [17,131]. Deriving a bound on the amount of noise needed for

the functional mechanism involves a fairly simple calculation on the object function.

Differential privacy preserving regression models based on the functional mechanism [131]

guarantee protection against attempts to infer whether a subject was included in the training

set used to derive a model. It is not effective to protect attribute privacy, which is the target

of the model inversion attacks. This is because in the functional mechanism regression

coefficients corresponding to different attributes are perturbed equally. However, model

inversion attacks seek to exploit correlation between the target sensitive attributes, known

non-sensitive attributes and the model output. In this chapter, we will develop a new ap-

proach to learn differential privacy preserving regression models which effectively prevent

model inversion attacks and retain the model utility. Our approach leverages the functional

mechanism but effectively balances the privacy budget for sensitive and non-sensitive at-

tributes in learning the differential privacy preserving regression models.

6.1.1 Problem Formalization

Let D be a data set that contains n tuples t1, t2, ..., tn regarding d explanatory attributes

X1, X2, · · · , Xd and one response attribute Y . The explanatory attributes can be divided

into two groups: non-sensitive attributes and sensitive attributes. For simplicity, we con-
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Table 23: Notations used in Chapter 6

Symbol Definition
ti = (xi, yi) the i-th tuple

ω the parameter vector of the regression model
ρ(ω) the released regression mode

f(ti, ω) the cost function on tuple ti
fD(ω) fD(ω) =

∑
ti∈D f(ti, ω)

ω∗ ω∗ = argminω fD(ω)

ϕ(ω) a product of one or more elements in ω1, ω2, ..., ωd

Φj the set of all products of all possible ϕ of order j
λϕti the polynomial coefficient of ϕ in f(ti, ω)

ϵ, ϵs, ϵn privacy for all, sensitive, non-sensitive attributes

sider there is only one sensitive attribute Xs and all remaining ones are non-sensitive. Our

analysis can be straightforwardly extended to multiple sensitive attributes. For each ex-

planatory attribute Xi, without loss of generality, we assume its domain Xi in the range

of [−1, 1]. Similarly, we denote Y as the domain of the response attribute Y , which could

be [−1, 1] for linear regression or {0, 1} for logistic regression. We denote each tuple ti as

(xi, yi) where xi = (xi1, xi2, ..., xid). Throughout this chapter, we use bold lower-case vari-

ables, e.g., xi, to represent vectors; upper-case alphabets, e.g., Xi, to denote an attribute;

calligraphic upper-case alphabets, e.g., Xi, to denote the domain of attribute Xi. xT refers

the transpose of vector x. Table 23 summarizes the notation used in this chapter.

The data mining task is to release a regression model from D to predict the attribute

value of Y given the corresponding attribute value of X1, ..., Xd. That is to say, we are

to release a function ρ parameterized with a real number vector ω = (ω1, ..., ωd). The

model takes xi as input and output the corresponding prediction for yi as ŷi = ρ(xi, ω).

Most regression analytical methods often iteratively optimize some objective functions with

various constraints. A cost function f is often chosen to measure the difference between

the original and predicted values based on specific ω. The optimal model parameter ω∗ is
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defined as the one that minimizes the loss function.

ω∗ = argmin
ω

fD(ω) = argmin
ω

n∑
i=1

f(ti, ω). (33)

In this chapter, we consider two commonly used regression models, linear regression and

logistic regression.

Definition 13. (Linear Regression) Assume without loss of generality that Y has a domain

of [−1, 1]. A linear regression on D returns a prediction function ŷi = ρ(xi, ω
∗) = xT

i ω
∗,

where ω∗ is a d-dimensional real vector that minimizes the following cost function.

ω∗ = argmin
ω

fD(ω) = argmin
ω

n∑
i=1

(yi − xT
i ω)

2. (34)

Definition 14. (Logistic Regression) Assume Y has a domain of {0, 1}. A logistic re-

gression on D returns a prediction function which returns ŷi = 1 with the probability

P (ŷi = 1|xi, ω
∗) = exp(xT

i ω
∗)/(1 + exp(xT

i ω
∗)), where ω∗ is a d-dimensional real vector

that minimizes the following cost function.

ω∗ = argmin
ω

fD(ω)

= argmin
ω

n∑
i=1

(log(1 + exp(xT
i ω

∗))− yix
T
i ω).

(35)

Releasing the regression model under differential privacy requires noise injection to the

model parameter ω∗. Adding noise to ω∗ involves the derivation of the sensitivity of ω∗,

which is rather challenging. In this chapter, we apply the functional mechanism proposed

in [131], which perturbs the objective function of the regression models. However, the

release model parameter ω∗ or its perturbed one ω̄ could be exploited by the adversary

to predict the value of sensitive input attributes xαs for a target individual α when some
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background information about the target individual is available. Formally, the adversary

has access to the regression model with parameters ω∗, the domain value and marginal

probability of the model attributes, accuracy metrics of the model like the confusion matrix,

in addition to some background knowledge of the target including the value of a subset of

those non-sensitive input attributes and the value of output attribute of the model yα.

Our research problem is how to derive the perturbed regression model parameter ω̄ such

that we achieve differential privacy protection for participants and prevent model inversion

attacks on regular individuals while retaining the utility of the regression model.

6.2 Background

We omit the formal definition of differential privacy and the classic Laplace mechanism

to achieve differential privacy here, since they can be referred from chapter 2.

6.2.1 Model Inversion

Model inversion attack [38] leverages the released regression model y = ρ(x, ω∗) trained

from a dataset D which contains a sensitive attribute Xs. An adversary could exploit the

released model to predict the sensitive input attribute value of the target individual based on

some of the target individual’s background (values of some non-sensitive input attributes,

e.g. demographic information, for the model) and the observed response attribute value.

Such attack seeks to take advantage of correlation between the target sensitive attribute,

observed non-sensitive attributes and the model output.

The model inversion attack algorithm works as follows. The adversary has access to

the regression model ρ with parameter ω∗ trained over a dataset D drawn i.i.d from an

unknown prior distribution p. Recall that D has input domain X1 × · · · × Xd and output

domain Y . The target individual is represented by tα = (xα, yα). The adversary is assumed
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to know values of some (or all) input attributes of the target individual except the sensitive

one, i.e., S ⊆ X\Xs, and the output value yα. The sensitive attribute value the adversary

wants to learn is referred to as xαs. Note that the target individual tα is not necessary to be

in D. In addition to the released model ρ(x, ω∗), the adversary also has access to marginal

p1, ..., pd, py of the joint prior p, the input domain and the output domain, the information

π about the model prediction performance where π(y, y′) = Pr(yi = y|ρ(xi, ω
∗) = y′).

The algorithm makes prediction by estimating the probability of a potential target attribute

value given the available information of the target individual and the model.

• Find the feasible set X̂ ⊆ X , i.e., for ∀x ∈ X̂ , x matches xα on each known attribute

in S.

• if X̂ = 0, return null; otherwise, return x̂αs = z that maximizes∑
x∈X :xs=z πyα,ρ(xα,ω)

∏
1≤j≤d pj(xj).

In step 1, the algorithm filters the domain space using the known attribute values of the

target individual. In step 2, the algorithm calculates weight to each candidate row in the

domain space based on known priors and how well the model’s output on that row coincides

with the target individual’s model output value. It then returns the value of the target

sensitive attribute with the largest weight computed by marginalizing the other attributes.

The model inversion algorithm is optimal as it minimizes the expected misclassification

rate on the maximum-entropy prior given the model and marginals. It was demonstrated

in [38] that the value of the sensitive attribute is predicted with significantly better accuracy

than guessing based on marginal distributions.
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6.3 Our Approach

It is concluded in [38] that differential privacy mechanisms can prevent model inversion

attacks only when privacy budget is very small, but in those cases, the private model usually

does not simultaneously retain desirable efficacy. In clinical trials, such lack of efficacy

may put patients in increased risk of health problems.

To tackle such problem, in this section, we propose a new approach to provide regres-

sion models under differential privacy and model inversion attacks. Our approach aims

to improve privacy specifically for sensitive attributes while retaining the efficacy of the

released regression model by balancing the privacy budget for sensitive and non-sensitive

attributes. Our approach leverages the functional mechanism proposed in [131] but perturbs

the coefficients of the objective function with different magnitudes of noise.

6.3.1 Functional Mechanism Revisited

Functional mechanism achieves ϵ-differential privacy by perturbing the objective func-

tion fD(ω) and then releasing the model parameter ω̄ that minimizes the perturbed objective

function f̄D(ω) instead of the original one. Because fD(ω) is a complicated function of ω,

the functional mechanism exploits the polynomial representation of fD(ω).

The model parameter ω is a vector that contains d values ω1, ω2, ..., ωd. Let ϕ(ω) denote

a product of ω1, ω2, ..., ωd, namely, ϕ(ω) = ωc1
1 · ωc2

2 ...ωcd
d for some c1, c2, ..., cd ∈ N . Let

Φj(j ∈ N) denote the set of all products of ω1, ω2, ..., ωd with degree j, i.e.,

Φj = {ωc1
1 · ωc2

2 ...ωcd
d |

d∑
l=1

cl = j}. (36)

By the Stone-Weierstrass Theorem, any continuous and differentiable f(ti, ω) can al-
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ways be written as a polynomial of ω1, ω2, ..., ωd, i.e., for some J ∈ [0,∞], we have

f(ti, ω) =
J∑

j=0

∑
ϕ∈Φj

λϕtiϕ(ω), (37)

where λϕti ∈ R denotes the coefficient of ϕ(ω) in the polynomial. Similarly, fD(ω) can

also be expressed as a polynomial of ω1, ..., ωd.

For example, the expansion of the linear regression is as follows.

fD(ω) =
∑
ti∈D

(yi − xT
i ω)

2

=
∑
ti∈D

y2i −
d∑

j=1

(2
∑
ti∈D

yixij)ωj

+
∑

1≤j,l≤d

(
∑
ti∈D

xijxil)ωjωl

(38)

We can see that fD(ω) only involves monomials in Φ0 = {1} (corresponding to λϕti =

y2i ), Φ1 = {ω1, ω2, ..., ωd} (for a specific ωj , λϕti
= 2yixij), and Φ2 = {ωiωj|i, j ∈ [1, d]}.

fD(ω) is perturbed by injecting Laplace noise into its polynomial coefficients λϕti , and

then the model parameter ω̄ is derived to minimize the perturbed function f̄D(ω). Each

polynomial coefficient λϕti is perturbed by adding Laplace noise Lap(∆
ϵ
), where ∆ =

2maxt

∑J
j=1

∑
ϕ∈Φj

||λϕt||1, according to the following Lemma 12.

Lemma 12. [131] Let D and D′ be any two neighboring datasets. Let fD(ω) and fD′(ω) be

the objective functions of regression analysis on D and D′, respectively, and denote their

polynomial representations as follows:

fD(ω) =
J∑

j=1

∑
ϕ∈Φj

∑
ti∈D

λϕtiϕ(ω),
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fD′(ω) =
J∑

j=1

∑
ϕ∈Φj

∑
t′i∈D′

λϕt′i
ϕ(ω).

Then, we have the following inequality

J∑
j=1

∑
ϕ∈Φj

||
∑
ti∈D

λϕti −
∑
t′i∈D′

λϕt′i
||1 ≤ 2maxt

J∑
j=1

∑
ϕ∈Φj

||λϕt||1. (39)

where ti, t′i or t is an arbitrary tuple.

When the polynomial form of an objective function (e.g., logistic regression objective

function) contains terms with unbounded degrees, [131] develops an approximation poly-

nomial form based on Taylor expansion. Functional mechanism is effective as it does not

need to derive the sensitivity of ω, which is rather challenging. The perturbation method

based on the functional mechanism [131] also removes the requirement, i.e., the convexity

of the objective function, from the original function perturbation approach [17].

6.3.2 Improved Perturbation of Objective Function

To better optimize the balancing between privacy and the regression model’ efficacy, we

propose a new algorithm based on the functional mechanism to improve privacy specifically

for sensitive attributes. To improve the privacy on Xs, we aim to weaken the correlation

between Xs and the model output Y by perturbing the corresponding ωs more intensely. In

other words, we need to add noise with larger magnitude to the coefficients of the monomi-

als involving ωs and add noise with smaller magnitude to the other coefficients. As a result,

we expect to retain the utility of the released regression model while achieving differential

privacy for participants and preventing model inversion attacks.

In general, a database can contain more than one sensitive attributes. We allocate pri-

vacy budget ϵn for non-sensitive attributes and ϵs for sensitive ones. We introduce a ratio
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parameter, γ such that ϵs = γϵn and 0 < γ ≤ 1. The smaller the γ, the more noise added

to the sensitive attributes.

Input: Database D, objective function fD(ω), privacy threshold ϵ, privacy budget ratio γ
Output: ω̄

1: Set Φn = {},Φs = {};
2: FOR each 1 ≤ j ≤ J
3: FOR each ϕ ∈ Φj

4: IF ϕ does not contain ωs from any sensitive attribute
5: Add ϕ into Φn;
6: ELSE
7: Add ϕ into Φs;
8: ENDIF
9: ENDFOR

10: ENDFOR
11: Set ∆ = 2maxt

∑J
j=1

∑
ϕ∈Φj

||λϕt||1;
12: Set β1 = 2maxt

∑
ϕ∈Φn

||λϕt||1/∆;
13: Set β2 = 2maxt

∑
ϕ∈Φs

||λϕt||1/∆; (β1 + β2 = 1)
14: Set ϵn = 1

β1+γβ2
ϵ, ϵs = γ

β1+γβ2
ϵ;

15: FOR each 1 ≤ j ≤ J
16: FOR each ϕ ∈ Φj

17: IF ϕ ∈ Φn

18: set λϕ =
∑

ti∈D λϕti + Lap(∆
ϵn
);

19: ELSE
20: set λϕ =

∑
ti∈D λϕti + Lap(∆

ϵs
);

21: ENDIF
22: ENDFOR
23: ENDFOR
24: Let f̄D(ω) =

∑J
j=1

∑
ϕ∈Φj

λϕϕ(ω);
25: Compute ω̄ = argminωf̄D(ω);
26: RETURN ω̄;

Algorithm 8: Functional Mechanism with Different Perturbation of Coefficients

Specifically, we divide all ϕs into two subsets Φn and Φs based on whether they involve

any sensitive attribute, as shown in Lines 1-10 of Algorithm 8. Secondly, we determine

the privacy budget according to the given ϵ and the privacy budget ratio γ. In Line 11, we

set ∆ based on the maximum length of all the coefficients λϕt of ϕ(ω) in the polynomial.

Accordingly, β1 and β2 can be considered as the fraction of contributions to ∆ from coef-
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ficients corresponding to elements in Φn and that in Φs. We will derive formula of ∆, β1

and β2 for linear regression and logistic regression and further prove they will not disclose

any private information about dataset D in Results 7 and 8 respectively. Thirdly, we add

noise to polynomial coefficients of ϕ ∈ Φn with ϵn and to those of ϕ ∈ Φs with ϵs, to de-

rive the differentially private objective function f̄D(ω). Finally, we calculate and output the

optimized ω∗ according to f̄D(ω). Overall, our algorithm can achieve ϵ-differential privacy.

Theorem 8. Algorithm 8 satisfies ϵ-differential privacy.

Proof. Assume D and D′ are two neighbouring datasets. Without loss of generality, D

and D′ differ in the last row tn and t
′
n. ∆ is calculated as Line 1 of Algorithm 8, and

f̄(ω) is the output of Line 24. Φs (Φn) denotes the set of ϕ that does (does not) contain

sensitive attribute ωs. We denote the coefficient in front of each ϕ into a vector. The

maximum difference of the objective function on D and D′ is then the maximum difference

of such vector introduced by tn and t
′
n, which is the sensitivity of such coefficient vector.

Adding Laplace noise to this coefficient vector would produce the differentially private

objective function. Specifically, we can add different magnitudes of noise to the vector

entries corresponding to ϕ ∈ Φn and those corresponding to ϕ ∈ Φs. γ is pre-determined

as the ratio of such difference of noise magnitude. Formally, we have

Pr(f̄(ω|D)) =
∏
ϕ∈Φn

exp(

ϵn||
∑
ti∈D

λϕti − λϕ||1

∆
)

∏
ϕ∈Φs

exp(

ϵs||
∑
ti∈D

λϕti − λϕ||1

∆
)

(40)
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Similarly, we have the formula for Pr(f̄(ω|D′)).

Pr(f̄(ω|D))

Pr(f̄(ω|D′))

≤

∏
ϕ∈Φn

exp(
ϵn
∆
||
∑
ti∈D

λϕti −
∑
t
′
i∈D′

λϕt
′
i
||1)

∏
ϕ∈Φs

exp(
ϵs
∆
||
∑
ti∈D

λϕti −
∑
t
′
i∈D′

λϕt
′
i
||1)

=
∏
ϕ∈Φn

exp(
ϵn
∆
||λϕtn − λϕt

′
n
||1)

∏
ϕ∈Φs

exp(
ϵs
∆
||λϕtn − λϕt

′
n
||1)

≤
∏
ϕ∈Φn

exp(
ϵn
∆
2max

t
||λϕt||1)

∏
ϕ∈Φs

exp(
ϵs
∆
2max

t
||λϕt||1)

= exp(ϵnβ1 + ϵsβ2)

= exp(
β1

β1 + γβ2

ϵ+
γβ2

β1 + γβ2

ϵ) = exp(ϵ)

(41)

Our algorithm needs to derive ∆, β1 and β2 to add noise with different magnitudes to the

polynomial coefficients of sensitive attributes and non-sensitive attributes. Result 7 shows

their derived formulas for linear regression and Result 7 shows for logistic regression. We

can see they only involve the number of attributes d and the number of sensitive attributes k.

As a result, they do not disclose any private information of the dataset D, which guarantees

the rigorous ϵ-differential privacy. Due to space limitations, we only give the proof for

linear regression in Result 7 and skip the proof for logistic regression in Result 8.

Result 7. For linear regression defined in Definition 13, assume there are k sensitive at-

tributes among the total d input attributes. We have in Algorithm 8, ∆ = 2(d2 + 2d);

β1 =
d−k
d

and β2 =
k
d
.
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Proof. According to Equation 38, we have

∆ = 2 max
t=(x,y)

J∑
j=1

∑
ϕ∈Φj

||λϕt||1

≤ 2 max
t=(x,y)

(2
d∑

j=1

yx(j) +
∑

1≤j,l≤d

x(j)x(l))

= 2(2d+ d2)

(42)

where x(j) denotes the jth entry in vector x, which satisfies |x(j)| ≤ 1 Similarly, for the

coefficients related to k sensitive attributes, we have

2 max
t=(x,y)

J∑
j=1

∑
ϕ∈Φs

||λϕt||1 = 2(2k + kd) (43)

Thus β2 =
2(2k+kd)
2(2d+d2)

= k
d
. Similarly we have β1 =

d−k
d

.

Result 8. For logistic regression with database D defined in Definition 14, Algorithm 8

can be applied with the input objective function being
∑n

i=1
1
8
(xT

i ω)
2 +

∑n
i=1(

1
2
− yi)x

T
i ω,

∆ = d2

4
+3d, where d is the dimension of vector xi. Assume there are k sensitive attributes,

we have β1 =
d−k
d
, β2 =

k
d
.

Proof. The calculation result of ∆, as well as the approximated objective function, was

provided before in [131]. For the coefficients related to k sensitive attributes, we have

2 max
t=(x,y)

J∑
j=1

∑
ϕ∈Φs

||λϕt||1 =
kd

4
+ 3k (44)

Thus β2 =
k
d
. Similarly we have β1 =

d−k
d

.

6.4 Evaluation

In our experiments, we mainly focus on the problem of releasing the logistic regression

model which is defined in Definition 14 under differential privacy against model inversion
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attack. We use the Adult dataset from the UCI Machine Learning Repository to evaluate

the performance of Algorithm 8. In our experiment, we apply five-fold cross validation for

all the accuracy calculation.

The Adult dataset contains census information of 30,175 individuals with 14 attributes

such as age, workclass, education, marital-status, hours-per-week and so on. The regression

task is to predict whether the income of an individual is greater than 50K. Among the

13 input attributes, we pick “Marital status” as the sensitive attribute which the model

inversion attack would target. The marginal probability for status “married” (“unmarried”)

is 0.466 (0.534).

Figure 15 shows how the accuracy of the released model and the accuracy of the model

inversion attack are affected by different ϵ values varying from 0.01 to 100. In this exper-

iment, we do not differentiate the privacy budget for sensitive attribute and non-sensitive

attribute. We can see from Figure 15(a) that the prediction accuracy (on income) of the

regression model increases as ϵ increases and from Figure 15(b) the accuracy of the model

inversion attack on marital status also increases as as ϵ increases. This is not surprising

because the larger ϵ is, the less noise introduced in the released model. Hence, the model

has high utility but also incurs high risk under model inversion attacks. When ϵ < 0.05, the

accuracy of model inversion attacks can hardly beat random guessing based on the marginal

probability whereas the prediction accuracy of the released model also drops rapidly. On

the contrary, when ϵ ≥ 5, both model prediction and model inversion attack show signifi-

cantly higher accuracy values.

Our next experiment focuses on the situation that we set the privacy threshold for non-

sensitive attributes, ϵn = 5, and change the privacy threshold for sensitive attribute ϵs from
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Figure 15: Accuracy of logistic regression model and that of model inversion attack vs.
varying ϵ

{0.05, 0.1, 0.25, 0.5, 1, 5}.

From Result 8, we can easily derive ϵ = (β1 + γβ2)ϵn = ϵn − (1 − γ)β2ϵn. Thus ϵ

values corresponding to all pairs of ϵn, ϵs are within the range of {4.6, 5}. Figure 16 shows

the accuracy trend of the model prediction task and the model inversion attack. We can

see that the prediction accuracy of the release model generally stays stable. However, the

accuracy of the model inversion attack on marital-status shows a clear trend of decreasing

as ϵs goes small. We can conclude that our approach can decrease the privacy risk due

to the model inversion attack by adding more noise to polynomial coefficients involving

sensitive attributes while retaining the utility of the released regression model.
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Figure 16: Accuracy of logistic regression and that of model inversion attack vs. varying
ϵs when ϵn = 5
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6.5 Related Work

Differential privacy research has been significantly studied from the theoretical perspec-

tive, e.g., [17, 53, 65, 71, 130]. There are also studies on the applicability of enforcing

differential privacy in real world applications, e.g., collaborative recommendation [85],

logistic regression [17, 131], publishing contingency tables [8, 124] or data cubes [25],

privacy preserving integrated queries [84], computing graph properties such as degree dis-

tributions [51] and clustering coefficient [93]in social network analysis. The mechanisms

of achieving differential privacy mainly include the classic approach of adding Laplacian

noise [32], the exponential mechanism based on the smooth sensitivity [85], and the func-

tional mechanism by perturbing the objective function [17, 131].

There are several studies that showed differential privacy still could leak various type of

private information. In [65], the authors showed that when rows in a database are correlated,

or when previous exact statistics for a dataset have been released, differential privacy can-

not achieve the ultimate privacy goal – nearly all evidence of an individual’s participation

should be removed. The authors in [22] showed that if one is allowed to pose certain queries

relating sensitive attributes to quasi-identifiers, it is possible to build a differentially-private

Naive Bayes classifier that accurately predicts the sensitive attribute.

6.6 Summary

Recent work [38] showed that the existing differential privacy mechanisms cannot pre-

vent model inversion attacks while retaining desirable model efficacy. In this chapter, we

have developed an effective approach which simultaneously protects differential privacy of

participants and prevents sensitive attribute disclosure of regular individuals due to model
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inversion attacks while retaining the efficacy of released regression models. Leveraging the

functional mechanism [131], our approach rewrites the objective function in its polynomial

representation and adds more (less) noise to the polynomial coefficients with (w/o) sensi-

tive attributes. Our approach can effectively weaken the correlation between the sensitive

attributes with the output to prevent model inversion attacks whereas retaining the utility

of the released model by decreasing the perturbation effect on non-sensitive attributes. As

a result, we still achieve ϵ-differential privacy for participants. Technical report version of

this work can be found in [106].



CHAPTER 7: USING RANDOMIZED RESPONSE FOR DIFFERENTIAL PRIVACY
PRESERVING DATA COLLECTION

7.1 Introduction

There are roughly two scenarios in the data privacy protection. One is the privacy pre-

serving data publishing scenario, as in which a trusted server releases datasets of individual

information or answers queries on such datasets. The other one is the data collection sce-

nario, as in which an untrusted server collects personal information from individuals. We

have mostly focused on problems in the first scenario in previous chapters.

In this chapter, we study how to protect privacy in the data collection scenario by using

randomized response, a surveying technique for learning statistics on individuals’ sensitive

attribute information such as whether the survey respondent has cheated in an exam. Ran-

domized response is purely a client-based privacy solution. It does not rely upon a trusted

third-party server and puts control over data back to clients. Given a client’s value x, the

randomized algorithm executed by the client reports to the untrusted server a perturbed

value y. The parameters of the randomized algorithm are chosen in such a way so that

to limit the server’s ability to learn with confidence what value x was. For example, the

survey respondent can flip a biased coin, in secret, and answer the truth if it comes up head,

but tell the opposite answer if it comes up tail. Using this procedure, the respondent retains

confidentiality of their true value due to coin randomness.

In our analysis, we still adopt the rigorous differential privacy, which has been widely
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studied in the data publishing or query answering scenario [29] to ensure that the output

of the algorithm does not significantly depend on any particular individual’s data and to

ensures that an adversary should not be able to confidently infer whether a particular indi-

vidual is present in a database even with access to every other entry in the database and an

unbounded computational power. In the data collection scenario, the inference is in terms

of the sensitive value of one individual. In particular, we study how to derive the optimal

distortion matrix used in the randomized response given a differential privacy threshold.

Differential privacy of each individual value can also be achieved by using the classic

Laplace mechanism [32], which is based on query-output independent adding of Laplace

noise. We study the relationship between the randomized response and the Laplace mech-

anism and compare their performance in terms of utility preservation under the same pri-

vacy threshold. Our research starts from the simple case of data collection with one single

binary attribute and extends to the general case with multiple polychotomous attributes.

We evaluate utility preservation in terms of individual value estimate, proportion estimate,

and various derived statistics (e.g., entropy and χ2). Existing works on investigating the

accuracy-privacy tradeoff in differentia privacy often define the accuracy in terms of the

variance, or magnitude expectation of the noise added to the query output [50, 74]. For ex-

ample, the authors [74] studied how to optimize linear counting queries under differential

privacy and defined the error as the mean squared error of query output estimates, which

corresponds to the variance of the noise added to the query output to preserve differential

privacy. In this chapter we also measure the utility in terms of the mean squared error of

the estimate when randomized response is applied. In particular, we theoretically derive

the explicit formula of the mean squared error of various derived statistics based on the
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randomized response theory.

We conduct our empirical evaluation on a biomarker dataset and a physical activity so-

cial network extracted from from the YesiWell pilot study about health. We compare the

performance of the randomized response and that of the Laplace mechanism and report

their estimates and standard deviations. One advantage of the use of the randomized re-

sponse in the data collection scenario is that the collected data can be released for as much

analysis as needed without worrying further privacy disclosure. This is different from the

output perturbation where each additional analysis consumes further privacy budget. More-

over, the use of the randomized response for collecting data incurs less utility loss than the

output perturbation when the sensitivity of functions is high, as demonstrated in our exper-

iment where we calculate the number of triangles in the social network while preserving

differential privacy.

The rest of this chapter is organized as follows. In Section 7.2 we present preliminaries of

randomized response and differential privacy. In Section 7.3 we focus on the scenario with

one single binary attribute and consider two types of queries, individual value estimate and

proportion estimate. We compare the utility preservation under the same privacy threshold

between the randomized response approach and the Laplace mechanism. In Section 7.4,

we extend to a sensitive polychotomous attribute with multiple mutually exclusive and

exhaustive classes. In Section 7.5, we further extend to multiple polychotomous attributes

and examine the accuracy of derived statistics from the randomized data under both the

randomized response approach and the Laplace mechanism. We conduct our empirical

evaluation using the real dataset from a health study including a biomarker table and a

physical activity social network in Section 7.6. We discuss related work in Section 7.7.
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Finally we offer our concluding remarks and discuss future work in Section 7.8.

7.2 Background

7.2.1 Randomized Response

Suppose there are n individual clients C1, ..., Cn; each client Ci has some private value

xi regarding a sensitive attribute X . An untrusted server needs to learn certain aggregate

(statistical) properties of the individual’s private data. But the clients are reluctant to dis-

close their personal information xi. To ensure privacy, each client Ci only sends to the

server a perturbed version yi of xi. The server collects the perturbed information from all

individuals and then recovers the statistical properties by following some reconstruction

procedures.

We assume every private value xi about an individual belongs to the same fixed domain

VX and each xi is chosen independently at random from the same fixed probability distribu-

tion πX . Note that this distribution is not private and is unknown to clients. The server aims

to reconstruct the distribution πX or derive some statistical properties of this distribution.

The independence assumption ensures that the private information xj of all individuals Cj

besides Ci tells nothing new about Ci’s own private information xi once the distribution πX

is learned.

To protect privacy, each individual Ci hides its own sensitive information xi by applying

a randomization algorithm. A random instance yi is sent to the untrusted server. The

domain of all possible output of yi is denoted by VY . The server receives yi from client Ci

and tries to learn distribution πX .

We omit the formal definition of differential privacy and the classic Laplace mechanism

to achieve differential privacy here, since they can be referred from chapter 2.
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7.3 Binary Attribute

Suppose there are n individuals C1, ..., Cn and each individual Ci has a private binary

value xi ∈ {0, 1} regarding a sensitive binary attribute X . To ensure privacy, each indi-

vidual Ci sends to the untrusted server a modified version yi of xi. Using the randomized

response, the server can collect perturbed data from individuals.

7.3.1 Randomized Response

A randomized response scheme on a binary attribute X follows a 2 × 2 design matrix

(also called distortion matrix):

P =

 p00 p01

p10 p11

 (45)

where puv = P [yi = u|xi = v] (u, v ∈ {0, 1}) denotes the probability that the random

output is u when the real attribute value xi for Ci is v; here puv ∈ (0, 1). In the design

matrix, the sum of probabilities of each column is 1.

In this section, we focus on two types of classic queries in the data collection scenario.

• Q1: what is the probability of correctly estimating xi of individual Ci corresponding

to the sensitive binary attribute X?

• Q2: what is the proportion of X = 1 (X = 0)?

For Q1, the original value xi = v(∈ {0, 1}) is outputted as yi = u(∈ {0, 1}) with

probability puv from the design matrix P in Equation 45. Let Pr(xi = v → x̂i = v) denote

the probability of correctly reconstructing the individual’s value as v from the perturbed

data, given that the original value xi is v where v ∈ {0, 1}. This reconstruction probability
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implies how much information is preserved in the randomization process.

Pr(xi = v → x̂i = v) =∑
u=0,1

P (yi = u|xi = v)P (x̂i = v|yi = u)
(46)

Q2 aims to learn the population distribution based on the collected randomized dataset.

We use π0 (π1) to denote the true proportion of value 0 (1) to be estimated in the original

population. The observed proportion of value 0 (1) in the collected dataset is denoted as

λ0(λ1). We denote the unbiased estimator for π0, π1 respectively as π̂0, π̂1.

Lemma 13. (Chapter 1.2 [16]) Given the design matrix P and the observed proportion of

value b(∈ {0, 1}) in randomized dataset D̂rr, an unbiased estimator of the fraction of

records whose attribute value is b(∈ {0, 1}) is

π̂b =
pbb − 1

2pbb − 1
+

λb

2pbb − 1
, (47)

where pbb ̸= 0.5 and 0 < pbb < 1. Since the observed number of records whose attribute

value equals b follows binomial distribution, the variance of π̂b is

var(π̂b) =
π̂b(1− π̂b)

n− 1
+

1

n− 1
[

1

16(pbb − 0.5)2
− 1

4
] (48)

which is the expected error for the estimator π̂b.

7.3.2 Randomized Response vs. Laplace Mechanism

The values in each row u (u ∈ {0, 1}) of the design matrix denote the probability that

the random output is u. For example, p00 (p01) denotes the distortion probability that the

random output value is 0 when the real individual value is 0 (1). Without loss of generality,

we assume the randomized response still favors the true value, i.e., p00, p11 > 0.5. Differ-



131

ential privacy requires that p00/p01 ≤ eϵ. Thus we show how the randomized response will

achieve differential privacy in the following result. In addition, we also give the form of

the design matrix that is expected to achieve the optimal utility while satisfying the given

ϵ-differential privacy.

Result 9. For a given differential privacy parameter ϵ, the randomized response scheme fol-

lowing the design matrix P in Equation 45 satisfies ϵ-differential privacy if max{p00
p01

, p11
p10

} ≤

eϵ.

In order to maximize p00 + p11 while satisfying ϵ-differential privacy, the design matrix

should have the following pattern,

Prr =

 eϵ

1+eϵ
1

1+eϵ

1
1+eϵ

eϵ

1+eϵ

 (49)

Proof. Assume p00
p01

= p,p11
p10

= q. In order to satisfy ϵ-differential privacy, we have 1 < p ≤

eϵ and 1 < q ≤ eϵ. In this case, the distortion matrix will have the general form:

Prr =

 p(q−1)
pq−1

q−1
pq−1

p−1
pq−1

(p−1)q
pq−1


We denote

func(p, q) = Prr(1, 1) + Prr(2, 2) =
p(q − 1)

pq − 1
+

(p− 1)q

pq − 1
.

Since ∂func
∂p

= (q−1)2

(pq−1)2
> 0 and ∂func

∂q
= (p−1)2

(pq−1)2
> 0 when p, q ∈ (1, eϵ], thus func will

achieve its maximum value if and only if p = q = eϵ. In this way, we get the form in

Equation 49.

Similarly, individual Ci can achieve differential privacy by using the Laplace mecha-
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nism. The Laplace mechanism is to firstly add a random noise generated from the Laplace

distribution with parameter 1
ϵ

(with a given ϵ and the global sensitivity of 1) to the true

answer xi. Since the output should be binary value, we postprocess the perturbed result

by outputting 0 if the perturbed value is less than c and outputting 1 otherwise, shown in

Equation 50.

yi =


0; if xi + Lap(1/ϵ) < c

1; if xi + Lap(1/ϵ) ≥ c

(50)

The probability of yi = 0 is Fxi,1/ϵ(c) and the probability of yi = 1 is 1 − Fxi,1/ϵ(c)

where Fµ,b =
1
2
+ 1

2
sgn(x− µ)(1− e(−

|x−µ|
b

)) denotes the cumulative distribution function

of Laplace distribution Lap(µ, b) with the location parameter µ and the scale parameter b

(and with the mean µ and variance 2b2). Thus we can map the Laplace mechanism to the

randomized response with the design matrix as

Plm =

 F0,1/ϵ(c) F1,1/ϵ(c)

1− F0,1/ϵ(c) 1− F1,1/ϵ(c)

 (51)

For a given ϵ, the perturbed result of Laplace mechanism satisfies differential privacy

because the postprocessing process does not consume any privacy budget. Thus we have

the following result indicating the Laplace mechanism with the postprocessing satisfies ϵ-

differential privacy. We also show that the best postprocessing strategy is to set c = 0.5 for

Equation 50.

Result 10. For a given differential privacy parameter ϵ, the Laplace mechanism based

scheme with the postprocessing strategy following Equation 50 satisfies ϵ-differential pri-

vacy.
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The corresponding design matrix should have the following form,

Plm =

 1− 1
2
e−

ϵ
2

1
2
e−

ϵ
2

1
2
e−

ϵ
2 1− 1

2
e−

ϵ
2

 , (52)

in order to maximize p00 + p11 while satisfying ϵ-differential privacy.

Proof. With the assumption that we need to preserve the real value with probability greater

than 0.5, c in Equation 50 is in the range [0,1]. We have

Plm =

 1− 1
2
e−cϵ 1

2
e−(1−c)ϵ

1
2
e−cϵ 1− 1

2
e−(1−c)ϵ

 .

We denote

func(c) = Plm(1, 1) + Plm(2, 2) = 1− 1

2
e−cϵ + 1− 1

2
e−(1−c)ϵ,

where c ∈ [0, 1]. Since

∂func

∂c
=

ϵ

2
(e−cϵ − e−(1−c)ϵ),

we have

∂func

∂c


> 0, when c ∈ [0, 0.5)

< 0, when c ∈ (0.5, 1].

Thus the maximum value for func(c) is achieved when c = 0.5.

7.3.3 Utility Comparison

In this chapter we measure the utility in terms of the mean squared error of the estimate

for xi given a randomized mechanism A.

ERRORA(x̂i) = E[(x̂i − xi)
2] (53)
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Note that by replacing P (yi = u|xi = v) in Equation 46 with values in Prr of the

randomized response and those in Plm of the Laplace mechanism, we can calculate the

estimates x̂ respectively. We can then compare the utility of the randomized response with

that of the Laplace mechanism based on Equation 53.

Intuitively, under the same privacy standard, the mechanism with larger diagonal ele-

ments in the corresponding design matrix tends to achieve better utility. And the diagonal

elements in Equation 49 is larger than those in Equation 52. Based on such tuition, we

can prove that the randomized response actually can achieve better utility than the classic

Laplace mechanism in the scenario of binary data collection.

Theorem 9. Given ϵ, for the randomized response scheme with Prr and the Laplace mech-

anism based on Plm, we have ERRORrr(x̂i) ≤ ERRORlm(x̂i).

Proof. We have (x̂i − xi)
2 = 0 with probability Pr(xi = v → x̂i = v) in Equation 46;

and (x̂i − xi)
2 = 1 with probability 1− Pr(xi = v → x̂i = v). So

ERRORA(x̂i)

= 0× Pr(xi = v → x̂i = v) + 1× (1− Pr(xi = v → x̂i = v))

= 1− Pr(xi = v → x̂i = v).

Without loss of generality, assume v = 1, we denote the prior probability of xi = 1 as π1.

According to Bayes’s theorem, we have

ERRORA(x̂i) = 1− (
p211π1

p11π1 + p10(1− π1)
+

p201π1

p01π1 + p00(1− π1)
).

For ERRORlm(x̂i), we have plm11 = plm00 = 1 − 1
2
e−0.5ϵ. For ERRORrr(x̂i), we have prr11 =
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prr00 =
eϵ

eϵ+1
. Now we are to prove: for π1 ∈ [0, 1],

func(π1) = ERRORlm(x̂i)− ERRORrr(x̂i) ≥ 0.

For a given ϵ > 0, since func(π1) is continual and it has only two roots for the parameter

range π1 ∈ [0, 1]. Respectively they are π1 = 0 and π1 = 1. It indicates that all π1 ∈ (0, 1),

the output of func(π1) has the same sign. Thus, we only need to prove for one specific π1,

say π1 = 0.5, that func(π1) > 0. Then the same result holds for all π1 ∈ (0, 1).

In this case, we have

ERRORA(x̂i) = 1− (p211 + (1− p211)).

Since prr11 > plm11 > 0.5 for all ϵ > 0, we have func(0.5) > 0. Thus for all π1 ∈ (0, 1)

we have func(π1) > 0. The same idea can be applied for the situation of v = 0. So for

π1 ∈ [0, 1], we have ERRORrr(x̂i) ≤ ERRORlm(x̂i).

Using either the randomized response or the Laplace mechanism based approach, the

server can collect private data from individuals. Both collected datasets satisfy ϵ-differential

privacy (rather than nϵ-differential privacy) according to the independence assumption.

Formally, D̂rr denotes the dataset generated by the randomized response following the

design matrix Prr as in Equation 49. Similarly, D̂lm denotes the dataset generated by

the Laplace mechanism. We define the expected error of the estimator π̂b as its variance,

ERRORA(π̂b) = var(π̂b).

Theorem 10. Given ϵ, for the randomized response scheme with Prr and the Laplace mech-

anism based on Plm, we have ERRORrr(π̂b) ≤ ERRORlm(π̂b).

Proof. From Equation 48, we see comparing the utility of estimation from D̂rr and D̂lm
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relies only on pbb in the distortion matrix P. For the Laplace mechanism, we have plm00 =

plm11 = 1 − 1
2
e−

ϵ
2 ; For the randomized response, we have prr11 = prr00 = eϵ

eϵ+1
. Since prr11 >

plm11 > 0.5 for all ϵ > 0, we have ERRORrr(π̂b) ≤ ERRORlm(π̂b), according to Equation

48.

7.4 Polychotomous Attribute

In the previous section, we compared the Laplace mechanism and the randomized re-

sponse approach in collecting information about one private binary attribute. In this sec-

tion, we extend to a sensitive polychotomous attribute with t(t ≥ 2) mutually exclusive

and exhaustive classes.

7.4.1 Randomized Response

The corresponding unknown proportions to be estimated are denoted as π1, ..., πt. The

randomization device is such that an individual belonging to the vth category(v = 1, ..., t)

reports a random value u (u = 1, ..., t) with probability puv and Σt
u=1puv = 1 for all

v = 1, ..., t.

The matrix P = {puv} is called the design matrix, where the sum of each column in P is

1.

P =



p11 p12 ... p1v ... p1t

p21 p22 ... p2v ... p2t

...
...

...
...

...
...

pu1 pu2 ... puv ... put

...
...

...
...

...
...

pt1 pt2 ... ptv ... ptt



(54)

Similarly we have two types of classic queries in the data collection scenario.
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• Q1: what is the probability of correctly estimating xi of individual Ci corresponding

to the sensitive attribute X?

• Q2: what is the proportion of X = 1, · · · , t?

Let Pr(xi = v → x̂i = v) denote the probability of correctly reconstructing the in-

dividual’s value as v from the perturbed data, given that the original value xi is v where

v ∈ {1, · · · , t}. This reconstruction probability implies how much information is preserved

in the randomization process.

Pr(xi = v → x̂i = v) =

t∑
u=1

P (yi = u|xi = v)P (x̂i = v|yi = u)

(55)

The probability λu of the (randomized) response u is given by

λu = Σt
v=1puvπv (u = 1, ..., t) (56)

Defining λ= (λ1, ..., λt)
′ , π = (π1, ..., πt)

′, we obtain in matrix notation

λ = Pπ (57)

Lemma 14. (Chapter 3.3 [16])With a simple random sample with replacement of size n, let

λ̂ be the vector of sample proportions corresponding to λ. Then assuming the nonsingular-

ity of the design matrix P. An unbiased estimator of π emerges as

π̂ = P−1λ̂. (58)

An unbiased estimator of the dispersion matrix is given by

disp(π̂) = (n− 1)−1P−1(λ̂δ − λ̂λ̂′)P′−1, (59)
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where λ̂δ is a diagonal matrix with the same diagonal elements as those of λ̂

7.4.2 Randomized Response vs. Laplace Mechanism

Similar as the binary case, the values in each row u (u ∈ {1, 2, ..., t} of the design

matrix denote the probability that the random output is u. Differential privacy requires that

the maximum value difference in each row is bounded by eϵ. Thus we have the following

result.

Result 11. The randomized response is ϵ-differentially private if ϵ ≥ lnmaxu=1..t
maxv=1..t puv
minv=1..t puv

.

In order to maximize the sum of the diagonal elements,the design matrix for randomized

response Prr = {puv} should be in the following form,

puv =


eϵ

t−1+eϵ
; if u = v

1
t−1+eϵ

; if u ̸= v

(60)

Proof. For a given predefined distortion matrix P = {puv}, following the randomized strat-

egy with P, called R, to collect data, for an arbitrary randomized response u(∈ 1, 2, ..., t)

corresponding to input value of v, v′ ∈ 1, 2, ..., t, we have

P (R(v) = u)

P (R(v′) = u)
=

puv
puv′

≤ max
u=1..t

maxv=1..t puv
minv=1..t puv

≤ eϵ (61)

Similarly as the binary case, in order to maximize the sum of the diagonal elements, the

distortion matrix for randomized response Prr = {puv} should be in the form in Equation

60.

In other words, in the optimal form of the design matrix, all diagonal entries are set

as eϵ

t−1+eϵ
and all off-diagonal entries are set as 1

t−1+eϵ
. We can also achieve differential

privacy by adding Laplace noise. The global sensitivity is t − 1. So the Laplace noise is
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generated from the distribution Lap( t−1
ϵ
). Because the perturbed outputs are numerical, we

postprocess to map them to an index value from 1 to t as shown in Equation 62.

yi =



1; if xi + Lap((t− 1)/λ) ∈ (−∞, c1]

2; if xi + Lap((t− 1)/λ) ∈ (c1, c2]

...

u; if xi + Lap((t− 1)/λ) ∈ (cu−1, cu]

...

t; if xi + Lap((t− 1)/λ) ∈ (ct−1,∞)

(62)

where cu is in the range [u, u+ 1].

Note that in this scenario, the strategy of perturbation by Laplace mechanism is also a

special case of the randomized response strategy. We give the form of the corresponding

design matrix in Equation 64. The following result shows such Laplace mechanism with

postprocessing satisfies ϵ-differential privacy. We also give the best postprocessing strategy

with the corresponding design matrix.

Result 12. The Laplace mechanism of adding random noise from distribution Lap( t−1
ϵ
),

with postprocessing strategy following Equation 62 is ϵ- differentially private.

In order to maximize the sum of the diagonal elements in the corresponding design

matrix for Laplace mechanism, Plm, we have cu = u + 0.5 for u ∈ {1, 2, ..t − 1} in
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equation 62. The corresponding design matrix Plm = {puv} has the following form,

puv =



Fv, ϵ
t−1

(1.5); if u = 1

1− Fv, ϵ
t−1

(t− 0.5); if u = t

Fv, ϵ
t−1

(u+ 0.5)− Fv, ϵ
t−1

(u− 0.5); otherwise

(63)

where Fv, ϵ
t−1

is the cumulative distribution function of Laplace distribution with mean value

of v (v ∈ {1, 2, ..., t}), variance of 2λ2 and λ = (t− 1)/ϵ.

Proof. The distortion matrix for the Laplace mechanism with the postprocessing strategy

following Equation 62 has the following general form, where u, v ∈ {1, 2, ..., t}

Plm =

F1(c1) ... Fv(c1) ... Ft(c1)

F1(c2)− F1(c1) ... Fv(c2)− Fv(c1) ... Ft(c2)− Ft(c1)

...
...

...
...

...

F1(cu)− F1(cu−1) ... Fv(cu)− Fv(cu−1) ... Ft(cu)− Ft(cu−1)

...
...

...
...

...

1− F1(ct−1) ... 1− Fv(ct−1) ... 1− Ft(ct−1)



(64)

We denote the function of the sum of the diagonal elements in the distortion matrix for

the Laplace mechanism Plm as

func(c1, c2, ..., ct−1) =
t∑

i=1

Plm(i, i).
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We have

func(c1, c2, ..., ct−1) = F1(c1) + (F2(c2)− F2(c1)) + ...+ (Fv(cv)− Fv(cv−1))

+ ...+ (Ft−1(ct−1)− Ft−1(ct−2)) + (1− Ft(ct−1))

= (F1(c1)− F2(c1)) + (F2(c2)− F3(c2)) + ...

+ (Fv(cv)− Fv+1(cv)) + ...+ (Ft−1(ct−1)− Ft(ct−1)) + 1

(65)

In order to maximize func(c1, c2, ..., ct−1), we need to find each cv for v ∈ {1, 2, ..., t− 1}

that maximize Fv(cv)− Fv+1(cv). Since v ≤ cv ≤ v + 1, we have

Fv(cv)− Fv+1(cv) = 1− 1

2
e−

(cv−v)ϵ
t−1 − 1

2
e−

(v+1−cv)ϵ
t−1 ,

which is maximized when cv = v + 0.5. Thus func(c1, c2, ..., ct−1) is maximized when

cv = v + 0.5 for all v ∈ {1, 2, ..., t− 1}.

7.4.3 Utility Comparison

Intuitively, the utility depends on the diagonal elements in the design matrix. The

Laplace mechanism based approach degrades the utility by favoring the values near the cor-

rect value. The sum of diagonal elements in Plm is actually smaller than that in Prr(Details

shown in the proof of Theorem 11). In consistence with the binary case, the randomized

response achieves better utility than the classic Laplace mechanism in data collection sce-

nario.

Theorem 11. Given ϵ, for the randomized response scheme with Prr and the Laplace mech-

anism based on Plm, we have ERRORrr(x̂i) ≤ ERRORlm(x̂i).

Proof. Intuitively, the utility depends on the diagonal elements in the distortion matrix.

The Laplace mechanism based approach will degrade the utility by favoring the values
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near the correct value. We first give the proof that the sum of diagonal elements in Plm is

smaller than that in Prr. Here for the Laplace mechanism, we have cv = v + 0.5 for all

v ∈ {1, 2, ..., t− 1}. We denote the sum of diagonal elements as

Sumlm = t− (t− 1)e
ϵ

2(t−1) .

For randomized response mechanism, we have

Sumrr =
teϵ

t− 1 + eϵ
.

For ϵ > 0, t > 2, we have

teϵ

t− 1 + eϵ
> t− (t− 1)e

ϵ
2(t−1)

⇔ (τ + 1)m

τ +m
> τ + 1− τm− 1

2τ (τ = t− 1,m = eϵ)

⇔ 0 > (τ + 1)m
1
2τ − (τ +m)

(66)

We denote, for m > 1, τ > 1,

func(m, τ) = (τ + 1)m
1
2τ − (τ +m).

Since ∂func
∂m

< 0 and func(1, τ) = 0 for all τ values, we have func(m, τ) < 0 holds for

all m > 1, τ > 1. Thus we have Equation 66 holds for any ϵ > 0 and t > 2. Then similar

as the binary case, we can see that the utility of the randomized response scheme is better

than that of the Laplace mechanism with respect to Q1.

Similarly as the binary case, we define the expected error of the estimator π̂v for the

proportion of category v (v ∈ {1, 2, ..., t}) as its variance, the diagonal element in the

unbiased estimate of dispersion matrix disp(π̂) following the randomized mechanism A.
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We have ERRORA(π̂v) = disp(π̂)vv where v ∈ {1, 2, ..., t}.

However, it is intractable to directly prove that the randomized response strategy follow-

ing the design matrix in Equation 60 could achieve lower expected error of the estimator π̂v

than the Laplace mechanism based approach following Equation 64 does. But intuitively

we can see that the Laplace mechanism based approach will degrade the utility by favoring

the values near the correct value. As shown in the proof of Theorem 11, the sum of the

diagonal elements in Plm is smaller than that in Prr, which indicates that the estimation

based on the randomized response mechanism following Prr is expected to achieve smaller

error than that based on the Laplace mechanism following Plm.

7.5 Accuracy Analysis of Randomized Dataset

7.5.1 Multiple Attributes

To be consistent with notations, we denote the set of variables by X = {X1, · · · , Xs}.

Note that, for ease of presentation, we use the terms “attribute” and “variable” interchange-

ably. Each variable Xu has du mutually exclusive and exhaustive categories. We use

iu = 1, · · · , du to denote the index of its categories. For each data record, we apply the

randomized response model independently on each sensitive variable Xu using different

settings of distortion.

Formally, let πi1,··· ,is denote the true proportion corresponding to the categorical com-

bination of s variables (X1i1 , · · · , Xsis) in the original data, where iu = 1, · · · , du (u =

1, · · · , s), and X1i1 denotes the i1th category of attribute X1. Let π be a vector with el-

ements πi1,··· ,is arranged in a fixed order. The combination vector corresponds to a fixed

order of cell entries in the contingency table formed by these s variables. Similarly, we

denote λi1,··· ,is as the expected proportion in the randomized data.
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For the case of s multi-variables, we denote λµ1,··· ,µs as the expected probability of get-

ting a response (X1µ1 , · · · , Xsµs) and λ the vector with elements λµ1,··· ,µs arranged in a

fixed order. For example, given a dataset with two variables, Gender with domain values

{male, female} and Race with domain values {black, white,asian}, we have d1 = 2 and

d2 = 3. The vector π = (π11, π12, π13,π21, π22, π23)
′ corresponds to a fixed order of cell

entries πij in the 2× 3 contingency table. π12 denotes the proportion of records with male

and white.

Let P = P1 × · · · × Ps, we can obtain

λ = Pπ = (P1 × · · · × Ps)π (67)

where × stands for the Kronecker product 11.

The original database D is changed to Drr after randomization. An unbiased estimate of

π based on one given realization Drr follows as

π̂ = P−1λ̂ = (P−1
1 × · · · × P−1

s )λ̂ (68)

where λ̂ is the vector of proportions calculated from Drr corresponding to λ and P−1
u

denotes the inverse of the matrix Pu.

7.5.2 Variance of Derived Measure

Many measures (including entropy, mutual information, Pearson Correlation, G2-likelihood)

can be expressed as one derived random variable (or function) from the observed variable

π. Similarly, its estimate from the randomized data can be considered as another derived

random variable from the input variable π̂. One natural question is how to calculate the

11Kronecker product is an operation on two matrices, an m-by-n matrix A and a p-by-q matrix B, resulting
in the mp-by-nq block matrix
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variance of those estimates. In the following, we introduce the use of the delta method [64]

to derive the variance of various measures [46].

Let Z be a random variable derived from the observed random variables Xi (i = 1, · · · , k):

Z = g(X1, X2, ..., Xk). According to the delta method, a Taylor approximation of the vari-

ance of a function with multiple variables can be expanded as

var{g(X1, X2, ..., Xk)} =
k∑

i=1

{g′i(θ)}2var(Xi)

+
k∑∑

i ̸=j=1

g′i(θ)g
′
j(θ)cov(Xi, Xj) + o(n−r)

(69)

where θi is the mean of xi, g′i(θ) is the ∂g(X1,X2,...,Xk)
∂Xi

evaluated at θ1, θ2, · · · , θk.

We use the entropy function as an example. The entropy function from information

theory is defined as follows:

H(X) = −
∑

j∈Range(X)

πjlog2πj (70)

We can estimate the entropy of the discrete random variable X with possible values

{1, 2, .., t} in the original dataset using the estimator of the distribution π and the estimator

of the dispersion matrix disp(π) calculated following Equations 58 and 59.

Result 13. The variance of the estimated entropy can be computed following Equation 69

where i, j ∈ {1, 2, ..., t}, k = t, Xi = π̂i , ∂g(X1,X2,...,Xk)
∂Xi

= log2π̂i +
1
ln2

and var(Xi) =

disp(π̂)(i, i), covi̸=j(Xi, Xj) = disp(π̂)(i, j).

Different from the entropy which involves only one variable, some measures such as

chi-square statistics involve multiple variables.

χ̂2 = n
∑
i

∑
j

{πij − πi+π+j}2

πi+π+j

(71)
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It is easy to see χ̂2 can be considered as one derived variable from the observed elements

π̂X1···Xs and the marginal totals of the contingency table. Following the same delta method,

we can derive its variance.

7.6 Empirical Evaluation

7.6.1 YesiWell Data

We conduct our empirical evaluation using the real dataset collected from the YesiWell

pilot study. The study was conducted in 2010-2011 as the collaboration among several

health laboratories and universities to help people maintain active lifestyles and lose weight.

Data gained from this study includes information of various domains such as biomarker,

biometrics, social activities and so on.

We conduct experiments on a chosen table which contains 248 individualss’ biomarker

information. In particular, we focus on two sensitive attributes: LDL cholesterol (LDL)

with six domain levels and Total cholesterol (TC) with three domain levels. Under each

differential privacy threshold ϵ, we compare the performance of the randomized response

(with the corresponding derived design matrix Prr) and that of the Laplace mechanism

(with the corresponding derived design matrix Plm) from the utility preservation perspec-

tive. We focus on proportion estimates of categories based on LDL levels, the derived

entropy of LDL, and the χ2 statistics of LDL and TC. For each statistics, we report their

estimate values and derive standard deviations for two strategies: randomized response and

Laplacian mechanism.

We also conduct experiments on the YesiWell physical activity social network which

contains 185 users and 684 interactions. Each interaction, represented as an edge between

two user nodes, is considered sensitive in our context. We study how to enforce edge
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differential privacy in our social network, i.e., the inclusion or exclusion of a link between

two individuals from the graph makes no statistical difference to the results found. We focus

on two classic graph features: the degree sequence D = {di} where each entry represents

the degree of node i, and the number of triangle sequence N∆ = {N∆(i)} where each

entry represents the number of triangles involving node i. We compare the performance of

the randomized response and that of the Laplace mechanism and report their estimates and

standard deviations for the above two graph statistics.

In addition to our above study in the data collection scenario, we also compare our

randomized response with two mechanisms, Laplacian mechanism and smooth sensitivity,

in the data query answering scenario where the trusted server keeps all unperturbed values

and returns differential privacy preserving query answers.

7.6.2 Proportion Estimate
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Figure 17: The estimation of the distribution of each LDL level when ϵ = 5

Figure 17 shows the estimation result for each of six LDL levels when ϵ = 5. For

each level, the green bar represents the original proportion value, the red bar shows the

estimated proportion value from the randomized response, and the blue bar shows the es-
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timated proportion value from the Laplace mechanism. For each estimate, we also report

its standard deviation. We can easily observe that the randomized response achieves bet-

ter utility preservation for each level (with more accurate estimate and smaller standard

deviation) than the Laplace mechanism.
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Figure 18: Average mean squared error for estimation of the distribution of the six different
LDL levels vs. varying ϵ

Figure 18 shows the estimation results in terms of the average mean squared error of

proportion estimates of the six different levels between the randomized response and the

Laplace mechanism given varying ϵ values. We can easily observe the averaged estimation

error of the randomized response is two-three orders lower than that of the Laplace mech-

anism and the randomized response shows more superiority than the Laplace mechanism

when ϵ is small.

7.6.3 Derived Measures

We calculate the estimates of the entropy of the LDL. Figure 19 shows the estimation

results of the calculated entropy values from two approaches with varying ϵ. We can see

that the red line (corresponding to the randomized response) is more close to the green line

(corresponding to the real entropy value) than the blue line (corresponding to the Laplace
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mechanism). The bar values (corresponding to their standard deviation values) also clearly

show the superiority of the randomize response.
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Figure 19: Estimation of the entropy of LDL vs. varying ϵ

We calculate the estimates of the chi-square statistics between the LDL and TC. Figure

20 shows the estimation results of the χ2 statistics from two approaches with varying ϵ.

We can see that the red line (corresponding to the randomized response) generally lies

more close to the green line (corresponding to the real entropy value) than the blue line

(corresponding to the Laplace mechanism) with varying ϵ values. The randomized response

also has much smaller standard deviation values than the Laplace mechanism, which also

indicates better utility preservation.

7.6.4 Graph Statistics

The graph of the YesiWell social network contains 185 nodes and 684 edges. In the data

collection scenario, the untrusted server collects the link relationship information from

users. The link relationship between two users is sensitive and should be protected. The

collected social network data with n users and m relationships can be represented as an

adjacency matrix An×n with 2m non-zero entries where Aij = 1 denotes the presence
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Figure 20: Estimation of chi-square statistics between LDL and TC vs. varying ϵ

of an relationship between user i and user j, and Aij = 0 otherwise. In our setting, for

Aij , the client Ci applies the randomzied response (or the Laplace mechanism) to send

the server a randomized output Yij ∈ 0, 1. After collecting all randomized relationships,

the server then applies the reconstruction process and generates one instance of the social

network with 2m non-zero entries (denoted as Â). The generated graph instance satisfies

ϵ differential privacy and can be released for any analysis. In this experiment, we conduct

performance comparison between the randomzied response and the Laplace mechanism

using two graph features, the degree sequence D = {di} and the number of triangle se-

quence N∆ = {N∆(i)}. Figure 21 and Figure 22 show comparison results in terms of the

degree sequence and the number of triangle sequence respectively.

Figure 21 shows the average entrywise error of the degree sequence calculated from

different approaches with varying ϵ. In the figure, we denote the Laplace mechanism as

LM and the randomzied response as RR, each of which uses its randomized graph topology

respectively. We also report the comparison with the output perturbation method, LM-

global, which adds the Laplace noise directly to the query output. Note that LM-global
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Figure 21: The average entrywise error of the degree sequence vs. varying ϵ

is used in the data query answering scenario where the server is assumed to have all the

true unperturbed data. However, any differential privacy preservation query consumes a

separate privacy budget. On the contrary, the randomized data collected from LM and

RR can be released for any analysis with the same privacy threshold. We can observe in

Figure 21 that the randomized response achieves better utility preservation than the Laplace

method in the data collection scenario and the LM-global incurs less estimation error than

both RR and LM (due to its small global sensitivity value GSD = 2).
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Figure 22: The average entrywise error of the number of triangle sequence vs. varying
ϵ; LM-global denotes the global sensitivity based Laplace mechanism and LM-smooth
denotes the smooth sensitivity based mechanism.
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Figure 22 shows the average entrywise error of the number of triangle sequence cal-

culated from different approaches with varying ϵ. Note that the global sensitivity of N∆

is 3(n − 2). We denote the approach of directly adding the Laplace noise based on the

global sensitivity as LM-global. In Chapter 2, we presented an approach to adding Laplace

noise based on the the smooth sensitivity [90], which can significantly reduce the magni-

tude of the injected noise. We denote the approach of adding the Laplace noise based on

the smooth sensitivity as LM-smooth. As above, we denote the Laplace mechanism in our

data collection scenario as LM and the randomized response as RR. We can observe that

the average entrywise error of RR and LM is lower than that either of LM-global or LM-

smooth, indicating the local differential privacy preserving data collection could be a better

choice than output perturbation for queries or analysis with very large sensitive values. It

is unsurprise that RR achieves the best utility preservation.

7.7 Related Work

Randomized response techniques have been extensively investigated in statistics (e.g.,

see a book [16]). Previous work on privacy preservation using the randomized response

model mainly focused on evaluating the trade-off between privacy preservation and util-

ity loss of the reconstructed data (e.g., [2, 46, 47, 94]). For example, the authors in [2, 94]

focused on measuring privacy from the attacker’s view when the distorted records of in-

dividuals and distortion parameters are available. The authors in [46, 47] studied utility

preservation of various statistics (e.g., correlation) and data mining tasks with the unknown

distortion parameters.

Some research studied the problem of determining the optimal distortion parameters to

achieve good performance (e.g., [45, 59]). Specifically, the authors in [45] studied how to
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choose distortion parameters such that certain chosen marginal distributions in the original

data are left invariant in expectation of the randomized data. The authors in [59] developed

a heuristic method of searching of optimal distortion parameters to balance privacy and

utility.

The authors in [36] first presented the notation of privacy breaches based on amplifica-

tion where it provides guarantee limits on privacy breaches without any knowledge of the

distribution of the original data. Local differential privacy was formally proposed in [28,62]

as a strong measure of privacy under the data collection scenario, where individual clients

are willing to share their data but are concerned about revealing sensitive information. The

authors studied the problem of utility maximization under local differential privacy and de-

veloped a family of extremal mechanisms called the staircase mechanisms and showed that

two simple staircase mechanisms (the binary and randomized response mechanisms) are

optimal in the high and low privacy regimes. In [62], the author mainly studies the trade-

off between local privacy and utility in hypothesis testing. In [28], the authors studied the

tradeoff between privacy guarantees and the utility of mean estimation in location family

model and convex risk minimization. Most recently, the authors introduced Randomized

Aggregatable Privacy-Preserving Ordinal Response, or RAPPOR [35] for handling mul-

tiple data collections from the same client by providing longitudinal differential privacy

guarantees. In this chapter, we studied the commonly used calculations including individ-

ual value estimate, proportion estimate, and the estimates of various derived statistics with

multiple polychotomous attributes. We derived the explicit formula of the mean squared

error of those estimates and prove that the randomized response outperforms the Laplace

mechanism which is more frequently applied for privacy preservation data mining. Espe-
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cially, our evaluation also indicates that for social network mining tasks that have large

function sensitivity, our proposed randomized response strategy can incur much less util-

ity loss than the traditionally used output perturbation based on Laplace mechanism with

either global sensitivity or smooth sensitivity does.

7.8 Summary

In this chapter we study local privacy preservation where an untrusted server wishes to

learn statistics or publish the collected client data while guaranteeing the privacy of each

contributing individual. In this case, the privacy is ensured by each client individually

without a need for a trusted server. The client does not have sufficient information about

the data distribution which is required in the biased sampling of the exponential mecha-

nism. The use of the randomize response is a feasible option. Moreover, the randomized

response enables easy estimations of accurate population statistics while preserving the pri-

vacy of the individual respondents. We have conducted theoretical analysis and empirical

evaluations to show that the developed randomize response significantly outperforms the

approach of directly adding the Laplace noise in the data collection scenario in terms of

utility preservation. This result is especially promising for data mining or exploration tasks

with interactive processes, in which a user can adaptively query the system about the data.

The user now has options of using the released data rather than submitting to the server

new queries that incur further consumption of privacy budget. Technical report version of

this work can be found in [108].



CHAPTER 8: CONCLUSIONS AND FUTURE WORK

Enabling accurate analysis of sensitive data while preserving differential privacy is of

great importance. Great challenges have posed due to potential high global sensitivity of

various mining functions, unintended disclosure risk from released aggregate statistics or

data models and even the lack of trusted third party data collection and storage platform.

In this dissertation, we have developed several techniques to meet such challenges.

First, we have presented a divide and conquer approach that can be used to enforce dif-

ferential privacy for calculating complex mining functions. We have conducted theoretical

analysis and extensive empirical evaluations to show that the developed divide and con-

quer approach generally outperforms the approach of directly enforcing differential pri-

vacy in terms of utility preservation. This result is especially promising for data mining

or exploration tasks with interactive processes, in which a user can adaptively query the

system about the data. The user now has options of reusing previous intermediate query

results rather than submitting to the system “new” queries that can be expressed by previ-

ous ones. There are some other aspects of this work that merit further research. Among

them, we will continue the line of this research by investigating how to enforce differential

privacy for other complex functions or social network analysis tasks. For functions that

we cannot compute the smooth sensitivity efficiently or explicitly, Nissim et al. proposed

an approximation method that computes the β-smooth upper bound on the local sensitiv-

ity of these functions and developed a sample-aggregation framework for a large class of
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functions [90]. We will evaluate those functions based on the sample-aggregation frame-

work. We will exploit the use of correlations among unit computations to further reduce

noise and enhance accuracies of computation outputs. Our goal is to identify (optimal)

decomposition strategies and (optimal) budget privacy distribution.

We have then presented private dK-graph generation models that enforce rigorous dif-

ferential privacy while preserving utility. We have conducted theoretical analysis and em-

pirical evaluations to show that the developed private dK-graph generation models signif-

icantly outperform the approach based on the stochastic Kronecker generation model. We

have shown that the DP-2K graph model generally achieves better utility preservation than

the DP-1K graph model with weak privacy enforcement whereas the DP-1K graph model

would achieve better utility preservation with strong privacy enforcement. We will study

non-interactive graph data release mechanisms, i.e., we use the derived differentially pri-

vate graph statistics to generate synthetic graphs for release. We are interested in how to

preserve some known graph metrics (e.g., modularity) in addition to degree correlations in

the dK-graph generation process. We will continue the line of this research by investigat-

ing how to enforce differential privacy on other graph generation models (e.g., the class

of exponential random graph models [4]) and comparing various models in terms of the

tradeoff between utility and privacy. We will also conduct more evaluations by evaluating

more metrics and using large social networks.

We have also presented two approaches to enforcing differential privacy in spectral graph

analysis. We have applied and evaluated the Laplace Mechanism [32] and the exponential

mechanism [86] on the differential privacy preserving eigen decomposition on the graph

topology. In our future work, we will investigate how to enforce differential privacy for
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other spectral graph analysis tasks (e.g., spectral clustering based on graph’s Laplacian and

normal matrices). Nissim et al. [90] introduced a framework that calibrates the instance-

specific noise with smaller magnitude than the worst-case noise based on the global sen-

sitivity. We will study the use of smooth sensitivity and explore how to better distribute

privacy budget in the proposed LNPP approach. We will also study how different sampling

strategies in the proposed SBMF approach may affect the utility preservation.

Next, we have studied whether and to what extent GWAS statistics can be exploited

by an attacker to learn private information of general population, not limited to GWAS

participants. We have developed two potential attacks, trait inference attack and identity

inference attack. Both attacks exploit the released GWAS statistics about the associations

between SNP genotypes and human traits. Our evaluations have shown that the proposed

attacks have made re-identification of anonymized genotype data a real threat. In our future

work, we will study how to extend our two-layered bayesian network to capture trait-trait

associations and/or SNP-SNP correlations. We will study how to formalize various types

of background knowledge that an attacker may have in practice and evaluate how well data

perturbation and agglomeration techniques with background knowledge [19, 27, 82] can

protect privacy when releasing GWAS statistics. Our goal is to develop methods to enable

researchers to safely release aggregate GWAS data without compromising the anonymity

of both study participants and non-participants.

We then have developed an effective approach which simultaneously protects differen-

tial privacy of participants and prevents sensitive attribute disclosure of regular individuals

due to model inversion attacks while retaining the efficacy of released regression models.

Leveraging the functional mechanism [131], our approach rewrites the objective function
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in its polynomial representation and adds more (less) noise to the polynomial coefficients

with (w/o) sensitive attributes. Our approach can effectively weaken the correlation be-

tween the sensitive attributes with the output to prevent model inversion attacks whereas

retaining the utility of the released model by decreasing the perturbation effect on non-

sensitive attributes. As a result, we still achieve ϵ-differential privacy for participants. In

our future work, we will evaluate our research on real world applications such as clinical

study which involves genetic privacy. We will theoretically analyze applicability of model

inversion attacks under different background knowledge. We will explore optimal pertur-

bation strategies, e.g., what perturbations could incur least potential utility loss in terms of

accuracy of analysis output under differential privacy and model inversion attacks.

The last but not the least, we have studied local privacy preservation where an untrusted

server wishes to learn statistics or publish the collected client data while guaranteeing the

privacy of each contributing individual. In this case, the privacy is ensured by each client

individually without a need for a trusted server. The client does not have sufficient infor-

mation about the data distribution which is required in the biased sampling of the expo-

nential mechanism. The use of the randomize response is a feasible option. Moreover,

the randomized response enables easy estimations of accurate population statistics while

preserving the privacy of the individual respondents. We have conducted theoretical analy-

sis and empirical evaluations to show that the developed randomize response significantly

outperforms the approach of directly adding the Laplace noise in the data collection sce-

nario in terms of utility preservation. This result is especially promising for data mining

or exploration tasks with interactive processes, in which a user can adaptively query the

system about the data. The user now has options of using the released data rather than
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submitting to the server new queries that incur further consumption of privacy budget. For

future work, we will continue the line of investigating how to enforce differential privacy

for other complex functions or social network analysis tasks. We will study the potential

use of randomized response on numerical data. In this dissertation, we measure the utility

preservation in terms of the variance. Several theoretical works on the privacy mechanism

design (e.g., [28]) proposed the use of a general utility-maximization framework under dif-

ferential privacy where the utility function can be a general function depending on the noise

added to the query output. We will explore the use of the general function to measure the

utility.

Generally speaking, there are three aspects of this dissertation that merit future research.

First, we will consider more complex data analysis tasks involving more algorithms with

the goal of maximizing the accuracy of analysis result with acceptable privacy budget. Sec-

ond, we will extend and incorporate our developed approaches in those data analysis sys-

tems containing data with large ‘Volume’ and ‘Velocity’ except for large ‘Variety’ which

is the current focus of this dissertation. Third, we will explore different privacy protec-

tion requirements and techniques for different areas in the future environment of big data

analysis.
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