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ABSTRACT

YALONG GU. Use of Optical Superbeams in Atmospheric Turbulence Applications.
(Under the direction of DR. GREGORY J. GBUR)

The use of nonconventional beam classes in turbulence applications is

investigated. Through the study on pseudo-Bessel correlated beam propagation in

the atmosphere, it is shown that scintillation reduction by a partially coherent beam

can be obtained by a corresponding incoherent beam array with finite number of

beamlets. General guidelines for scintillation reduction by incoherent beam arrays

are developed; these guidelines include reducing correlation of beamlet atmospheric

propagation, maximizing the total intensity arriving at the detector, and selecting

beamlets with small scintillation. With these goals in mind, Airy beams, a novel

beam class, are applied to generate an incoherent beam array whose scintillations

are significantly reduced. By the analogy with two-mode partially coherent beams,

nonuniformly polarized beams are demonstrated to be of small scintillation. This

suggests a relatively easy and inexpensive method to reduce the scintillation of a

coherent optical beam. Finally a method to measure atmospheric turbulence

strength by using vortex beams is proposed and its feasibility is theoretically

demonstrated.
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CHAPTER 1: OPTICAL BEAM PROPAGATION IN ATMOSPHERE

The technique of communicating with light over long distances has been used since

nearly the dawn of history. The Lighthouse of Alexandria, completed in the third

century BC, guided ships into the harbor at night time by sending navigation signals

in the form of light [1]. Roughly in the same period, the Great Wall of China was built

in northern China. One of its missions was early warning of nomadic invaders. The

signal of invasion was relayed through the fires on the top of the sequential beacon

towers [2]. Light gave ancient people a fast and long-range communication method

to convey important information.

Effective communication requires rapid transmission of information over

significant distances. Increasing the information transmission rate has been one of

the fundamental motivations in the development of communication systems. The

ancient optical communications operated at very low rate and only sent simple

information. Techniques become more sophisticated in modern times. The

heliograph, which appeared in the 19th century, is a wireless telegraph that uses

reflected sunlight flashes as signals. With Morse code, the heliograph can send

relatively complicated information over tens of kilometers. In 1880, a successful

intercontinental heliograph communication was reported. Through relay, a message

was delivered from Afghanistan to London in a day [3].
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A revolutionary development of wireless telecommunication began in the early 20th

century, following the pioneering work by Marconi. A typical telecommunication

system sends information by modulating a sinusoidal electromagnetic wave, which is

known as the carrier. In principle the amount of transmitted information is directly

related to the frequency range of the carrier, which can be enlarged by increasing the

carrier’s frequency. The width of the radio frequency band is from 103 Hz to 108 Hz,

while the width of the optical frequency band is from 1014 Hz to 1015 Hz. The high

bandwidth of the optical frequency range makes very high speed communications

possible. Therefore the development of telecommunication systems led to exploring

optical frequencies as the carriers.

Modern free-space optical communication has been developed since the invention of

lasers in 1960s. Lasers possess several extraordinary characteristics that regular light

sources do not have, including high brightness, directionality, monochromaticity and

spatial coherence. Therefore they are reliable light sources which enables people to

extend radio frequency atmospheric communication to the optical frequency band. Its

highly directional nature also makes the communications highly secure. However, as

the signal transmission channel of free-space optical communication, the atmosphere

is a random medium. Due to the short wavelength of optical frequency wavefield,

the fluctuations of the refractive index of the atmosphere cause variations in the

amplitude, phase and polarization of the propagating optical beams, resulting in a

variety of deleterious effects. The random nature of the atmosphere imposes inherent

obstacles on the development of free-space optical communication systems.



3
The efforts to mitigate turbulence effects and improve the performance of free

space optical communication systems requires the knowledge of optical beam

propagation in the atmosphere, which must be determined separately. Wave

propagation in random media has been a subject of extensive research for many

decades. Several excellent articles and books provide comprehensive reviews on the

advances of this subject in different periods of the last half-century [4–10]. In the

late 1950s, Chervon and Tatarskii made the first two complete treatments on the

problem of wave propagation in random media [11, 12]. By using the Rytov

approximation [13, Chapter 13], the propagation characteristics of plane waves were

investigated. The study was extended to the case of spherical waves [14, 15] and

directional beams in the late 1960s. Schmeltzer formulated the general expressions

for beam wave propagation in random media [16]. Based on these formulas, the

turbulence induced amplitude fluctuations of optical beams were identified [17, 18].

Ishimaru also studied the problem of laser beam propagation and gave

interpretations in terms of spectral expansions [19,20].

Although the early theories provided a preliminary framework on the study of wave

propagation in random media, they failed to explain certain phenomena observed in

experiments. For example, on propagating through the near earth atmosphere, the

irradiance fluctuations of a plane wave would initially increase as predicted in Ref. [12],

but gradually stop increasing and eventually saturate [21]. This discrepancy is due to

limitations of the Rytov approximations applied in the early theories, which assumes

smooth and weak perturbations. However, it is not applicable as the propagation path
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or the turbulence strength increases because the fluctuations are no longer small.

Various theoretical approaches were proposed to circumvent this limitation. The

parabolic equation method is one of the most general methods applicable under all

fluctuation conditions [9]. Another method is the extended Huygens-Fresnel

principle. It was first developed by Feizulin and Kravtsov in the former USSR [22]

and Lutomirski and Yura in the USA [23]. Combined with the quadratic

approximation of the turbulence term [24], the extended Huygens-Fresnel principle

has been widely used in the studies of the second order statistical propagation

properties of various types of beam in the atmosphere (see, for instance, [25,26]).

Scintillation, the fourth order statistical moment, is another significant property

of wave propagation in random media. It characterizes the intensity fluctuations of

a wavefield and strong scintillation is a big limitation for free-space optical

communication. The scintillation indices of plane waves, spherical waves and

Gaussian beams in weak fluctuations have been obtained by the Rytov

method [9, 10]. In recent years, Baykal et al. used the Rytov method to investigate

the scintillation properties of various beam types in weak turbulence [27]. The

nature of wave scintillations in strong fluctuation conditions is a challenging issue.

The extended Huygens-Fresnel principle is not applicable for the fourth order

moment under these conditions, while the exact solutions of the parabolic equation

method only exist in the case of first and second order moments of the wavefield.

An asymptotic theory for laser beam scintillations in the saturation regime was

developed in the mid 1970s [28, 29]. A strong scintillation theory was later
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developed based on the path-integral approach [8, 30]. It was applied in the analysis

of beam scintillations for the ground-to-space propagation paths [31, 32]. Recently,

Andrews et al. introduced an approximation technique based on a modification of

the Rytov method and extended many weak fluctuation results into the

moderate-to-strong fluctuation regimes [10].

In general, the existing theories for the statistical moments, especially the fourth

order moment, of a wavefield in random media are analytically intractable.

However, numerical simulations are straightforward and applicable in all fluctuation

conditions. Wave propagation in a random medium can be simulated by a multiple

random phase screen method [33], in which an extended medium is modeled by a

collection of random phase screens with appropriate statistical properties, and the

wavefield undergoes free-space propagation between them. By this method, Martin

and Flatté first numerically studied the intensity fluctuations of plane waves and

spherical waves in the atmospheric turbulence [33, 34]. Several algorithms were later

proposed to generate random phase screens with high accuracy (see, for

instance, [35, 36]). Recently Schmidt wrote a comprehensive review of the numerical

simulation methods for wave propagation in random media [37, Chapter 9]. Today,

numerical simulations are indispensable tools in the study of wave propagation in

random media.

Over decades of studies, the propagation characteristics of conventional Gaussian

laser beams in the atmosphere have been well-determined. The associated

turbulence effects, including scintillation, beam spreading, beam wander and
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decrease of spatial coherence, severely affect the performance of free-space optical

communication systems [10]. Numerous efforts have been done to mitigate these

turbulence effects. One promising research direction is to develop beam classes other

than conventional Gaussian beams which have superior properties in atmospheric

propagation, loosely referred to as ‘superbeams’. These unconventional beam classes

include partially coherent beams, vortex beams and Airy beams. In particular, the

observations of improved propagation characteristics of partially coherent beams in

the atmosphere suggests their application in free-space optical communications.

Early studies focused on the evolution of the mutual coherence function of a

coherent laser beam propagating in turbulence [24, 38, 39]. Fante derived the

expression for the generalized two-position, two-frequency mutual coherence

function of an electromagnetic beam in a turbulent medium by using the extended

Huygens-Fresnel principle [40]. The state of source coherence was later incorporated

and the propagation characteristics of partially coherent beams in the atmosphere

were investigated, including the dependence of the average light intensity on the

degree of source coherence [41], the influence of source coherence on the coherence

radius of the propagated beam [42] and the relation between the far field intensity

angular distribution and the source coherence [43]. One of the most intriguing

observations of partially coherent beam propagation in the atmosphere in the early

studies is the scintillation properties of such beams. It was found that the

scintillation of a partially coherent beam can be lower than that of its fully coherent

counterpart [44–47].
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The early observations of scintillation reduction by partially coherent beams made

the study of partial coherence based turbulence effects a topic of renewed interest in

the new millennium. By using the extended Huygens-Fresnel principle, Gbur and

Wolf investigated the turbulence-induced spreading effects of partially coherent

beams and showed that they are less affected than fully coherent beams [48], a

result that was experimentally demonstrated by Dogariu and Amarande [49]. This

property was also studied by using a Hilbert-space method [50] and the coherent

mode representation method [51]. Salem et al. investigated the beam spreading

effect of partially coherent beams in a long-distance atmosphere propagation and

showed that they are less affected by changes in the atmospheric conditions [52].

The turbulence-induced beam spreading effects of various types of partially coherent

beams have also been investigated in the recent years (see, for instance, [53,54]).

The most important application of partially coherent beams in free-space optical

communications is scintillation reduction. By modeling partial coherence with a

thin (complex) phase screen with a Gaussian spectrum, Korotkova et al. showed

that a Gaussian Schell-model beam has lower scintillation than a fully coherent

counterpart [55]. Later Schulz theoretically showed that the beam that minimizes

the scintillation index is in general partially coherent [56]. Since then, a large

amount of work has been done on the study of various strategies for reducing

scintillation with partial coherence. By passing a coherent Gaussian beam through a

time-varying phase screen, Xiao et al. proposed a model of pseudo-partially

coherent beam. The partially coherent characteristics are obtained along with the
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inherent time averaging of the photodetection process [57]. Their application in

free-space optical communications was also studied [58, 59]. Berman et al. proposed

a spectral coding method to suppress the intensity fluctuations of a partially

coherent beam in free-space high-speed optical communication [60]. Incoherent

beam arrays have been investigated as an easily constructed partially coherent

source. Peleg et al. demonstrated, both theoretically and experimentally, the

scintillation reduction with beams of different wavelengths [61–63]. Baykal et al.

also studied a Gaussian beam array whose constituent beamlets are partially

coherent [64]. Beside partially spatially coherent beams, partially temporally

coherent beams were also considered1. Kiasaleh studied the scintillations of a

multiwavelength Gaussian beam [65].

Inspired by the results of fundamental propagation properties of partially

coherent beams in the atmosphere, people have investigated the performance of

free-space optical communication systems using partially coherent beams (see, for

instance [66, 67]). The design of a free-space optical communication system is based

on the balanced considerations among several key parameters. For example, both

low scintillation and high received intensity are desired. Several studies have been

performed on optimization of partially coherent beams for free-space optical

communications. Based on the probability density function of the intensity

fluctuations, Chen et al. proposed a criterion to optimize the initial state of source

coherence [68]. Voelz and Xiao developed a different metric to determine the

1Unless otherwise specified, the term “partially coherent” in this dissertation is referred to as
being partially spatially coherent.
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characteristics of the optimized coherence length that balance the effects of beam

spreading and scintillation [69]. More recently, Borah and Voelz analyzed the

selection of partially coherent parameters specific to the optical communication

problems, which concerned the performance optimization as a function of various

communication link parameters [70].

Although a large amount of work has been done on the application of partially

coherent beams in free-space optical communication, several important questions

remain. The foremost among these is that the underlying physics of scintillation

reduction by partially coherent beams is still obscure. Although Schulz

demonstrated an optimal solution in Ref. [56], his results are expressed in the form

of a general mode decomposition,which is not readily implemented. In addition,

besides partially coherent beams, it has been revealed that several other

unconventional beam classes possess exotic and potentially helpful properties; of

most interest are vortex beams and Airy beams.

In recent years, optical beams which possess an intensity null along their

propagation axis have attracted much attention. They are usually named as vortex

beams due to the symbolic helical phase structures around the intensity nulls.

Vortex beams have been investigated for various applications, including laser

communications [71, 72], optical tweezers and spanners [73]. One of their most

attractive features is the orbital angular momentum carried by these beams [74];

with this vortex beams may propagate in the atmosphere less distorted than

conventional Gaussian beams [71, 75]. It has also been shown that they can
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‘self-heal’ around certain obstacles [76]. Besides orbital angular momentum, vortex

beams also carry conserved and discrete topological charge. Recent work shows that

the charge is relatively stable when a vortex beam propagates in the atmosphere

and that it could be used as an information carrier in optical communications [77].

Airy beams are a newly discovered beam class, which are nondiffracting solutions

of the paraxial wave equation. They can propagate along parabolic trajectories while

keeping their transverse amplitude profiles invariant. The study also shows that they

can resist external perturbations when propagating under turbulent conditions or

passing through obstacles [78]. These attractive properties of vortex beams and Airy

beams suggest their applications in the atmospheric turbulence.

This dissertation attempts to investigate the abovementioned phenomena. Our goal

is to develop general guidelines for minimizing beam scintillation and to explore the

possible applications of vortex beams and Airy beams in atmospheric turbulence. The

whole dissertation is organized as follows: The basic theory, including the coherence

theory, the optical properties of atmospheric turbulence, classic theory of optical

beam propagation in the atmosphere, and the numerical simulations of optical beam

propagation in the atmosphere, are summarized in Chapter 2. Scintillation reduction

by incoherent beam arrays is discussed in Chapter 3. A new array configuration

and constituent electromagnetic beamlets are applied in this chapter. The general

guidelines for scintillation reduction by use of incoherent beam arrays are developed

as well. In Chapter 4, the vector nature of beams is taken into account and the

scintillation reduction associated with non-uniformly polarized beams is investigated.
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The application of vortex beams in determining the atmospheric turbulence strength

is studied in Chapter 5. Finally, conclusions are presented in Chapter 6.



CHAPTER 2: BASIC THEORY

The atmosphere is a thick layer of gases covering Earth, which is held in place by

Earth’s gravity. Due to the solar radiation and the Earth’s rotation, it is warmed up

in the daytime and gradually cools down in the night time. The induced

temperature gradient gives rise to winds and convection, resulting in the

disturbances of air masses. In addition, there are clouds and aerosol particles

suspended in the atmosphere. The refractive index of atmosphere fluctuates in time

and space and can be characterized by a random function of position and time. To

begin with, it is worthwhile to distinguish two confusing terms, i.e. turbulent media

and turbid media. The distinction between these two terms lies in the different

character of the scattering mechanism relative to wavelength. For turbulent media,

the typical distance over which the refractive index varies is much larger than the

wavelength of the propagating beam. In addition, these refractive index variations

are small and continuous in space. Temperature gradient induced refractive index

fluctuations fall into this category. In contrast, the scatterers in turbid media, such

as clouds, dusts and rains, are discrete and cause sharp discontinuities in refractive

index. These distinctions make the propagation behaviors of optical beams as well

as the corresponding calculational approaches very different for the types of media.

This dissertation is devoted to beam propagation in so-called clean air atmospheric
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turbulence.

Because of turbulent fluctuations, the coherence of an optical beam decreases on

propagation in the atmosphere. The basics of coherence theory is briefly introduced

in Sec. 2.1 of this chapter. The review of the optical properties of atmospheric

turbulence and the classical theory of optical beam propagation in atmospheric

turbulence are presented in Sec. 2.2 and Sec. 2.3 respectively. A summary of

numerical simulation methods is given in Sec. 2.4.

2.1 Coherence Theory

Coherence theory may be defined as the study of the statistical properties of light.

It is a quite broad subject and here its basic concepts which will be used in this

dissertation is introduced. In general, an optical field possesses random fluctuations.

Its electric field vector E(r, t) is a random function of both space r and time t. For

simplicity its scalar form U(r, t) is considered. The coherence theory can be easily

extended to the electromagnetic case (vector field) which is discussed in detail in

Ref. [79]. For a statistically stationary scalar wavefield, its cross correlation function,

also known as the mutual coherence function, is defined as [80]

Γ(r1, r2, τ) = 〈U(r1, t)U
∗(r2, t+ τ)〉, (2.1.1)

where the angle brackets indicate a time average or, equivalently, an ensemble average

for ergodic fields. The complex degree of coherence is defined as the normalized form
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of mutual coherence function,

γ(r1, r2, τ) =
Γ(r1, r2, τ)√

Γ(r1, r1, 0)Γ(r2, r2, 0)
, (2.1.2)

where Γ(r, r, 0) = I(r) is the average intensity at the position r. The complex

degree of coherence γ(r1, r2, τ) is a measure of the statistical similarity of wavefield

fluctuations at the points r1 and r2 with a time delay τ . Its modulus |γ(r1, r2, τ)|

can be obtained by measuring the visibility of double slit interference fringes [79]. It

can be shown that 0 ≤ |γ(r1, r2, τ)| ≤ 1, where the extreme value unity denotes full

coherence and the other extreme value zero means complete incoherence.

It is more convenient for our purposes, however, to work within the space-frequency

domain. The cross-spectral density of the wavefield is defined as the temporal Fourier

transform of the mutual coherence function with respect to the time delay τ [80, Sec.

4.3],

W (r1, r2, ω) =
1

2π

∫ ∞
−∞

Γ(r1, r2, τ)eiωτdτ. (2.1.3)

The cross-spectral density characterizes the intensity and spatial coherence of the field

at frequency ω, and contains the same information at the mutual coherence function.

Its normalized form is called the spectral degree of coherence,

µ(r1, r2, ω) =
W (r1, r2, ω)√

W (r1, r1, ω)W (r2, r2, ω)
, (2.1.4)

where W (r, r, ω) = S(r, ω) is the intensity at the frequency ω and the position r,

also referred to as the spectral density. Like the complex degree of coherence, the

magnitude of the spectral degree of coherence is also bounded between zero and
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unity, i.e. 0 ≤ |µ(r1, r2, ω)| ≤ 1.

It has been shown that the cross-spectral density of an arbitrary partially coherent

wavefield at frequency ω may always be expressed as the average of an ensemble of

monochromatic realizations of the field [81]

W (r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉ω, (2.1.5)

where U(r, ω) is a monochromatic realization of the partially coherent field and the

subscript ω denotes averaging with respect to this special ensemble. The advantage

of this representation is that it allows one to construct models of partially coherent

fields in the frequency domain directly without resorting first to finding the more

complicated mutual coherence function. From now on a monochromatic field is

considered and the depiction of frequency ω in the function arguments is

suppressed. It is also noted that focusing on single frequency ω is equivalent to

studying narrowband light wave.

2.2 Optical Properties of Atmospheric Turbulence

Atmospheric turbulence is chaotic motions of air characterized by winds varying in

velocity and direction. As a result, air masses are unstable and eventually break up

into turbulent eddies of different scale sizes. The structure of atmospheric turbulence

can be understood by the energy cascade theory [10] (see Fig. 2.1). The action of wind

creates unstable air masses with different characteristic dimension (eddies). These

turbulent eddies have been shown to be bounded by two characteristic scales, the

outer scale L0 and the inner scale l0. The turbulent eddies of size between these two
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Figure 2.1: Illustration of energy cascade theory of atmospheric turbulence.

scales forms the inertial subrange. A fraction of wind energy is converted to turbulence

energy at the outer scale L0. Under the influence of inertial forces, the large eddies

break up into small eddies and the input energy is transferred in a cascading manner

until eddies reach the smallest size, the inner scale l0. Turbulent eddies dissipate

their energy through viscous effects below the inner scale l0. Near the ground, the

inner scale l0 is typically of a few millimeters, while the outer scale L0 varies between

1 m and 100 m. Because wavefronts of optical beams are of limited size, they are

affected by large and small turbulent eddies in different manners. For example, large

eddies randomly deflect propagation directions and induce beam wander and image

dancing. On contrary, small eddies distort local wavefront of an optical beam and

cause intensity fluctuations. Therefore optical beam propagation in the atmosphere

depends on the values of inner scale and outer scale, known as the inner scale effects

and the outer scale effects (see, for instance [82,83]).

Due to the turbulent motions of air, the refractive index of atmosphere is a random
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function of both space r and time t, which can be written as

n(r, t) = n0 + n1(r, t), (2.2.1)

where n0 = 〈n(r, t)〉 ≈ 1 is the mean value of the refractive index n(r, t) and n1(r, t)

represents the random fluctuation about the mean value. The angle brackets denote

an ensemble average. The refractive index fluctuations are the most important factor

for various effects when optical beams propagate in the atmosphere, and therefore are

commonly referred as optical turbulence [84]. In general, the rate of time variation of

the refractive index n(R, t) is very slow whereas the time required for optical beams

to propagate through the atmosphere is very short. Therefore the time dependence

in Eq. (2.2.1) can be ignored,

n(r) = 1 + n1(r). (2.2.2)

At optical frequencies, the refractive index of atmosphere is approximately given by [5]

n(r) = 1 + 77.6× 10−6
(
1 + 7.52× 10−3λ−2

) P (r)

T (r)
, (2.2.3)

where P (r) is the atmospheric pressure in millibars, T (r) is the atmospheric

temperature in Kelvin, and λ is the optical wavelength in µm. The pressure

fluctuations are usually negligible, leaving the temperature fluctuations as the

primary factor of the refractive index fluctuations. From Eq. (2.2.3), it can be seen

that the magnitude of n1(r) is several orders of magnitude smaller than n0. At sea

level, its typical value is 3× 10−4.

The statistical properties of the refractive index of the atmosphere directly affect
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the propagation of optical beams within it. The autocorrelation function of the

refractive index fluctuation n1(r) is defined as [10]

Γn(r1, r2) = 〈n1(r1)n1(r2)〉, (2.2.4)

where the angle brackets denote an ensemble average. As turbulent eddies in the

inertial subrange are assumed statistically homogeneous and isotropic, its refractive

index n1(r) have the same statistical properties. Here being homogeneous means that

the statistical quantity Γn(r1, r2) depends on ∆r = r1 − r2. By statistical isotropy,

Γn(r1, r2) is only the function of the scalar distance ∆r = |∆r| irrespective of the

relative orientation between r1 and r2. With these properties, Eq. (2.2.4) takes a

simple form

Γn(∆r) = 〈n1(r1)n1(r1 + ∆r)〉. (2.2.5)

Another important statistical quantity of n1 is the structure function Dn(r1, r1)

defined as

Dn(r1, r2) = 〈[n1(r1)− n1(r2)]
2〉. (2.2.6)

On the assumption of homogeneity and isotropy, it follows that

Dn(∆r) = 2 [Γn(∆r)− Γn(0)] . (2.2.7)

Under the assumption of statistical homogeneity, the power spectral density (power

spectrum) Φn(κ) of n1 and its autocorrelation function form a three dimensional
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Fourier transform pair,

Φn(κ) =
1

(2π)3

∫
Γn(∆r) exp(−iκ ·∆r)d3∆r (2.2.8a)

Γn(r) =

∫
Φn(κ) exp(iκ ·∆r)d3κ, (2.2.8b)

where κ is the vector wavenumber and κ = |κ|. Eqs. (2.2.8) can be further simplified

by the assumption of statistical isotropy

Φn(κ) =
1

2π2κ

∫ ∞
0

Γn(∆r) sin(κ∆r)∆rd∆r (2.2.9a)

Γn(∆r) =
4π

∆r

∫ ∞
0

Φn(κ) sin(κ∆r)κdκ. (2.2.9b)

The relation between the structure function Dn(∆r) and the power spectral density

Φn(κ) can also be readily obtained. From Eqs. (2.2.7) and (2.2.9b), it can be shown

that

Dn(∆r) = 8π

∫ ∞
0

κ2Φn(κ)

[
1− sin(κ∆r)

κ∆r

]
dκ. (2.2.10)

The expression of Φn(κ) in terms of Dn(∆r) can also be derived without too much

difficulty [5]

Φn(κ) =
1

4π2κ2

∫ ∞
0

sin(κ∆r)

κ∆r

d

d∆r

[
(∆r)2

d

d∆r
Dn(∆r)

]
d∆r. (2.2.11)

From Eq. 2.2.11, the spectral density function Φn(κ) can be determined from the

knowledge of the structure function Dn(∆r). The characterization of turbulence was

developed in terms of velocity fluctuations. By dimensional analysis, Kolmogorov

first showed that the structure function of wind velocity obeys a 2/3 power law in the

inertial subrange [85]. His ideas were later applied to the studies on fluctuations of
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passive scalars. The potential temperature Θ is defined as

Θ = T + αah, (2.2.12)

where T is the atmospheric temperature, αa is the adiabatic rate of decrease of the

temperature and h is height above the Earth’s surface. It is considered passive as

its fluctuations do not exchange energy with velocity fluctuations. This leads to the

same power law relation [86]. From Eq. 2.2.3, it can be shown that the variation of

refractive index is proportional to the variation of temperature [5, Chapter 2]

δn =
79P

T

(
δP

P
− δT

T

)
× 10−6. (2.2.13)

As δΘ = δT and the pressure fluctuations are negligible, it can be simplified as

δn = −79P
δΘ

T 2
× 10−6. (2.2.14)

Eq. (2.2.14) shows that the refractive index fluctuations are also passive and therefore

their structure function Dn(∆r) also obeys a 2/3 power law in the inertial subrange

Dn(∆r) = C2
n(∆r)2/3 l0 < ∆r < L0, (2.2.15)

where C2
n is the refractive index structure constant which characterizes the strength

of atmospheric turbulence. Typically, C2
n takes the values from 10−17 m−2/3 or less to

10−13 m−2/3 or more, characterizing the change of atmospheric turbulence strength

from weak to strong. In general, C2
n is a function of altitude, location and time of

day. Its variation with altitude should be taken into account when the propagation

path of a beam is slant or vertical. Otherwise it is convenient to assume it is a
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constant over a horizontal path. On substituting Eq. (2.2.15) into Eq. (2.2.11) and

formally extending the integral limits from [l0, L0] to [0,∞], the following expression

is obtained,

Φn(κ) = 0.033C2
nκ
−11/3. (2.2.16)

Eq. (2.2.16) is the well-known Kolmogorov spectrum of atmospheric turbulence.

The Kolmogorov spectrum [Eq. (2.2.16)] provides a relatively simple mathematical

model of atmospheric turbulence and is widely used in theoretical studies. In deriving

Eq. (2.2.16), it is assumed that the outer scale L0 is infinite and the inner scale l0 is

zero. However, under certain circumstances, the effects of outer scale and inner are

not negligible. In addition, the singularity at κ = 0 in Eq. (2.2.16) means that the

spectrum is arbitrarily large as κ → 0, which is contradictory to the fact that the

amount of air masses in the atmosphere is finite. To overcome these defects, the von

Karman spectrum is adopted

Φn(κ) = 0.033C2
n

exp(−κ2/κ2m)

(κ2 + κ20)
11/6

, (2.2.17)

where κm = 5.92/l0 and κ0 = 1/L0.

Fig. 2.2 illustrates the Kolmogorov spectrum and the von Karman spectrum. It can

be seen that the von Karman spectrum reduces to the Kolmogorov spectrum in the

inertial subrange. It should be emphasized that both of these two spectrum models

are only valid in the inertial subrange where the physical laws governing turbulent

flows are well-established. The extension of the von Karman spectrum outside of the

inertial subrange is based on mathematical convenience. In the range κ ≤ κ0, the
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Figure 2.2: Illustration of Kolmogorov spectrum and von Karman spectrum. L0 =
10 m and l0 = 1 cm.

turbulence spectrum depends on large scale geographic and meteorological conditions.

The range κ ≥ κm is the dissipation range, where turbulent eddies smaller than inner

scale l0 dissipate their energy as heat by viscous forces. Some research results show

that there is a “bump” in the atmospheric temperature fluctuations spectrum at

high wavenumber near κ0 [87, 88]. Since the refractive index of atmosphere obeys

the same spectral law as the atmospheric temperature, the bump feature should also

appear in the turbulence spectrum and produces a corresponding bump in certain

quantities characterizing optical beam propagation in the atmosphere. Hill proposed a

numerical spectral model where the bump feature is taken into account [89]. Andrews

later developed an analytic approximation to the Hill spectrum which includes an

outer scale parameter, now referred to as the modified atmospheric spectrum [90].

However, this dissertation focuses on the general features of optical beam propagation

in the atmosphere, which are mainly affected by the turbulent eddies in the inertial
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subrange. Therefore, the Kolmogorov spectrum and the von Karman spectrum are

used throughout this dissertation.

2.3 Classical Theory of Optical Beam Propagation through Atmospheric
Turbulence

The propagation behavior of optical beams in the atmosphere is governed by the

wave equation which can be derived from Maxwell’s equations. For a medium with

arbitrary permittivity ε and magnetic permeability µ, the wave equation has the

form [13, Chapter 1]

∇2E(r, t)− εµ

c2
∂

∂t
E(r, t) + (∇ lnµ)×∇× E(r, t) +∇ [E(r, t) · ∇ ln ε] = 0, (2.3.1)

where E(r, t) is the electric field of the wavefield and c is the speed of light in the

vacuum. If investigations focus on monochromatic fields, i.e. that

E(r, t) = E(r) exp(−iωt), (2.3.2)

the wave equation (2.3.1) reduces to its monochromatic form

∇2E(r) + k20εµE(r) + (∇ lnµ)×∇× E(r) +∇ [E(r) · ∇ ln ε] = 0, (2.3.3)

where k0 = ω/c is the wavenumber in the vacuum. The Earth’s atmosphere is an

inhomogeneous but isotropic medium. Its permittitity ε is a random function of r

and the magnetic permeability µ is assumed to be 1. Therefore the wave equation in

the atmosphere has the following form

∇2E(r) + k20n
2(r)E(r) + 2∇ [E(r) · ∇ lnn(r)] = 0, (2.3.4)
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where the relation ε = n2(r) is used. The last term of the left hand side of Eq. (2.3.4)

is related to the coupling among the orthogonal components of a wavefield, giving

rise to the depolarization effects. However, as the wavelength of optical beams is

much smaller than the smallest scale of turbulence eddies (the inner scale l0), it has

been shown that the depolarization term is negligible in most turbulence propagation

problems [7]. On substituting Eq. (2.2.2) into Eq. (2.3.4) and noting that n1(r)� 1,

it simplifies to

∇2E(r) + k20 [1 + 2n1(r)]E(r) = 0. (2.3.5)

Due to the symmetry of all three orthogonal components of E(r), vector equation

(2.3.5) can be represented by a scalar equation

∇2U(r) + k20 [1 + 2n1(r)]U(r) = 0, (2.3.6)

where U(r) denotes a transverse component of a wavefield.

Eq. (2.3.6) is the scalar stochastic wave equation which governs the propagation

behavior of optical beams in the atmosphere. Due to the random nature of n1(r), it

generally can not be solved in a closed form. Several methods have been developed

to solve it under various fluctuation conditions. In the atmosphere, the fluctuation

strength of a wavefield can be quantitatively estimated through the so-called Rytov

variance

σ2
1 = 1.23C2

nk
7/6
0 L11/6, (2.3.7)

where L is the propagation distance. In general, weak fluctuations are defined as σ2
1 �

1 and strong fluctuations are in the regime when σ2
1 � 1. Under weak fluctuation
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conditions, Eq. (2.3.6) can be solved by perturbation theories, including the Born

approximation and the Rytov approximation. The analytic theories under strong

fluctuation conditions are rather complicated and mathematically challenging. In

this dissertation, the extended Huygens-Fresnel principle method is applied to this

circumstance.

2.3.1 Born Approximation1

By the Born approximation method, the wavefield is modified by adding

perturbation terms to the unperturbed wavefield

U(r) = U0(r) + U1(r) + U2(r) + · · ·, (2.3.8)

where U0(r) denotes the unperturbed wavefield in the absence of turbulence, U1(r) and

U2(r) are the first and second order perturbation terms caused by turbulence. Each

term Um(r) is on the order of smallness (n1)
m. Generally, U0(r) � U1(r) � U2(r).

On substituting Eq. (2.3.8) into Eq. (2.3.6) and equating terms of the same order in

n1, the following series of equations are obtained

∇2U0(r) + k20U0(r) = 0 (2.3.9a)

∇2U1(r) + k20U1(r) = −2k20n1(r)U0(r) (2.3.9b)

∇2U2(r) + k20U2(r) = −2k20n1(r)U1(r). (2.3.9c)

1Now the Born approximation is not used in the studies of wave propagation in weak turbulence
due to its limitations (see the end of Sec. 2.3.2). However, the formulae of the Rytov approximation
are derived based on the Born approximation. It is introduced here for the purpose of illustration.
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From Eqs. (2.3.9), it can be seen that the perturbation terms are the solutions of

inhomogeneous Helmholtz equations, where the lower order perturbation terms serve

(combined with n1(r) ) as the source terms.

Given the form of the unperturbed term U0(r), U1(r) can be obtained by the Green’s

function method [13]

U1(r) =

∫
G(r, r′)

[
2k20n1(r

′)U0(r
′)
]
d3r′, (2.3.10)

where G(r, r′) is the free space Green’s function

G(r, r′) =
1

4π|r− r′|
exp (ik0|r− r′|) . (2.3.11)

Eq. (2.3.10) can be further simplified by the paraxial approximation. Considering

the fact that the wavelength of at optical frequencies is very small compared to the

sizes of turbulent eddies, the wavefield is forward scattered in a small cone about the

original propagation direction. The maximum scattering angle is of the magnitude

of λ/l0 ∼ 10−4 radians. Under this condition, the free space Green’s function can be

approximated by its paraxial form

G(r, r′) ≈ 1

4π(z − z′)
exp

[
ik0(z − z′) +

ik0|ρ− ρ′|2

2(z − z′)

]
. (2.3.12)

where r = (ρ, z). Accordingly, the first order perturbation term U1(r) takes the

following form

U1(ρ, z) =
k20

2πz

∫ z

0

dz′
∫
d2ρ′ exp

[
ik0(z − z′) +

ik0|ρ− ρ′|2

2(z − z′)

]
U0(ρ

′, z′)
n1(ρ

′, z′)

z − z′
,

(2.3.13)
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where the wavefield is assumed to propagate along the z axis. The second order

perturbation term U2(r) can be obtained by the similar manner

U2(ρ, z) =
k20

2πz

∫ z

0

dz′
∫
d2ρ′ exp

[
ik0(z − z′) +

ik0|ρ− ρ′|2

2(z − z′)

]
U1(ρ

′, z′)
n1(ρ

′, z′)

z − z′
.

(2.3.14)

2.3.2 Rytov Approximation

Unlike the Born approximation, the Rytov approximation assumes the perturbation

terms are multiplicative to the unperturbed wavefield

U(r) = U0(r) exp [ψ(r)] , (2.3.15)

where ψ(r) = ψ1(r) + ψ2(r) + · · · is a complex phase perturbation of the

unperturbed term U0(r). ψ1(r) and ψ2(r) are the corresponding first and the second

order perturbation terms. The expressions for ψ1(r) and ψ2(r) can be obtained from

the results of the Born approximations calculated in the previous subsection.

To begin with, the normalized Born approximations are defined as

φm(ρ, z) =
Um(ρ, z)

U0(ρ, z)
m = 1, 2, .... (2.3.16)

By the assumption of equality between the first order Rytov and Born approximations

U0(ρ, z) exp[ψ1(ρ, z)] = U0(ρ, z)[1 + φ1(ρ, z)], (2.3.17)
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it can be shown that, after some calculations,

ψ1(ρ, z) = ln[1 + φ1(ρ, z)]

≈ φ1(ρ, z), |φ1(ρ, z)| � 1. (2.3.18)

From the definition of φ1(ρ, z) and Eq. (2.3.13), the first order Rytov approximation

term ψ1(ρ, z) is given by

ψ1(ρ, z) =
k20

2πz

∫ z

0

dz′
∫
d2ρ′ exp

[
ik0(z − z′) +

ik0|ρ− ρ′|2

2(z − z′)

]
U0(ρ

′, z′)

U0(ρ, z)

n1(ρ
′, z′)

z − z′
.

(2.3.19)

The second order Rytov approximation term ψ2(ρ, z) can be obtained in a similar

manner. By equating the Born and Rytov approximations up to the second order,

the following expressions are obtained

U0(ρ, z) exp[ψ1(ρ, z) + ψ2(ρ, z)] = U0(ρ, z)[1 + φ1(ρ, z) + φ2(ρ, z)]

ψ1(ρ, z) + ψ2(ρ, z) = ln[1 + φ1(ρ, z) + φ2(ρ, z)]. (2.3.20)

By further using the Maclaurin series of the right hand side and retaining up to the

second order due to |φ1(ρ, z)| � 1 and |φ2(ρ, z)| � 1, it can be shown that

ψ1(ρ, z) + ψ2(ρ, z) ≈ φ1(ρ, z) + φ2(ρ, z)−
1

2
φ2
1(ρ, z). (2.3.21)

With the relation ψ1(ρ, z) = φ1(ρ, z), the second order Rytov approximation term

ψ1(ρ, z) is given by

ψ2(ρ, z) = φ2(ρ, z)−
1

2
φ2
1(ρ, z), (2.3.22)

where the second order normalized Born approximation term φ2(ρ, z) can be obtained
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from Eq. (2.3.14)

φ2(ρ, z) =
k20

2πz

∫ z

0

dz′
∫
d2ρ′ exp

[
ik0(z − z′) +

ik0|ρ− ρ′|2

2(z − z′)

]
× U0(ρ

′, z′)

U0(ρ, z)

φ1(ρ
′, z′)n1(ρ

′, z′)

z − z′
. (2.3.23)

The propagation properties of optical beams in the atmosphere are investigated

through the statistical moments of the propagating wavefield. Of most interest are

the first, second and fourth statistical moments, since they are measurable quantities

by experiments. It has been shown that under weak fluctuation conditions these

statistical moments can be well characterized by the Rytov approximations up to the

second order term [91]. The first order moments describes the mean wavefield

〈U(r)〉 = U0(r)〈exp[ψ(r)]〉. (2.3.24)

The second order moment is defined as

Γ2(r1, r2) = 〈U(r1)U
∗(r2)〉

= U0(r1)U0
∗(r2)〈exp[ψ(r1) + ψ∗(r2)]〉. (2.3.25)

Since it has the same form as the cross-spectral density [Eq. 2.1.5], the coherence

properties of the propagating beam in the atmosphere can be studied through Eq.

(2.3.25). When r1 = r2 = r, Eq. (2.3.25) is the expression for the average intensity

〈I(r)〉 = Γ2(r, r), (2.3.26)

from which the turbulence-induced beam spreading can be evaluated. The intensity
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fluctuations of a wavefield are described by the general fourth order moment

Γ4(r1, r2, r3, r4) = 〈U(r1)U
∗(r2)U(r3)U

∗(r4)〉

= U0(r1)U0
∗(r2)U0(r3)U0

∗(r4)

× 〈exp[ψ(r1) + ψ∗(r2) + ψ(r3) + ψ∗(r4)]〉. (2.3.27)

The strength of intensity fluctuations at r can be quantitatively characterized by the

scintillation index σ2(r). It can be evaluated through Eq. (2.3.27) with r1 = r2 =

r3 = r4 = r

σ2(r) =
〈I2(r)〉
〈I(r)〉2

− 1

=
Γ4(r, r, r, r)

Γ2(r, r)Γ2(r, r)
− 1. (2.3.28)

The ensemble averages in Eqs. (2.3.24), (2.3.25), and (2.3.27) can be calculated by

the method of cumulants [92]

〈exp(ψ)〉 = exp

[
〈ψ〉+

1

2

(
〈ψ2〉 − 〈ψ〉2

)]
. (2.3.29)

On substituting ψm = ψ1m + ψ2m,m = 1, 2, 3, 4 and retaining only terms up to the

second order, Eqs. (2.3.24), (2.3.25), and (2.3.27) are simplified as the following,

respectively,

〈U(r)〉 = U0(r)〈exp[E1(r)]〉, (2.3.30)

Γ2(r1, r2) = U0(r1)U0
∗(r2) exp[E1(r1) + E∗1(r2) + E2(r1, r2)], (2.3.31)
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Γ4(r1, r2, r3, r4) = Γ2(r1, r2)Γ2(r3, r4) exp[E2(r1, r4) + E2(r3, r2)]

× exp[E3(r1, r3) + E∗3(r2, r4)], (2.3.32)

where

E1(r) = 〈ψ2(r)〉+
1

2
〈ψ2

1(r)〉, (2.3.33)

E2(r1, r2) = 〈ψ1(r1)ψ
∗
1(r2)〉, (2.3.34)

E3(r1, r2) = 〈ψ1(r1)ψ1(r2)〉. (2.3.35)

For a given unperturbed optical beam U0(r) and a specific turbulence spectrum

model, the statistical moments of the propagated beam [Eqs. (2.3.30), (2.3.31), and

(2.3.32)] can be evaluated with the expressions of ψ1(r) and ψ2(r) given in Eqs

(2.3.19), (2.3.22), and (2.3.23).

Because the Rytov approximation assumes multiplicative perturbations, it has been

shown that this method leads to the lognormal distribution model of the probability

density function of the irradiance [10]. This model agrees well with the experimental

data obatined in the weak fluctuation regime. Therefore the Rytov approximation

method is the standard method used in the regime where the Rytov variance σ2
1 is

low.

2.3.3 The Extended Huygens-Fresnel Principle Method

The Rytov approximation method yields the most fruitful results in the weak

fluctuation regime. When the fluctuations of optical beams become strong (high

σ2
1), more sophisticated methods must be employed. One relatively straightforward

approach is the use of the extended Huygens-Fresnel principle, which expresses the
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propagating wavefield at a receiver plane z = L in the atmosphere as follows

U(ρ, L) = − ik0
2πL

exp(ik0L)

∫
d2ρ′U0(ρ

′, 0) exp

[
ik0|ρ− ρ′|

2L
+ ϕ(ρ,ρ′)

]
, (2.3.36)

where U0(ρ
′, 0) is the incident wavefield at the transmitter plane z = 0, ϕ(ρ,ρ′) =

ϕ1(ρ,ρ
′) + ϕ2(ρ,ρ

′) is the random part of the complex phase of a spherical wave

propagating in the atmosphere, and ϕ1(ρ,ρ
′) and ϕ2(ρ,ρ

′) are the corresponding

first and second order terms.

By Eq. (2.3.36), the mean field 〈U(ρ, L)〉, the mutual coherence function

Γ2(ρ1,ρ2, L), and the general fourth order moment Γ4(ρ1,ρ2,ρ3,ρ4, L) are obtained,

〈U(ρ, L)〉 = − ik0
2πL

exp(ik0L)

∫
d2ρ′U0(ρ

′, 0) exp

[
ik0|ρ− ρ′|2

2L

]
〈exp [ϕ(ρ,ρ′)]〉,

(2.3.37)

Γ2(ρ1,ρ2, L) = 〈U(ρ1, L)U∗(ρ2, L)〉

=

(
k0

2πL

)2 ∫
d2ρ′1

∫
d2ρ′2U0(ρ

′
1, 0)U∗0 (ρ′2, 0) exp

[
ik0|ρ1 − ρ′1|2

2L

]
× exp

[
−ik0|ρ2 − ρ′2|2

2L

]
〈exp [ϕ(ρ1,ρ

′
1) + ϕ∗(ρ2,ρ

′
2)]〉, (2.3.38)

Γ4(ρ1,ρ2,ρ3,ρ4, L) = 〈U(ρ1, L)U∗(ρ2, L)U(ρ3, L)U∗(ρ4, L)〉

=

(
k0

2πL

)4 ∫
d2ρ′1

∫
d2ρ′2

∫
d2ρ′3

∫
d2ρ′4

× U0(ρ
′
1, 0)U∗0 (ρ′2, 0)U0(ρ

′
3, 0)U∗0 (ρ′4, 0)

× 〈exp [ϕ(ρ1,ρ
′
1) + ϕ∗(ρ2,ρ

′
2)] + ϕ(ρ3,ρ

′
3) + ϕ∗(ρ4,ρ

′
4)〉

× exp

[
ik0|ρ1 − ρ′1|2

2L

]
exp

[
−ik0|ρ2 − ρ′2|2

2L

]
× exp

[
ik0|ρ3 − ρ′3|2

2L

]
exp

[
−ik0|ρ4 − ρ′4|2

2L

]
. (2.3.39)
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The ensemble averages in Eqs. (2.3.37), (2.3.38), and (2.3.39) can be calculated

with the method of cumulants [Eq. (2.3.29)]. After some calculations, the following

expressions are obtained

〈exp [ϕ(ρ,ρ′)]〉 = exp [E1(ρ;ρ′)] , (2.3.40)

〈exp [ϕ(ρ1,ρ
′
1) + ϕ∗(ρ2,ρ

′
2)]〉 = exp [E1(ρ1;ρ

′
1) + E∗1(ρ2;ρ

′
2) + E2(ρ1,ρ2;ρ

′
1,ρ

′
2)] ,

(2.3.41)

〈exp [ϕ(ρ1,ρ
′
1) + ϕ∗(ρ2,ρ

′
2) + ϕ(ρ3,ρ

′
3) + ϕ∗(ρ4,ρ

′
4)]〉

= exp [E1(ρ1;ρ
′
1) + E∗1(ρ2;ρ

′
2) + E1(ρ3;ρ

′
3) + E∗1(ρ4;ρ

′
4)]

× exp [E2(ρ1,ρ2;ρ
′
1,ρ

′
2) + E2(ρ1,ρ4;ρ

′
1,ρ

′
4)]

× exp [E2(ρ3,ρ2;ρ
′
3,ρ

′
2) + E2(ρ3,ρ4;ρ

′
3,ρ

′
4)]

× exp [E3(ρ1,ρ3;ρ
′
1,ρ

′
3) + E∗3(ρ2,ρ4;ρ

′
2,ρ

′
4)] , (2.3.42)

where

E1(ρ;ρ′) = 〈ϕ2(ρ,ρ
′)〉+

1

2
〈ϕ2

1(ρ,ρ
′)〉, (2.3.43)

E2(ρ1,ρ2;ρ
′
1,ρ

′
2) = 〈ϕ1(ρ1,ρ

′
1)ϕ

∗
1(ρ2,ρ

′
2)〉, (2.3.44)

E3(ρ1,ρ2;ρ
′
1,ρ

′
2) = 〈ϕ1(ρ1,ρ

′
1)ϕ1(ρ2,ρ

′
2)〉. (2.3.45)

When the turbulence is statistically homogeneous and isotropic, quantities E1, E2,

and E3 are respectively given by [93]

E1(ρ;ρ′) = −2π2k20L

∫ ∞
0

κΦn(κ)dκ, (2.3.46)
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E2(ρ1,ρ
′
1;ρ2,ρ

′
2) = −4π2k20L

∫ 1

0

dξ

∫ ∞
0

dκκΦn(κ)J0[κ|(1− ξ)p + ξp′|], (2.3.47)

E3(ρ1,ρ
′
1;ρ2,ρ

′
2) = −4π2k20L

∫ 1

0

dξ

∫ ∞
0

dκ exp

[
−iLκ

2

k0
ξ(1− ξ)

]
× κΦn(κ)J0[κ|(1− ξ)p + ξp′|], (2.3.48)

where J0 is the zero order Bessel function of the first kind, p = ρ1 − ρ2, and p′ =

ρ′1 − ρ′2.

The extended Huygens-Fresnel principle method is applicable under any fluctuation

conditions for the purpose of calculating the second order field moments. When

turbulence is homogeneous, the ensemble average 〈exp [ϕ(ρ1,ρ
′
1) + ϕ∗(ρ2,ρ

′
2)]〉 in Eq.

(2.3.38) can be approximated by [24]

〈exp [ϕ(ρ1,ρ
′
1) + ϕ∗(ρ2,ρ

′
2)]〉 ≈ exp

(
−|p|

2 + p · p′ + |p′|2

ρ20

)
, (2.3.49)

where ρ0 = (0.55C2
nk

2L)−3/5 is the coherence length of a spherical wave propagating

in the atmosphere. Eq. (2.3.49) is the well-known quadratic approximation of the

turbulence term. Although it has certain limits [94], it gives a good approximation

of the second order statistical properties of fields in turbulence under many

circumstances. Combined with this approximation, the extended Huygens-Fresnel

principle method has been widely used in the studies of the second order statistical

properties of optical beams propagating through the atmosphere.



35
2.4 Numerical Simulation of Optical Beam Propagation in Atmospheric

Turbulence

In general, a theoretical investigation of optical beam propagation in the

atmosphere is complicated and mathematically challenging. So far, there is no

universal theoretical model applicable under any turbulence conditions. Even in the

weak turbulence regime where the theoretical methods are relatively well developed,

analytic solutions are rare. From Sec. 2.3, it can be found that investigations of

beam scintillation by the extended Huygens-Fresnel principle involves the evaluation

of an eight-fold integral. Exact solutions only exist for a few beam types, and do

not include most special classes considered here. On the contrary, numerical

simulations are relatively straightforward. By simulating beam propagation through

the atmosphere and analyzing the corresponding wavefield on the receiver plane, the

atmospheric propagation properties of such a beam can be obtained.

A typical numerical simulation method for optical beam propagation in atmospheric

turbulence is the so-called multiple random phase screen method [33]. As shown in

Fig. 2.3, the atmosphere, an extended random medium, is divided into a collection

of two dimensional random phase screens whose mutual separation is ∆z. Each

phase screen imposes a random phase modulation into the incident wavefield and the

propagation between two adjacent phase screens is in free space. The propagation

between the nth at plane zn and the n+ 1th at plane zn+1 = zn + ∆z is simulated by

the following procedure

U(ρ, z+n ) = U(ρ, z−n ) exp [iθ(ρ, zn)] , (2.4.1a)
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Figure 2.3: Illustration of multiple random phase screen method.

F
[
U(ρ, z−n+1)

]
= F

[
U(ρ, z+n )

]
H(f), (2.4.1b)

Eq. (2.4.1a) describes the phase modulation θ(ρ, zn) introduced by the nth phase

screen, where U(ρ, z−n ) is the wavefield incident on the phase screen and U(ρ, z+n ) is the

corresponding wavefield emerging from the phase screen. The free space propagation

between these two phase screens is simulated by the Fourier transfrom method [Eq.

(2.4.1b)]. F denotes Fourier transform. H(f) is the transfer function of propagation

in free space [95] and f is the corresponding two dimensional vector in the spatial

frequency domain. Under the paraxial approximation, H(f) takes the following form

[95]

H(f) = exp(ik0∆z) exp
(
−iπλ0∆zf 2

)
, (2.4.2)

where λ0 is the vacuum wavelength. For the propagation of an incident wavefield

U(ρ, z = 0) from the transmitter plane z = 0 to the receiver plane z = L, it can be

simulated by repeating the above procedure for all screens until the wavefield reaches

the receiver plane z = L.

A crucial aspect of numerical simulation is to generate random phase screens with

appropriate statistical properties of the atmosphere. Turbulence is generally assumed
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to be spatially uncorrelated along propagation direction, namely δ correlation. By

this assumption, the power spectral density function of phase screen Φθ takes the

following form [33]

Φθ(κ⊥,∆z) = 2πk20∆zΦn(κ⊥, κz = 0), (2.4.3)

where κ⊥ = (κx, κy). Random phase screens can be generated by filtering white

Gaussian noise with Eq. (2.4.3),

θ1(x, y) + iθ2(x, y) = F−1
{

[a(κx, κy) + ib(κx, κy)] [Φθ(κx, κy,∆z)]−1/2
}
, (2.4.4)

where a(κx, κy) and b(κx, κy) are two mutually independent pseudo-random

variables in the spatial frequency domain, which satisfy the normal distribution.

Upon performing the inverse Fourier transform F−1, two uncorrelated phase screens

θ1(x, y) and θ2(x, y) are generated. A example of a phase screen is illustrated in Fig.

2.4 where the von Karman spectrum is used.

Besides phase screens, a successful numerical simulation of beam propagation in the

atmosphere also depends on appropriate selection of the phase screen separation ∆z.

To correctly model an extended random medium, the intensity fluctuations produced

over the distance ∆z between two consecutive phase screens should be weak. Two

quantitative criteria have been proposed to meet this requirement [33],

σ2(∆z) < 0.1, (2.4.5a)

σ2(∆z) < 0.1σ2(L) if σ2(L) < 0.1, (2.4.5b)

where σ2 denotes the scintillation index. Eq. (2.4.5a) generally requires that the
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Figure 2.4: Example of random phase screen. von Karman spectrum is used, where
L0 = 10 m, l0 = 1 mm, ∆z = 200 m, and λ = 1.55µm. The unit of the scale bar is
radian.

intensity fluctuations should be weak over the interscreen distance ∆z. If the intensity

fluctuations over the whole propagation distance L are weak, the second criterion [Eq.

(2.4.5b)] should be followed, which states that the interscreen intensity fluctuations

should be less than 10% of the total scintillation. By following Eq. (2.4.5), the

minimum number of phase screens can be determined for given beam and propagation

parameters. An example of the simulated on-axis scintillation index of a Gaussian

beam propagating in turbulence is shown in Fig. 2.5. The agreement between the

simulated data and the theoretical result developed in Ref. [84] is observed.

It is worth mentioning that the phase screen generation method [Eq. (2.4.4)] is

based on the Fourier transform (FT), where the turbulence spectrum is discretely

sampled. Due to the limit range of sampling, the lower spatial frequency range of the

turbulence spectrum is undersampled and the corresponding phase screens can not
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Figure 2.5: On-axis scintillation index of a Gaussian beam propagating in turbulence.
The wavelength is taken to be λ = 1.55µm and the width of the beam is taken to be
w0 = 0.05 m. The turbulence strength parameter is C2

n = 10−14 m−2/3 and the phase
screen separation is 100 m.

accurately represent low spatial frequency effects such as tilting. In order to overcome

this defect, subharmonic screen techniques have been proposed [35, 36]. However, it

has been shown that the FT-based method is accurate for the study of the second

order propagation properties of beam propagation in the atmosphere [96]. When

the beam intensity fluctuations are weak to moderate, it can also produce relatively

accurate results of the scintillation properties of optical beams. Considering the

relative high efficiency compared to the subharmonic screen method, the FT-based

method is used in this dissertation.



CHAPTER 3: SCINTILLATION REDUCTION BY INCOHERENT BEAM
ARRAYS

Scintillation is the name given to intensity fluctuations arising from the turbulence

induced random phase modulation that occurs when optical beams propagate through

the atmosphere. Strong scintillation will cause significant data transmission errors and

inevitably make free-space optical communication impractical. Therefore they are one

of the fundamental limitations in the development of free-space optical communication

systems [84].

It is now well-known that partially coherent beams have lower scintillation than that

of their fully coherent counterparts. On propagation through turbulence, a partially

coherent beam delivers its energy through multiple incoherent spatial modes, each of

which has its own distinct propagation path and intensity pattern [97]. Because of

the mutual independence of these modes, the intensity of the partially coherent beam

is the superposition of the individual intensity patterns, and on average the intensity

received by the detector is more uniform.

After years of studies on partially coherent beam propagation in the atmosphere,

the underlying physics of scintillation reduction by partially coherent beams is still

obscure. Finding general guidelines for minimizing scintillation remains an open

problem. On the other hand, generating a partially coherent beam with specific

statistical properties itself is still a difficult issue. According to the coherent mode
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representation theory [81], a partially coherent beam can be expressed as a

collection of incoherent spatial modes. As a special case, it has been shown that

scintillation can be significantly reduced by using incoherent beam arrays [61–63].

Therefore, they are one of the most promising partially coherent sources for

free-space optical communications. However, it has been revealed that the

performance of scintillation reduction by these incoherent beam arrays strongly

depends on their spatial configurations. The possibility of further optimizing

incoherent beam arrays, including the choice of beamlets and their spatial

configurations, relies on the understanding of scintillation reduction by partially

coherent beams.

In this chapter, the general guidelines for minimizing scintillation with incoherent

beam arrays are explored by investigating the scintillation properties of pseudo-Bessel

correlated beams in Sec. 3.1. With these guidelines, a novel beam class, Airy beams,

is applied in the study of incoherent beam arrays in the atmosphere in Sec. 3.2.

3.1 Scintillation Reduction by Pseudo-Bessel Correlated Beams

So far, most studies on the propagation of partially coherent beams in turbulence

have focused on the beams whose spatial correlation function is Gaussian. It has

been shown that the scintillation reduction by a Gaussian correlated beam is

negligible in the strong turbulence regime [10, Chapter 16]. However, it is known

that partially coherent beams of different correlation types have different coherent

mode representations and therefore they have different scintillation properties on

propagation in the atmosphere. Bessel correlated beams are a distinct and unusual
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class of partially coherent beams [98]. The studies on this beam class are inspired

by the attractive properties of its counterpart in coherent regime, Bessel beams,

whose name originates from the fact that their wavefields are expressed by Bessel

functions. Eq. (3.1.1) shows an example of Bessel beam which propagates in the z

direction [99],

Φ(x, y, z; k) = exp(iβz)J0(α
√
x2 + y2), (3.1.1)

where J0 is the zeroth-order Bessel function of the first kind, k is the wavenumber

and α2 + β2 = k2. They have an invariant field distribution across any plane

orthogonal to the direction of propagation [99, 100] and therefore are referred to as

nondiffracting beams. They are also known to be able to reconstruct their initial

intensity profiles after both amplitude and phase perturbations [101]. The studies

on Bessel correlated beams show that they have similar properties to Bessel beams.

It has been demonstrated that a Bessel correlated beam of infinite size is

propagation-invariant in free space and in ABCD systems [102, 103], while a Bessel

correlated beam of Gaussian intensity profile remains almost invariant up to a

certain propagation distance [104]. It is also known that Bessel correlated beams

can be used in focal spot shaping [105]. On noting the unusual properties of Bessel

correlated beams in free-space propagation, it is natural to consider their

scintillation properties when propagating in turbulence.

3.1.1 Model of Pseudo-Bessel Correlated Beams

Ref. [98] introduced a modal expansion for Bessel correlated beams, through which

a Bessel correlated beam is decomposed as an incoherent collection of Bessel beams
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Figure 3.1: Illustration of coordinates. ρ is the projection of position vector r = (ρ, z)
in the transmitter plane z = 0.

of different orders. However, it is relatively difficult to mathematically formulate

the scintillation of Bessel beams on propagation in turbulence. Therefore this modal

expansion is not applicable for the investigation of scintillation properties of Bessel

correlated beams. Here the concept of pseudo-Bessel correlated beams is introduced

by using a discretized form of the Bessel correlation function.

The second order coherence properties of a wavefield in the transmitter plane z = 0

can be characterized by the cross-spectral density W (ρ1,ρ2), which may always be

written as [see Eq. (2.1.4) in Sec. 2.1]

W (ρ1,ρ2) =
√
S(ρ1)

√
S(ρ2)µ(ρ1,ρ2), (3.1.2)

where where ρ1 and ρ2 are the position vectors in the transmitter plane (see Fig.

3.1),S(ρ) = W (ρ,ρ) is the spectral density at ρ and µ(ρ1,ρ2) is the spectral degree

of coherence of the field at ρ1 and ρ2. For a Bessel correlated beam, its spectral

degree of coherence takes on the form

µ(ρ1,ρ2) = J0

(
|ρ1 − ρ2|

r0

)
, (3.1.3)
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Figure 3.2: Illustration of Bessel correlation. r0 = 0.05 m and ∆ρ = |ρ1 − ρ2|. The
full width at half maximum (FWHM) of the central lobe is 0.152 m.

where r0 is the effective correlation length. An illustration of Bessel correlation [Eq.

(3.1.3)] is shown in Fig. 3.2.

When investigating the properties of a partially coherent beam, one important issue

is the synthesis of the random wavefield such that its cross-spectral density has the

desired form. For a Bessel correlated beam characterized by Eq. (3.1.3), it is noted

that a Bessel function satisfies the well-known identity [106, Chapter 11]

J0

(
|ρ1 − ρ2|

r0

)
=

1

2π

∫ 2π

0

exp [iku⊥ · (ρ1 − ρ2)] dφu⊥ , (3.1.4)

where k is wavenumber, |u⊥| = 1/(kr0) and φu⊥ is the azimuthal angle of u⊥. On

substituting Eq. (3.1.4) into Eq. (3.1.2) and discretizing the integral, the cross-
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Figure 3.3: Illustration of pseudo-Bessel correlated beam. kn is the wave vector of
the nth beamlet. kn = kun and its direction is specified by the unit vector un whose
projection in the source plane is u⊥n. θ = 2arcsin(|u⊥n|) is the vertex of cone.

spectral density can be approximated by a finite number of modes as

W (ρ1,ρ2) ≈
N∑
n=1

An(ρ1)A
∗
n(ρ2), (3.1.5)

where

An(ρ) =
1√
N

√
S(ρ) exp(iku⊥n · ρ), (3.1.6)

N is the number of modes and u⊥n = ( 1
kr0
, 2nπ
N

) in polar coordinates. It can be seen

that an exact Bessel correlated beam can be synthesized by the beamlets specified by

Eq. (3.1.6) when N approaches infinity. As illustrated in Fig. 3.3, the wave vectors of

these beamlets form a cone whose vertex angle is inversely related to the correlation

length r0. When N is of finite value, a partially coherent beam whose cross-spectral

density is specified by Eqs. (3.1.5) and (3.1.6) is defined as a pseudo-Bessel correlated

beam. Fig. 3.3 also suggests a potential method to generate a pseudo-Bessel correlated

beam, i.e. a bundle of fiber lasers arranged either to directly diverge at angle θ or

first converge in a transmitter plane of angle θ.

In principle the spectral density S(ρ) can be of arbitrary profile. In this section, it
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is taken to be Gaussian, which is

S(ρ) = exp

(
−2ρ2

w2
0

)
, (3.1.7)

where w0 indicates the width of the Gaussian profile. The average intensity in the

transmitter plane L = 0 is therefore a Gaussian, regardless of state of coherence.

3.1.2 Formulation of Scintillation Index in Weak Turbulence

A pseudo-Bessel correlated beam whose constituent beamlets are specified by Eqs.

(3.1.6) and (3.1.7) is considered at the source plane z = 0. On propagation through

weak turbulence, the wavefield of the nth beamlet can be represented by a so-called

Rytov series (see Sec. 2.3.2)

An(ρ, z) = A0n(ρ, z) exp [ψn1(ρ, z) + ψn2(ρ, z) + · · ·] , (3.1.8)

where A0n(ρ, z) is the wavefield of the nth beamlet in the absence of the turbulence,

ψn1(ρ, z) and ψn2(ρ, z) are the complex phase perturbations of the first and the second

order associated with the nth beamlet, respectively. With the assumption of weak

turbulence, perturbation terms of order higher than two are neglected.

Because of the mutual independence of the constituent beamlets, the intensity of

the pseudo-Bessel correlated beam at the receiver plane z = L is

I(ρ, L) =
N∑
n=1

In(ρ, L), (3.1.9)

where In(ρ, L) = |An(ρ, L)|2 is the intensity of the nth beamlet. The intensity

fluctuations of the pseudo-Bessel correlated beam at the receiver plane are



47
characterized by the scintillation index which is defined as

σ2(ρ, L) =
〈I2(ρ, L)〉
〈I(ρ, L)〉2

− 1, (3.1.10)

where the angle brackets stand for the average of the realizations of turbulence. With

Eq. (3.1.9), the scintillation index can be rewritten as

σ2(ρ, L) =

∑N
m=1

∑N
n=1〈Im(ρ, L)In(ρ, L)〉[∑N
n=1〈In(ρ, L)〉

]2 − 1. (3.1.11)

Within the framework of the Rytov approximation, the average intensity of the nth

beamlet 〈In(ρ, L)〉 and the average cross-intensity between the mth and nth beamlets

〈Im(ρ, L)In(ρ, L)〉 in Eq. (3.1.11) are formulated by (for the detailed derivations, see

Appendix A)

〈In(ρ, L)〉 = |A0n(ρ, L)|2 exp {2Re[En
1 (ρ, L)] + Enn

2 (ρ, L)} , (3.1.12)

〈Im(ρ, L)In(ρ, L)〉 = 〈Im(ρ, L)〉〈In(ρ, L)〉

× exp {2Re[Emn
2 (ρ, L)] + 2Re[Emn

3 (ρ, L)]} , (3.1.13)

where

En
1 (ρ, L) = −πk2 exp

[
ikLu2⊥n
2p(L)

] ∫
Φn(κ)d2κ

×
∫ L

0

exp

[
−ikηu2⊥n

2p(η)

]
exp

[
−ikγ(η)(L− η)u2⊥n

2p2(η)

]
dη, (3.1.14)



48

Emn
2 (ρ, L) = 2πk2 exp

[
ikLu2⊥m
2p(L)

]
exp

[
−ikLu2⊥n

2p∗(L)

]
×

∫ L

0

exp

{
−ik

2p(η)

[
η +

γ(η)(L− η)

p(η)

]
u2⊥m

}
× exp

{
ik

2p∗(η)

[
η +

γ∗(η)(L− η)

p∗(η)

]
u2⊥n

}
dη

×
∫

exp

{
−i [γ(η)− γ∗(η)] (L− η)κ2

2k

}
exp {i [γ(η)− γ∗(η)]κ · ρ}

× exp

{
−i(L− η)κ ·

[
u⊥m
p(L)

− u⊥n
p∗(L)

]}
Φn(κ)d2κ, (3.1.15)

Emn
3 (ρ, L) = −2πk2 exp

[
ikLu2⊥m
2p(L)

]
exp

[
ikLu2⊥n
2p(L)

]
×

∫ L

0

exp

{
−ik

2p(η)

[
η +

γ(η)(L− η)

p(η)

]
(u2⊥m + u2⊥n)

}
dη

×
∫

exp

[
−i(L− η)

p(L)
κ · (u⊥m − u⊥n)

]
× exp

[
−iγ(η)(L− η)κ2

k

]
Φn(κ)d2κ, (3.1.16)

where p(L) = 1+ i2L
kw2

0
, γ(η) = p(η)

p(L)
and Φn(κ) is the power spectrum of the turbulence.

3.1.3 Examples and Analysis

With the von Karman spectrum

Φn(κ) = 0.033C2
n

exp(−κ2/κ2m)

(κ2 + κ20)
11/6

, (3.1.17)

the scintillation index of a pseudo-Bessel correlated beam can be numerically

evaluated by substituting Eqs. (3.1.12)-(3.1.17) into Eq. (3.1.11). Here

κm = 5.92/lm with the inner scale lm = 1 mm and κ0 = 1/l0 with the outer scale

l0 = 10 m.

A simple example of a Bessel correlated beam is one with two beamlets. Its on-axis

scintillation as a function of the relative correlation length r0/w0 in weak turbulence
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is shown in Fig. 3.4. The turbulence strength parameter is C2

n = 10−15 m−2/3 and the

propagation distance is L = 2 km. The on-axis scintillation index of a fully coherent

Gaussian beam with the same width w0 is also shown on the plot as a horizontal

line for comparison. It can be seen that a minimum of the scintillation for a pseudo-

Bessel correlated beam occurs when r0/w0 ≈ 0.32, which is 50% of the scintillation of

a Gaussian beam alone. The simulated on-axis scintillation indices for some different

values of r0/w0, obtained by the multiple random phase screen method, are also

shown in Fig. 3.4 for comparison. In the simulation, the constituent beamlets given

by Eq. (3.1.6) are propagated through the same realization of the turbulence, and

their intensities are added at the receiver plane according to Eq. (3.1.9). As shown by

Fig. 3.4, the numeric results have good agreement with the analytic results obtained

by the Rytov theory.

The origin of the minimum scintillation in Fig. 3.4 can be explained by

straightforward physical reasoning. In the coherent limit r0 = ∞, the cone in Fig.

3.3 shrinks into a line. In effect, all beamlets propagate along the z-axis and

through the same region of turbulence. Consequently, the scintillation in this case is

equivalent to that of a single Gaussian beam. As the correlation length r0 decreases

from the coherent limit r0 → ∞, the beamlets gradually separate. They propagate

in different directions and through different parts of the atmosphere. As a result,

their fields are less correlated on propagation through the turbulence and on average

the scintillation of the pseudo-Bessel correlated beam is reduced. However, in the

low coherence regime (r0 → 0), the constituent beamlets propagate in directions
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Figure 3.4: The on-axis scintillation of a 2-beamlet pseudo-Bessel correlated beam as
a function of the relative correlation length r0/w0. Here the wavelength is taken to be
λ = 1.55µm and the width of the beam is taken to be w0 = 0.05 m. The turbulence
strength parameter is C2

n = 10−15 m−2/3 and the propagation distance is L = 2 km.

very distant from the horizontal axis, resulting in low light intensity being received

by the on-axis detector. This corresponds to a very small denominator in Eq.

(3.1.10) and consequently a very large value for the scintillation index. After

balancing the path independence of the beamlets with a high intensity at the

detector, an optimal solution of r0 exists between the low and high coherence

extremes.

From the beam model developed in Sec. 3.1.1, a true Bessel correlated beam is

the extreme case of the pseudo-Bessel correlated beam when the number of

beamlets N → ∞. Therefore, its scintillation properties can be probed by

investigating the scintillation properties of the corresponding pseudo-Bessel

correlated beam with a significantly large N . Fig. 3.5 illustrates the dependence of
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Figure 3.5: The on-axis scintillation of a pseudo-Bessel correlated beam as a function
of the number of its constituent beamlets N . The relative correlation length is taken
to be r0/w0 = 0.33. The rest of the parameters are the same as in Fig. 3.4.

the on-axis scintillation index of a pseudo-Bessel correlated beam on the number of

its constituent beamlets. The relative correlation length r0/w0 is 0.33. As N

increases, the on-axis scintillation index falls and saturates rapidly. When N is

small, the propagation of the additional beamlets is still relatively uncorrelated with

the propagation of the existing beamlets and the scintillation of the pseudo-Bessel

correlated beam is reduced. However, when N is large, the additional beamlets

propagate through very similar regions of turbulence as the existing beamlets and

make no further contribution to the scintillation reduction. From Fig. 3.5, it can be

seen that the scintillation of a Bessel correlated beam can be well represented by the

scintillation of a pseudo-Bessel correlated beam with a finite number of constituent

beamlets. As illustrated by Fig. 3.6, the minimum on-axis scintillation index of a
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16-beamlet pseudo-Bessel correlated beam is 21% of the on-axis scintillation index

of a Gaussian beam.

Figs. 3.5 and 3.6 show that for the purpose of scintillation reduction a true Bessel

correlated beam is not significantly better than a beam with a finite and even small

number of modes. This observation has important implications for the use of

partially coherent beams in scintillation reduction. In general, the crucial reason for

the overall scintillation reduction of a partially coherent beam is the mutually

independent propagation of their constituent beamlets through the atmosphere.

This requirement is referred to as the need for diversity in the beamlet behavior.

This diversity could be spatial (beamlets start at different locations as studied in

Refs. [61–63]) or directional (beamlets start at the same location but propagate in

different directions as shown in Fig. 3.3). However, a partially coherent beam can

always be decomposed into a continuous collection of beamlets, and most of this

continuum provides no improvement over a discrete set of beamlets. The results

here suggest that familiar classes of partially coherent beams are, in a sense,

wasteful.

The analytic formulae of scintillation of pseudo-Bessel correlated beams obtained by

the Rytov approximation in Sec. 3.1.2 is valid only in weak turbulence. However the

multiple random phase screen method does not have this limitation. Now the study

on the scintillation of pseudo-Bessel correlated beams is extended into the strong

turbulence regime by numeric simulations. The turbulence strength parameter is

C2
n = 10−14 m−2/3 and the propagation distance is L = 3 km. As shown in Fig. 3.7,
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Figure 3.6: The on-axis scintillation of a 16-beamlet pseudo-Bessel correlated beam
as a function of the relative correlation length r0/w0. The parameters are the same
as in Fig. 3.4.

the behavior of the on-axis scintillation index of a pseudo-Bessel correlated beam as

a function of the relative correlation length r0/w0 is similar to the analytic result

obtained by the Rytov theory and the maximum scintillation reduction saturates as

the increase of the number of constituent beamlets N . When N = 8, a minimum on-

axis scintillation index, 26.8% of the on-axis scintillation index of a Gaussian beam,

is obtained when r0/w0 = 0.28. Fig. 3.8 illustrates the on-axis scintillation index

of a 8-beamlet pseudo-Bessel correlated beam as a function of the Rytov variance

[Eq. (2.3.7)]. The beam is of the optimal correlation length obtained from Fig. 3.7.

It can be seen that the pseudo-Bessel correlated beam significantly outperforms the

Gaussian beam.
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Figure 3.7: The on-axis scintillation of a pseudo-Bessel correlated beam as a function
of the relative correlation length r0/w0. The wavelength is also λ = 1.55µm and
the width of the beam is w0 = 0.05 m. Here the turbulence strength parameter is
C2
n = 10−14 m−2/3 and the propagation distance is L = 3 km.

3.1.4 Scintillation of Modified Pseudo-Bessel Correlated Beams

As discussed in Sec. 3.1.3, the scintillation of a pseudo-Bessel correlated beam

increases rapidly if the correlation length decreases below its optimal value. This

arises because the beamlets mostly “miss” the detector, but high variations in

intensity are produced when a beamlet occasionally wanders into its range. To

correct this, the configuration of pseudo-Bessel correlated beams is modified by

adding an independent horizontal beamlet

E(ρ, z = 0) = E0 exp

(
− ρ

2

w2
0

)
, (3.1.18)

where E0 is the amplitude. For simplicity, its beam width is also w0.
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Figure 3.8: The on-axis scintillation of a 8-beamlet pseudo-Bessel correlated beam as
a function of the Rytov variance σ2

1. The relative correlation length is r0/w0 = 0.28
and the other parameters are the same as in Fig. 3.7.

It can be shown that the on-axis scintillation index of the modified pseudo-Bessel

correlated beam takes on the minimum value given by1

σ2
min =



σ2
pbσ

2
h−(σ

2
pb,h)

2

σ2
pb+σ

2
h−2σ

2
pb,h

if σ2
pb,h < min[σ2

pb, σ
2
h]

min[σ2
pb, σ

2
h] otherwise

, (3.1.19)

when

E0 =

√
Ipb(σ2

pb − σ2
pb,h)

Ih(σ2
h − σ2

pb,h)
if σ2

pb,h < min[σ2
pb, σ

2
h]. (3.1.20)

In Eqs. (3.1.19) and (3.1.20), σ2
pb and σ2

h are the on-axis scintillation indices of the

pseudo-Bessel correlated beam and the horizontal beamlet, respectively. σ2
pb,h is the

on-axis cross scintillation index between the pseudo-Bessel correlated beam and the

1Eqs. (3.1.19) and (3.1.20) can be obtained by a similar manner shown in Sec. 4.1.2.
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horizontal beamlet, which is defined as

σ2
pb,h =

〈IpbIh〉
〈Ipb〉〈Ih〉

− 1. (3.1.21)

Ipb and Ih are the on-axis intensities of the pseudo-Bessel correlated beam and the

horizontal beamlet. min[σ2
pb, σ

2
h] takes the minimum between σ2

pb and σ2
h. In addition,

with the assumption of isotropic turbulence, it can be shown that

〈Ipb〉 = 〈ΣN
n=1In〉 = N〈In〉

〈IpbIh〉 = 〈ΣN
n=1InIh〉 = N〈InIh〉. (3.1.22)

On substituting Eq. (3.1.22) into Eq. (3.1.21), it can be shown that σ2
pb,h = σ2

n,h

where

σ2
n,h =

〈InIh〉
〈In〉〈Ih〉

− 1 (3.1.23)

is the on-axis cross scintillation index between the nth beamlet of the pseudo-Bessel

correlated beam and the horizontal beamlet.

In weak turbulence, the minimum on-axis scintillation index of the modified pseudo-

Bessel correlated beams [Eq. (3.1.19)] can be numerically evaluated by the formulae

derived in Sec. 3.1.2. It is illustrated as a function of the relative correlation length

r0/w0 in Fig. 3.9. The corresponding optimal amplitude E0 is also shown. The

number of constituent beamlets of the pseudo-Bessel correlated beam is 16. It can be

seen that when coherence is relatively high, the minimum on-axis scintillation index

of the modified pseudo-Bessel correlated beam is equal to the on-axis scintillation

index of the pseudo-Bessel correlated beam itself because σ2
pb < σ2

pb,h and σ2
pb < σ2

h.
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Figure 3.9: In (a) the dashed curve shows the on-axis scintillation of a 16-beamlet
pseudo-Bessel correlated beam as a function of the relative correlation length r0/w0,
while the solid curve shows the minimum on-axis scintillation of the corresponding
modified pseudo-Bessel correlated beam. The optimal amplitude E0 is shown in (b).
The parameters are the same as in Fig. 3.6.

Therefore there is no need to add the additional horizontal beamlet in this regime.

However in the low coherence regime, σ2
pb,h < min[σ2

pb, σ
2
h], the additional horizontal

beamlet keeps the scintillation of the modified pseudo-Bessel correlated beams at a

low level for a relatively large range of the correlation length r0. If r0 further decreases,

it can be expected that the detected on-axis intensity is dominated by the additional

horizontal beamlet and the on-axis scintillation index of the modified pseudo-Bessel

correlated beam increases and approaches σ2
h eventually.

Fig. 3.10 illustrates the minimum on-axis scintillation index of the modified pseudo-

Bessel correlated beams as well as the optimal amplitude E0 in strong turbulence;

these quantities are obtained by numeric simulations. The number of constituent

beamlets of the pseudo-Bessel correlated beam is 8. A behavior similar to that of

Fig. 3.9 is observed.
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Figure 3.10: In (a) the dashed curve shows the on-axis scintillation of a 16-beamlet
pseudo-Bessel correlated beam as a function of the relative correlation length r0/w0,
while the solid curve shows the minimum on-axis scintillation of the corresponding
modified pseudo-Bessel correlated beam. The optimal amplitude E0 is shown in (b).
The parameters are the same as in Fig. 3.7.

3.2 Scintillation Reduction by Airy Beam Arrays

From Sec. 3.1, it has been shown that beamlets’ independent propagation in the

atmosphere is crucial for scintillation reduction by incoherent beam arrays. For

either the directionally diverse incoherent beam arrays such as pseudo-Bessel

correlated beams or the spatially diverse incoherent beam arrays studied in

Refs. [61–63], significant scintillation reduction can be achieved with appropriate

separation of the constituent beamlets. However, both of these two kinds of

incoherent beam arrays suffer significant scintillation increase if the spatial

separation of beamlets deviates from the optimal value. In addition, the problem of

low received energy exists since their beamlets are spatially diverse. Recently a

different configuration of incoherent beam array was investigated [107]. The
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spatially diverse beamlets are inclined to overlap at the receiver plane and the

results show advantages over that the parallel beamlets configuration studied in

Refs. [61–63]. However, an optimal inclination could be difficult to achieve over long

propagation distances.

The abovementioned problems of incoherent beam arrays in turbulence applications

are due in part to the fact that their beamlets belong to conventional beam classes

whose average propagation paths in turbulence are straight lines. So far, the typical

beam class for the generation of incoherent beam arrays is Gaussian beams. On

propagation in the atmosphere, most of the energy transmitted by Gaussian beams

is distributed along their own propagation axes. As a result, they only partially

overlap on the receiver plane and only a small proportion of the transmitted energy

is received by the on-axis detector. In addition to being inefficient, the low received

intensity corresponds to a small denominator in Eq. (3.1.10) and consequently a large

value for the scintillation index. With these difficulties in mind, a straightforward

solution arises, i.e. developing an array of special beamlets that are initially spatially

separated but can self-bend on propagation and finally overlap at the receiver plane.

The recent studies on Airy beams provide a potential method to generate such

special incoherent beam arrays. Airy wave packets were initially reported as a

nondiffracting solution of the free-space Schrödinger equation within the context of

quantum mechanics [108]. By the mathematical analogy between the free-space

Schrödinger equation and the paraxial wave equation, optical Airy beams were

theoretically predicted and experimentally observed [109, 110]. The most exotic
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feature of Airy beams is their ability to transversely accelerate, i.e. to propagate

along parabolic trajectories in free space [111]. It has also been shown that Airy

beams can self-reconstruct themselves after partial obstruction by obstacles and

that they retain their intensity profiles under turbulent conditions [78]. These

intriguing properties suggest that Airy beams could be a good choice for incoherent

beam arrays in turbulence applications.

3.2.1 Propagation of Airy Beams in Atmospheric Turbulence

To begin with, the free-space propagation of Airy beams is considered. They satisfy,

as do all beams, the normalized paraxial wave equation

i
∂U

∂ξ
+
∂2U

∂s2
= 0, (3.2.1)

where ξ = z/k0x
2
0 is the normalized propagation distance and s = x/x0 is a

dimensionless transverse coordinate. x0 is a arbitrary transverse scale. It can be

shown that this equation has the following solution

U(ξ, s) = Ai
[
s− (ξ/2)2

]
exp

[
i
(
sξ/2− ξ3/12

)]
, (3.2.2)

where Ai(x) represents the Airy function

Ai(x) =
1

π

∫ ∞
0

cos

(
1

3
t3 + xt

)
dt. (3.2.3)

Eq. (3.2.2) represents a nondiffracting beam since the intensity profile (∝ |U(ξ, s)|2)

does not change on propagation. Furthermore, it can be seen that the origin of the

beam accelerates in the positive s-direction with increasing ξ. However, an ideal
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Airy beam is not physically realizable, as it possesses infinite energy2. Siviloglou et

al. [109, 110] proposed and demonstrated a feasible model by truncating ideal Airy

beams with an exponential function, which takes the following form in the source

plane z = 0,

U(s, ξ = 0) = Ai(s) exp(as). (3.2.4)

Here a is the exponential truncation factor. With this initial condition, the

propagating wavefield at plane z is given by

U(s, ξ) = Ai
[
s− (ξ/2)2 + iaξ

]
exp

[
as−

(
aξ2/2

)
− i
(
ξ3/12

)
+ i
(
a2ξ/2

)
+ i (sξ/2)

]
.

(3.2.5)

The propagation dynamics of an Airy beam is illustrated in Fig. 3.11, which clearly

shows a parabolic trajectory and indicates that the beam self bends in the transverse

direction on propagation in free space. The model of an Airy beam given in Eq.

(3.2.5) can be easily extended to a two dimensional model, of the form

U(sx, sy, ξ) = U(sx, ξ)U(sy, ξ), (3.2.6)

where sx = x/x0 and sy = y/y0. x0 and y0 are transverse scales. For the symmetric

case when x0 = y0, it can be anticipated that Airy beams move along the 45◦ axis in

the x− y plane.

The self-bending property of Airy beams seen in Fig. 3.11 indicates a potential

type of incoherent beam array configuration: an array of Airy beams that begin at

different transverse locations but curve to come together at the detector. However,

2The total energy is proportional to
∫
|U(ξ, s)|2dξ, while here

∫
|U(ξ, s)|2dξ →∞ for Airy beams.
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Figure 3.11: Illustration of propagation dynamics of an 1-D Airy beam in free space.
The wavelength is taken to be λ = 1.55µm, the transverse scale x0 = 0.012 m, and
the truncation factor a = 0.1.

it is not clear whether Airy beams can maintain their acceleration property over the

kilometer-order atmospheric propagation distances required for atmospheric

communication. Therefore, before considering scintillation, it is necessary to

investigate their propagation dynamics in the atmosphere.

The atmospheric propagation dynamics of a beam can be studied through the

evolution of its average intensity profile in the atmosphere. By the extended Huygens-

Fresnel principle, the average intensity 〈I〉 of a beam at plane z = L is given by

〈I(ρ, L)〉 =

(
k0

2πL

)2 ∫
d2ρ′1

∫
d2ρ′2U0(ρ

′
1, 0)U∗0 (ρ′2, 0) exp

[
ik0|ρ− ρ′1|2

2L

]
× exp

[
−ik0|ρ− ρ′2|2

2L

]
〈exp [ϕ(ρ,ρ′1) + ϕ∗(ρ,ρ′2)]〉, (3.2.7)

where U(ρ′, 0) is the incident wavefield on the source plane and ϕ(ρ,ρ′1) is the random
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part of the complex phase of a spherical wave. On substituting the expression of Airy

beam on the source plane

U(ρ′, 0) = U(x′, y′, 0)

= Ai(s′x) exp(as′x)Ai(s′y) exp(as′y), (3.2.8)

and using the quadratic approximation of the turbulence term in Eq. (3.2.7) [see Eq.

(2.3.49) in Sec. 2.3.3]

〈exp [ϕ(ρ,ρ′1) + ϕ∗(ρ,ρ′2)]〉 ≈ exp

[
−(ρ′2 − ρ′1)

2

ρ20

]
, (3.2.9)

the propagation dynamics of Airy beams in the atmosphere can be studied by

numerically evaluating Eq. (3.2.7).

Fig. 3.12 illustrates the average propagation dynamics of a 2-D Airy beam in

turbulence. It can be seen that on average the beam still propagates along a

parabolic trajectory in the atmosphere; its average intensity decreases more rapidly.

However, one precondition to use Airy beams in incoherent beam arrays for

turbulence applications is to determine the curvature of their parabolic trajectories,

so that the intensity peaks of individual Airy beamlets can be chosen to fully

overlap on the detector plane and the the energy received by the on-axis detector

can be maximized. Fig. 3.13 shows the position of an Airy beam’s peak as a

function of propagation distance, which explicitly illustrates the curvature of the

beam propagation trajectory. When propagating in free space an Airy beam

initially propagates along a parabolic trajectory, but eventually loses the free
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Figure 3.12: Illustration of average propagation dynamics of an 2-D truncated Airy
beam in turbulence. The wavelength is taken to be λ = 1.55µm, the transverse scale
x0 = 0.012 m and y0 = 0.012 m, the truncation factor a = 0.1, and the turbulence
strength parameter C2

n = 10−14 m−2/3.

transverse acceleration feature due to the exponential truncation, as pointed out in

Ref. [109]. For the propagation in the atmosphere, the beam propagates along a

similar trace except that the turbulence makes the transverse displacement of the

peak smaller than the one in free space propagation in the parabolic part. As shown

in Fig. 3.13, this difference in the transverse displacement becomes larger as the

propagation distance increases.

3.2.2 Scintillation of Airy Beam Arrays in Atmospheric Turbulence

As the self-bending property of Airy beams in turbulence propagation has been

demonstrated in the previous section, now they can be used to generate an incoherent

beam array for turbulence applications. A 4-beamlet Airy beam array is defined,
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Figure 3.13: The position of the beam peak for an Airy beam in free space (solid)
and in turbulence (dashed). The parameters are the same as in Fig. 3.12.

where its beamlets take on the following form in the plane z = 0

Um(sxm, sym) = Ai(sxm) exp(asxm)Ai(sym) exp(asym), (3.2.10)

where 
sxm = (x cos θm + y sin θm + d) /x0,

sym = (−x sin θm + y cos θm + d) /y0,

(3.2.11)

d is the transverse displacement parameter and m = 1, 2, 3, 4 labels the mth

beamlet. Here x0 and y0 are taken to be 0.012 m, a = 0.1 and θm = (m−1)π
2

. The

first beamlet is obtained by shifting an Airy beam [Eq. (3.2.6)] in the x − y plane

for (−d,−d) and the rest of beamlets are obtained by rotating the first beamlet for
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the corresponding angle θm in counterclockwise. For specific propagation and

turbulence conditions, the transverse displacement parameter d should be carefully

chosen so that the average peaks of the all four Airy beamlets will fully overlap on

the corresponding receiver plane. From the analysis in Sec. 3.2.1, it can be shown

that the position of the Airy beam’s average peak is at (0.046 m, 0.046 m) after

propagating 3 km in turbulence when its strength is C2
n = 10−14 m−2/3. Therefore

the transverse displacement parameter d is taken to be 0.046 m under these

conditions3. The multiple random phase screen method is used to simulate Airy

beam propagation in the atmosphere. Fig. 3.14 illustrates the simulated intensity

pattern of the array in the receiver plane z = 3 km. Compared to the corresponding

intensity pattern in the transmitter plane z = 0, it can be seen that the four initially

separated beamlets meet in the receiver plane and their intensity peaks fully overlap

at the on-axis detector.

The scintillation of an Airy beam array at the receiver plane is characterized by

the scintillation index

σ2(x, y, L) =
< I2(x, y, L) >

< I(x, y, L) >2
− 1, (3.2.12)

where the instantaneous intensity I is the superposition of the constituent beamlets’

instantaneous intensities. The correlation of intensity fluctuations between two

3It is worth mentioning that for relatively short propagation distances, the difference between
the free-space and atmospheric trajectories of an Airy beam is small (Fig. 3.13). Therefore it will
not lead to significant difference if the transverse displacement parameter d is estimated based on
the Airy beam’s free-space expression [Eq. (3.2.5)].
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Figure 3.14: Illustration of the intensity patterns of a 4-beamlet Airy beam array
in (a) the transmitter plane and (b) receiver plane. The transverse displacement
parameter d is taken to be 0.046 m. The rest of the parameters are the same as in
Fig. 3.12.

individual beamlets is characterized by the cross scintillation index

σ2
mn(x, y, L) =

< Im(x, y, L)In(x, y, L) >

< Im(x, y, L) >< In(x, y, L) >
− 1. (3.2.13)

When the subscripts m = n, Eq. (3.2.13) reduces to Eq. (3.2.12) and represents the

self scintillation index of the mth beamlet. The simulated on-axis self and cross

scintillation indices of the four beamlets of Airy beam array are shown in Tab. 3.1.

The self scintillation indices are roughly the same, on average about 0.604. The

cross scintillation indices are nearly zero. It is shown that the four beamlets

propagate through relatively independent regions of turbulence and their own

turbulence-induced intensity fluctuations are mutually uncorrelated. As a result, the

4The on-axis self scintillation indices of the four beamlets should be theoretically the same by
the assumption of the homogeneous and isotropic turbulence. The small discrepancy in Tab. 3.1 is
possibly due to the discrete sampling of the turbulence spectrum and the finite number of realizations.



68
Table 3.1: On-axis self and cross scintillation indices of the four constituent beamlets
of an Airy beam array at the receiver plane L = 3 km. The transverse displacement
parameter d is 0.046 m. The rest parameters are the same as in Fig. 3.12.

σ2
mn n = 1 n = 2 n = 3 n = 4

m = 1 0.5835 0.0178 −0.0131 0.0071
m = 2 0.0178 0.5962 0.0356 0.0155
m = 3 −0.0131 0.0356 0.5980 −0.0163
m = 4 0.0071 0.0155 −0.0163 0.6107

on-axis scintillation index of the beam array, which is 0.1551, is roughly one fourth

of the on-axis scintillation indices of the individual beamlets. This is very close to

the theoretical limit of the maximum scintillation reduction of beam arrays, i.e.

σ2
min = σ2

ind/N , where σ2
ind is the scintillation index of the individual beamlet and N

is the number of beamlets.

Here the scintillation properties of a 4-beamlet Airy beam array is considered. It

is also to be noted from Tab. 3.1 that a two or three-beamlet array will produce a

one-half or two-thirds reduction, respectively. In principle, the number of the

constituent beamlets could be of any positive integer and the corresponding beam

array can be generated in a similar manner as the four beamlet case [Eqs. (3.2.10)

and (3.2.11)]. When the prerequisite of the beamlets independent atmospheric

propagation is satisfied, the overall scintillation of a beam array can be further

reduced by increasing the number of beamlets. However, the maximum number of

beamlets is limited by the transverse displacement of Airy beamlets. A typical Airy

beam array configuration is shown in Fig. 3.14a. The four beamlets are located on a

circle centered on the propagation axis, while the radius of this circle takes the value
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of the transverse displacement of Airy beamlets. As the number of beamlets on this

circle increases, their mutual separation decreases until it reaches the minimum

value required by the prerequisite of the beamlets independent atmospheric

propagation. For the beam and atmospheric propagation parameters used in this

chapter, the on-axis scintillation indices of an Airy beam array are 0.1152 and

0.0992 when the number of beamlets is 6 and 8 respectively. Compared to the

scintillation index of individual beamlets (≈ 0.60), it is evidently shown that the

scintillation reduction contributed by adding beamlets is saturated when the

number of beamlet is 8.

It is worth noting that a sufficient initial separation between the beamlets of an Airy

beam array is crucial for their mutually independent propagation through turbulence.

It requires large transverse displacements of the beamlets’ intensity peaks so that they

can overlap at the receiver plane. However, a practical Airy beam is truncated and

of finite energy. As shown in Fig. 3.13, these Airy beams can only keep their free

transverse acceleration feature up to a certain propagation distance. Considering the

long-range propagation of optical beams in free-space optical communications, the

transverse scale and truncation parameters of Airy beams should be appropriately

chosen so that they can retain adequate transverse displacements of intensity peaks.

3.3 Summary

In this chapter, the scintillation properties of pseudo-Bessel correlated beams of

Gaussian intensity profile have been investigated in both weak and strong

turbulence. With an appropriately-chosen coherence parameter, it is demonstrated
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that such beams have lower scintillation than comparable fully coherent Gaussian

beams. Pseudo-Bessel correlated beams are effectively a kind of directionally diverse

incoherent beam array. It is noted that scintillation reduction by incoherent beam

arrays is generally due to the constituent beamlets’ mutually independent

propagation through turbulence, which is the result of sufficient spatial separation

between the bemlets. It suggests that in general, the optimal scintillation reduction

can always be achieved with a relatively small and finite number of such beamlets.

Considering that a partially coherent beam is the incoherent superposition of a

continuous collection of beamlets, these results suggest that true partially coherent

beams are in sense wasteful and incoherent beam arrays are an effective method for

scintillation reduction.

Based on the results on pseudo-Bessel correlated beams, the scintillation properties

of Airy beam arrays in the atmosphere was also studied. By utilizing the self-bending

property of Airy beams, it has been shown that with appropriate parameters, the

Airy beamlets can propagate through relatively independent regions of turbulence

but still largely overlap at the on-axis detector. The scintillation of the beam array

is significantly reduced compared to a single Airy beam and near the theoretical

minimum.



CHAPTER 4: SCINTILLATION REDUCTION BY NONUNIFORMLY
POLARIZED BEAMS

In Chapter 3, scintillation reduction by incoherent beam arrays has been

investigated. To better understand the mechanism by which reduction occurs, the

expression of scintillation index for an incoherent beam array [Eq. (3.1.11)] can be

rewritten in the following form

σ2 =

∑N
m=1

∑N
n=1〈ImIn〉(∑N

n=1〈In〉
)2 − 1

=

∑N
m=1〈Im〉2σ2

mm +
∑N

m=1

∑N
n=1,n 6=m〈Im〉〈In〉σ2

mn(∑N
n=1〈In〉

)2 , (4.0.1)

where the argument (ρ, L) is omitted for brevity. The quantities σ2
mm and σ2

mn are

the self and cross scintillation indices, defined in Eq. (3.2.13). With appropriate

angular separation, pseudo-Bessel correlated beams have small scintillation because

the intensity correlation between the constituent beamlets is low, corresponding to

small cross-scintillation terms σ2
mn in Eq. (4.0.1). On the other hand, the significant

scintillation increase of pseudo-Bessel correlated beams in the low coherence regime

is due to low received intensity at the detector, namely the small denominator in

Eq. (4.0.1). By utilizing the self-bending property of Airy beams, both low intensity

correlation and high received intensity are possible, and the overall scintillation of

Airy beam arrays can be significantly reduced. Besides these two kinds of methods, a
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third method for scintillation reduction can be found from Eq. (4.0.1), which is to use

beamlets with small self scintillation indices σ2
mm. This is the topic to be investigated

in this chapter.

4.1 Scintillation of Nonuniformly Polarized Beams in Atmospheric Turbulence

Scintillation properties of various beam types, including cosh-Gaussian,

Bessel-Gaussian, and annular beams, have been studied recently (see Ref. [27] for

details). It has been shown that scintillations strongly depend on the initial beam

properties, such as beam intensity profile and phase. In some specific atmospheric

propagation scenarios, these different beam types can have lower scintillation than

their comparable Gaussian beams. However, due to the complicated nature of the

turbulence-induced beam scintillation, it is difficult to find guidelines for

scintillation reduction by manipulating initial beam parameters. So far, most of

these studies deal with scalar beam types. However, real optical beams are always

vectorial, and in general may be represented as the coherent superposition of a pair

of orthogonally polarized spatial modes1. It is well-known that fields which are

generated by partially coherent and partially polarized sources can have a

significant change in their degree and state of polarization on propagation through

turbulence [112]. Furthermore, recent research has demonstrated that a partially

coherent and partially polarized field will have lower scintillation than a

comparable, linearly polarized field [113].

The previously mentioned research considered fields which possessed a spatially

1Even for a linearly polarized beam, it can also be formally decomposed to two orthogonally
polarized modes, one with zero amplitude.
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uniform state and degree of polarization. However, nonuniformly polarized beams

such as radially and azimuthally polarized beams have been shown to be extremely

useful in focusing applications [114], and recently the propagation behavior of such

beams in turbulence has been studied [26, 115, 116]. Because depolarization effects

are negligible when an optical beam propagates in turbulence, the modes remain

orthogonal over appreciable propagation distances. According to the Fresnel-Arago

laws [13], the orthogonally polarized modes do not interfere with one another, and

their respective interference patterns add by intensity. Therefore nonuniformly

polarized beams effectively function as two-mode partially coherent beams and it is

natural to expect comparable scintillation behavior.

4.1.1 Beam Model and Scintillation in Atmospheric Turbulence

As a typical example of nonuniformly polarized beams, radially and azimuthally

polarized beams are the orthogonal superpositions of Hermite-Gauss modes of order

n = 0,m = 1 and n = 1,m = 0 (HG01 and HG10) [117]. They have donut shaped

intensity profiles in free space propagation. Although their on-axis intensity null

disappears in turbulence propagation [26], the intensity received by an on-axis

detector is relatively low. As shown by Fig. 4.1, the corresponding intensity

fluctuation is high2. Here, a different monochromatic, nonuniformly polarized beam

is considered. It consists of a coherent superposition of an x-polarized

Laguerre-Gauss beam of order n = 0, m = 0 (LG00), which has the following form in

2Although Ref. [116] reported scintillation reduction by radially polarized beams, this is due to
the aperture averaging effect since an annular detector model was used. The result shown in Fig.
4.1 is based on the point detector model.
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Figure 4.1: The scintillation of radially polarized beam as a function of the Rytov
variance σ2

1 = 1.23C2
nk

7/6L11/6. Here the wavelength is taken to be λ = 1.55µm,
the turbulence strength C2

n = 10−14 m−2/3 and the width of the beam is taken to be
w0 = 0.05 m.

the plane L = 0,

U00(x, y) = E0x

√
2

πw2
0

exp

(
−x

2 + y2

w2
0

)
, (4.1.1)

and a y-polarized Laguerre-Gauss beam of order n = 0, m = 1 (LG01) [10, Chapter

4], which in the plane L = 0 takes on the form

U01(x, y) = E0y
2√
πw2

0

(x+ iy) exp

(
−x

2 + y2

w2
0

)
. (4.1.2)

E0x and E0y are the amplitude of these two modes respectively. The modes are

normalized such that ∫ ∫
|Umn(x, y)|2dxdy = 1, (4.1.3)
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Figure 4.2: Major axis of polarization (red bars) and the corresponding intensity
pattern (greyscale) of the wavefield in the source plane z = 0. Here the wavelength
is taken to be λ = 1.55µm, the turbulence strength C2

n = 10−14 m−2/3 and the width
of the beam is taken to be w0 = 0.05 m. E0x = E0y = 1V/ m.

where the integration extends over the entire source plane. Fig. 4.2 illustrates the

major axis of polarization of the wavefield in the source plane z = 0. It can be seen

that the orientation of these axes are location-dependent. Therefore, these kinds of

beams are referred as nonuniformly polarized beams.

The turbulence propagation of such beams is simulated by using the multiple

random phase screen method. The two modes are propagated through the same

realization of turbulence and their intensities are added at the detector plane. Here

the amplitudes of the two modes act as weight of modes in the vectorial beam, while

the atmospheric propagation properties of the beam depends on them. Fig. 4.3

illustrates the on-axis scintillation index of such beams as a function of the

amplitude of the LG01 mode E0y. The amplitude of LG01 mode E0x is taken to be
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Figure 4.3: Simulation of the scintillation index of beams of different structure on
propagation through 2.5 km of turbulence. Here the wavelength is taken to be λ =
1.55µm, the turbulence strength C2

n = 10−14 m−2/3 and the width of the beam is
taken to be w0 = 0.05 m.

1V/ m. The wavelength is taken to be λ = 1.55µm, the turbulence strength

C2
n = 10−14 m−2/3, the propagation distance L = 2.5 km, and the width of the beam

is taken to be w0 = 0.05 m. For comparison, the scintillation index is also shown for

the modes individually, and for the modes superimposed with the same polarization

state. It can be seen that a minimum of the scintillation occurs when the amplitude

of the LG01 mode is about 1.2V/ m, providing a 18% reduction as compared to the

scintillation of the Gaussian beam alone. Fig. 4.4 illustrates the scintillation index

of the same four beams, as a function of the Rytov variance [Eq. (2.3.7)]. It can be

seen that the nonuniformly polarized field outperforms the individual modes as well

as the combination of the modes with the same polarization.
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1 = 1.23C2
nk

7/6L11/6. For the simulations, the wavelength is taken
to be λ = 1.55µm, the turbulence strength C2

n = 10−14 m−2/3 and the width of the
beam is taken to be w0 = 0.05 m.E0x = 1V/ m and E0y = 1.21V/ m.

Fig. 4.5 illustrates the variation of the on-axis scintillation index of the

nonuniformly polarized beam as a function of the amplitude of LG01 modes E0y for

a propagation distance L = 5 km. A feature similar to that of Fig. 4.3 can be

observed, where a 33% reduction compared to the scintillation of the Gaussian

beam is obtained when the amplitude of the LG01 mode is 1.26V/ m. This result

shows that the optimal amplitude ratio depends on the specific atmospheric

propagation parameters.
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Figure 4.5: Simulation of the scintillation index of beams of different structure on
propagation through 5 km of turbulence. Here the wavelength is taken to be λ =
1.55µm, the turbulence strength C2

n = 10−14 m−2/3 and the width of the beam is
taken to be w0 = 0.05 m.

4.1.2 Optimization of Nonuniformly Polarized Beams for Scintillation Reduction

In Sec. 4.1.1, a simple superposition of a LG00 and LG01 mode is used to generate

a nonuniformly polarized beam. By choosing an appropriate amplitude ratio of the

two orthogonally polarized modes, the beam scintillation is reduced compared to the

comparable Gaussian beam. This scintillation reduction by nonuniformly polarization

effect can be explained by the following straightforward mathematical proof.

The scintillation index of an electromagnetic beam is given by [113]

σ2 =
〈Ix〉σ2

xx + 2〈Ix〉〈Iy〉σ2
xy + 〈Ix〉σ2

yy

(〈Ix〉+ 〈Iy〉)2
, (4.1.4)

where the argument (ρ, L) is omitted for brevity again. The quantities σ2
xx and σ2

yy
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denote the self scintillation indices of the x and y polarized modes respectively, while

σ2
xy is the cross scintillation index between them. Their mathematical expression are

the same as Eq. (3.2.13). Now Eq. (4.1.4) is rewritten as a function of the amplitude

of LG01 mode explicitly (E0x is unity.)

σ2 =
〈Ix〉σ2

xx + 2E2
0y〈Ix〉〈Iy〉σ2

xy + E4
0y〈Ix〉σ2

yy(
〈Ix〉+ E2

0y〈Iy〉
)2 . (4.1.5)

Following the standard method to calculate the minimum value of a function, it can

be shown that an electromagnetic beam has an minimum scintillation index given by

σ2
min =



σ2
xxσ

2
yy−(σ2

xy)
2

σ2
xx+σ

2
yy−2σ2

xy
if σ2

xy < min[σ2
xx, σ

2
yy]

min[σ2
xx, σ

2
yy] otherwise

, (4.1.6)

when

E0y =

√
〈Ix〉(σ2

xx − σ2
xy)

〈Iy〉(σ2
yy − σ2

xy)
if σ2

xy < min[σ2
xx, σ

2
yy]. (4.1.7)

From Eq. (4.1.6), it can be seen that the existence of the minimum scintillation

of a nonuniformly polarized beam is because its two orthogonally polarized modes

have different scintillation properties on propagation through the turbulence. For

the propagation parameters used in Fig. 4.3, the simulated on-axis self scintillation

indices of LG00 and LG01 are σ2
xx = 0.5815 and σ2

yy = 1.2773. The corresponding value

of on-axis cross scintillation index is σ2
xy = 0.2147. The corresponding correlation

coefficient between the intensity fluctuations of these two modes is ρIx,Iy = 0.2491,
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Figure 4.6: Average intensity profiles of the LG00 and LG01 modes on the source
plane z = 0 (a) and the detector plane z = 2.5 km (b). The parameters are the same
as in Fig. 4.4.

which is calculated by the following equation

ρIx,Iy =
〈Ix − 〈Ix〉〉〈Iy − 〈Iy〉〉√
〈I2x〉 − 〈Ix〉2

√
〈I2y 〉 − 〈Iy〉2

=
σ2
xy√

σ2
xxσ

2
yy

. (4.1.8)

The correlation coefficient characterizes the statistical correlation between two

random variables. Here the LG00 and LG01 modes have the same width parameter

and propagate along the horizontal axis. However, the small value of their intensity

correlation coefficient (ρIx,Iy = 0.2491) shows that their intensity fluctuations have a

low correlation even though they propagate through similar regions of turbulence.

This effect is possible because that the LG01 mode propagates through the

turbulence in a different manner from the LG00 mode. In Fig. 4.6, an analytic
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Figure 4.7: Major axis of polarization (red bars) and the corresponding intensity
pattern (greyscale) of the wavefield in the detector plane z = 2.5 km. Here the
wavelength is taken to be λ = 1.55µm, the turbulence strength C2

n = 10−14 m−2/3

and the width of the beam is taken to be w0 = 0.05 m. E0x = E0y = 1V/ m.

calculation of the average intensity of these two modes is plotted using the extended

Huygens-Fresnel principle with a quadratic phase approximation for the turbulence

fluctuation. By comparison of the profiles on the source plane and the detector

plane, it can be seen that the LG00 mode spreads on propagation in turbulence. On

the contrary, the wavefield of the LG01 mode not only spreads outwardly but also

moves inwardly. As a result, the initial doughnut profile gradually disappears on

propagation in turbulence. The interference pattern produced by the LG01 mode is

therefore different from that of the LG00 mode. Instead of the two modes producing

a mutual interference pattern, the polarization of the field is scrambled; a realization

of this, determined by numerical simulation, is shown in Fig. 4.7.

Now scintillation reduction by nonuniformly polarized beams can be understood
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Figure 4.8: Minimum on-axis scintillation of a nonuniformly polarized beam as a
function of the initial width of the LG01 mode (a). The optimal amplitude E0y is
shown in (b). E0x = 1V/ m. The rest of the parameters are the same as in Fig. 4.2.

by noting that the orthogonally polarized modes have different transverse profiles

and are therefore affected differently by the same turbulence. Since the turbulence

propagation of a mode depends on its initial width, the scintillation properties of a

nonuniformly polarized beam could be further optimized by varying the width of its

modes. Fig. 4.8 illustrates the minimum on-axis scintillation index of a nonuniformly

polarized beam as a function of the initial width of the LG01 mode. It can be seen that

the on-axis scintillation could be further reduced from 18% to 38% when the width

of the LG01 mode decreases from 5 cm to 2.2 cm. The variation of the intensity

correlation coefficient ρIx,Iy is illustrated in Fig. 4.9, which clearly shows that the

correlation between the intensity fluctuations of these two modes strongly depends

on the initial beam profiles and could be even as low as nearly zero when the width

of the LG01 mode is around 1.5 cm.
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Figure 4.9: Intensity correlation coefficient ρIx,Iy as a function of the initial width of
the LG01 mode. The parameters are the same as in Fig. 4.8.

4.2 Scintillation of Nonuniformly Polarized Beam Arrays in Atmospheric
Turbulence

In Sec. 4.1, it has been shown that the nonuniform polarization effect is a relatively

easy and inexpensive way to reduce the scintillation of a coherent optical beam.

Now optical elements to convert linear to nonuniform polarization are common. For

instance, a radially polarized beam can be generated by use of a conical Brewster

prism [118]. In this section, nonuniformly polarized beams are used as the beamlets

of an incoherent beam array and its scintillation properties on propagation in the

atmosphere is studied.

From Chapter 3, it is known that the key points for scintillation reduction by

an incoherent beam array are diversity and high received intensity. However, the

LG01 mode gradually evolves to a Gaussian profile on propagating in turbulence
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Figure 4.10: Illustration of a nonuniformly polarized beam array.

and a nonuniformly polarized beam eventually propagates along a straight line in

turbulence. Therefore, the beamlets of a nonuniformly polarized beam array are

inclined to overlap at the receiver plane. A 4-beamlet nonuniformly polarized beam

array is defined where its beamlets take on the following form in the plane z = 0

Umx(x, y) = E0x

√
2

πw2
0x

exp

[
−(x− dmx)2 + (y − dmy)2

w2
0x

]
exp [−i (kmxx+ kmyy)] ,

(4.2.1a)

Umy(x, y) = E0y
2√
πw2

0y

[(x− dmx) + i (y − dmy)] exp

[
−(x− dmx)2 + (y − dmy)2

w2
0y

]
× exp [−i (kmxx+ kmyy)] , (4.2.1b)

where m = 1, 2, 3, 4 labels the mth beamlet. The configuration of this beam array is

illustrated in Fig. 4.10. Each beamlet is located at (dmx, dmy) on the source plane.

The corresponding off-axis distance is d =
√
d2mx + d2my. (kmx, kmy) is the transverse

wave vector. In order to make all beamlets overlap at the receiver plane z = L,

kmx = kdmx/L and kmy = kdmy/L.

Fig. 4.11 illustrates the on-axis scintillation index of a nonuniformly polarized
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Figure 4.11: On-axis scintillation of a nonuniformly polarized beam (NPB) array as a
function of the off-axis distance d. The on-axis scintillation of a Gaussian beam (GB)
array is shown as well. w0x = 5 cm, w0y = 2.2 cm, E0x = 1V/ m, and E0y = 1.8V/ m.
The rest of the parameters are the same as in Fig. 4.2.

beam array as a function of the off-axis distance d after propagating in turbulence

for 2.5 km. The parameters of beamlets are optimized based on the results in Sec.

4.1.2. The on-axis scintillation of a 4-beamlet Gaussian beam array is also shown

for comparison, whose beamlets take the form of Eq. (4.2.1a). It can be seen that

by using beamlets of small scintillation, the nonuniformly polarized beam array has

lower scintillation than a comparable Gaussian beam array. When d = 0.1 m, the on-

axis scintillation of the nonuniformly polarized beam array is 61% of the scintillation

index of the Gaussian beam array. In addition, as the off-axis distance d increases,

the scintillation of the nonuniformly polarized beam array gradually decreases and

75% reduction, the theoretical maximum reduction of a 4-beamlet incoherent beam
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array, is eventually reached.

4.3 Summary

It has been demonstrated that an appropriately chosen nonuniformly polarized

beam can have appreciably smaller scintillation than comparable beams of uniform

polarization. This results from the fact that a nonuniformly polarized field acts as

an effective two-mode partially coherent field. In Chapter 3, it has shown that

spatial or directional diversity of beamlets are crucial for scintillation reduction by

partially coherent beams. The results obtained in this chapter suggest another kind

of diversity, modal diversity. Modes of different transverse profiles propagate

through the atmosphere in different manners and therefore their own intensity

fluctuations are less correlated. Here a simple superposition of LG00 and LG01

modes is used. However, nonuniformly polarized beams could be combinations of

other mode types, such as higher order Laguerre-Gauss modes. The guideline that

the turbulence-induced intensity fluctuations should have a low correlation should

be followed when selecting mode pairs.

Now it is known that low intensity correlation between beamlets or orthogonally

polarized modes is necessary for scintillation reduction by incoherent beam arrays or

nonuniformly polarized beams. It has been shown that a complete lack of

correlation can be achieved by either sufficient spatial separation of beamlets or

appropriately chosen orthogonal modes. However, by examining the expression of

the minimum scintillation index of a nonuniformly polarized beam [Eq. (4.1.6)], it

can be found that σ2
min decreases monotonically as σ2

xy decreases from 0 to be
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negative and reaches its mathematical minimum 0 when σ2

xy = −
√
σ2
xxσ

2
yy. The

negative cross scintillation index means the negative correlation between intensity

fluctuations of two orthogonally polarized modes, while the value σ2
xy = −

√
σ2
xxσ

2
yy

corresponds to the situation of full anti-correlation since the corresponding intensity

correlation coefficient ρIx,Iy is −1. Now, the existing methods can only reduce the

intensity correlation between beamlets or modes to as much as zero. Therefore, this

observation suggests that beam scintillation might be further reduced by exploring

methods to make beamlets or modes negatively correlated on propagation in the

atmosphere.



CHAPTER 5: MEASUREMENT OF ATMOSPHERIC TURBULENCE
STRENGTH BY VORTEX BEAMS

It is now well-known that, due to the turbulence-induced random phase

modulation, optical beams are distorted on propagation through the atmosphere.

Therefore the performance of a long-range optical system operating in the

atmosphere strongly depends upon the turbulence characteristics. In particular, the

refractive index structure constant C2
n, which characterizes the turbulence strength,

also dictates the strength of scintillations. As it has been noted, this scintillation is

the primary limitation in the development of free-space optical communication

systems. It has been demonstrated scintillation reduction by incoherent beam

arrays and nonuniformly polarized beams in Chapters 3 and 4. However, the

techniques described for minimizing scintillation requires knowledge of the value of

C2
n, which must be measured independently for an optimal solution.

The traditional method to measure C2
n is to use an optical scintillometer [119–121].

By measuring the scintillation of a wavefield over a short propagation distance, the

path-averaged value of C2
n is obtained. However, recent studies on the behavior of

spatial correlation singularities carried by vortex beams suggest an alternate solution.

Vortex beams are optical beams that possess an intensity null along their

propagation axis and hence have a singular phase structure on that axis. The study

of such ‘singular’ regions of optical wavefields has developed into a subfield of optics
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in its own right, now known as singular optics [122]. The original studies of singular

optics, such as the pioneering work of Nye and Berry [123], investigated regions

where the amplitude of coherent wavefields vanish, and hence the phase is

undefined. They demonstrated that the zero manifolds of a wavefield are typically

lines in three-dimensional space, around which the phase has a circulating or helical

structure, now referred to as an optical vortex. Such vortices have many interesting

and useful properties, including a conserved, discrete topological charge, and a

consequent stability on propagation, as well as a relationship to the orbital angular

momentum of the wavefield [74].

However, an initially coherent vortex beam becomes partially coherent on

propagation in the atmosphere and therefore its vortex phase structure is ill defined

on average. More recently, the study of phase singularities has been extended to

account for partially coherent wavefields. It has been demonstrated that spatial

correlation functions of partially coherent wavefields may also carry phase

singularities [124–127]. These singular structures are pairs of points at which the

wavefield are uncorrelated, now referred to as spatial correlation singularities or

coherence vortices. It has been shown that they are robust as the coherence of a

wavefield decreases [126]. Therefore it suggests a possible use of spatial correlation

singularities in turbulence applications.

In this chapter, the feasibility of use of spatial correlation singularities for

atmospheric turbulence strength measurement is theoretically investigated. It is

started by reviewing the basic properties of optical vortices and coherence vortices
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in Sec. 5.1. The break-up of a higher-order optical vortex into first-order coherence

vortices in the presence of perturbations is investigated in Sec. 5.2. From the result

of Sec. 5.2, a method to measure atmospheric turbulence strength by using a vortex

beam is proposed in Sec. 5.3.

5.1 Optical Vortices and Coherence Vortices

A monochromatic scalar wavefield U(r, t) is of the following form

U(r, t) = U(r)e−iωt, (5.1.1)

where ω denotes frequency. The space-dependent part U(r) can be rewritten in a

factorized form

U(r) = A(r)eiφ(r), (5.1.2)

where A(r) denotes amplitude and φ(r) denotes phase. If the field amplitude vanishes

(A(r) = 0) in certain regions of space, the phase can take on any value in those regions

and is therefore undefined, or singular. Research over the past few decades has

demonstrated that the zeros typically manifest as lines in three dimensional space,

around which the phase has a circulating or helical structure [122]. These optical

vortices have associated with them a discrete topological charge s, defined as

s =
1

2π

∮
C

5φ · dr, (5.1.3)

where the path C is taken along a closed counterclockwise path enclosing the

singularity. The topological charge takes on integer values and is a conserved

quantity.
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Figure 5.1: Illustration of the transverse profile and phase structure of a pair of
Laguerre-Gauss beams: n = 0, m = 1: (a) intensity, (b) phase, n = 2, m = 2: (c)
intensity (d) phase.

A familiar collection of beams which possess an optical vortex in their center are

the Laguerre-Gauss solutions to the paraxial wave equation [10, chapter 4]

Unm(ρ, φ, z) = Cnm

( √
2ρ

W (z)

)m

L(m)
n

(
2ρ2

W 2(z)

)
exp [i(2n+m+ 1)ϕ(z)]

× exp
(
imφ− ρ2/W 2(z)− ikρ2/2F (z)

)
, (5.1.4)

where (ρ, φ, z) are the cylinder coordinates in space, Cmn is a normalization constant

and L
(m)
n are the Laguerre polynomials of order m and n [128]. W (z) is the beam

width on the transverse plane z, defined as

W (z) = w0

√
1 +

(
z

zR

)2

, (5.1.5)
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where w0 is the beam width at the waist plane z = 0 and zR =

πw2
0

λ
is the Rayleigh

range. F (z) is the radius of curvature of wavefront on the transverse plane z, defined

as

F (z) = z

[
1 +

(zR
z

)2]
. (5.1.6)

ϕ(z) is the longitudinal phase delay on the transverse plane z, also known as the

Gouy phase, defined as

ϕ(z) = arctan

(
z

zR

)
. (5.1.7)

Fig. 5.1 illustrates several low-order Laguerre-Gauss beams. The central core of the

beam possesses an amplitude zero, and the phase of the field increases by a multiple

m of 2π as one progresses around the central core. m is referred to as the order of

the vortex core which is also the topological charge. In Fig. 5.1 the vortex phase

structures are illustrated by phase maps. However, a phase plot consisting of a finite

number of equiphase lines is usually sufficient to describe the location and topological

charge of field vortices. Fig. 5.2 shows an example of the equiphase lines for the phase

structure illustrated in Fig. 5.1b. The intersection of the four equiphase lines indicates

the vortex position. Four equiphase lines are used in all figures of this chapter.

When such a vortex beam is randomized, intensity nulls are usually removed.

However the vortex properties can survive in the spatial coherence of the

wavefield [126, 129]. The coherence properties of a statistically stationary scalar

wavefield are characterized by the cross-spectral density, which may always be

expressed as the average of an ensemble of monochromatic realizations of field [see
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Figure 5.2: Illustration of the equiphase contours of Laguerre-Gauss beam of the
order n = 0, m = 1.

Eq. (2.1.5) in Sec. 2.1]

W (r1, r2) = 〈U(r1)U
∗(r2)〉. (5.1.8)

Coherence vortices are referred to as the singularities of the cross-spectral density,

namely the zeros of W (r1, r2). Eq. (5.1.8) will be used below to construct a model

of a quasi-monochromatic, partially coherent field with a ‘built-in’ vortex behavior.

To study the relationship between optical vortices and coherence vortices, a ‘beam

wander’ model first developed in Ref. [129] is used. An ensemble of monochromatic

fields U(ρ−ρ0) is considered in the source plane z = 0, with r ≡ (ρ, z). Each member

of the ensemble is centered on a transverse location ρ0, which is a random variable of

the transverse location. f(ρ0) is the corresponding probability density, which dictates

the coherence properties of the generated partially coherent field. The cross-spectral
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density is then given by

W (ρ1,ρ2) =

∫
U(ρ1 − ρ0)U

∗(ρ2 − ρ0)f(ρ0)d
2ρ0, (5.1.9)

where the integral, representing the ensemble average, is taken in the source plane

of the field. This construction may be taken as a simple model of beam wander in

atmospheric turbulence [10, Chapter 6]. This construction was used previously to

study the behavior of a partially coherent field created with an n = 0, m = 1 vortex

beam, as the degree of coherence is changed [129]. It was also demonstrated that

the construction produces results consistent with the general behavior of vortices in

partially coherent fields [130].

5.2 Breakup of Second-order Optical Vortex to Two First-order Coherence
Vortices

Recently the propagation of an optical vortex beam through atmospheric

turbulence was studied [77]. It has been shown that on propagation, a high-order

optical vortex breaks down into a collection of first-order optical vortices, though

the total topological charge is conserved. If the field is averaged over times long

compared to the fluctuations of the medium, one readily finds that the spatial

coherence of a beam decreases on propagation [10]. Consequently, the optical

vortices are converted into coherence vortices. It is natural to ask whether an

mth-order optical vortex is replaced with an mth-order coherence vortex when the

spatial coherence of the field decreases, or whether a number of lower-order

coherence vortices are produced.

A Laguerre-Gauss beam of order n = 0 and m = 2 possesses a second-order optical



95
vortex in its center. Its transverse profile in the source plane is

U02(ρ, φ) = C02

(√
2ρ

w0

)2

exp(2iφ) exp(−ρ2/w2
0), (5.2.1)

where w0 is the beam width in the source plane, and ρ ≡ (ρ, φ). With beam wander

model, the topological structure of the corresponding coherence vortex can be studied

by substituting Eq. (5.2.1) into Eq. (5.1.9). Here for the purpose of illustration, the

probability density f(ρ0) in Eq. (5.1.9) is taken to be Gaussian1

f(ρ0) =
1√
πδ
e−ρ

2
0/δ

2

, (5.2.2)

where the quantity δ represents the average beam wander, and also restrict ourselves

to a single frequency ω. For simplicity, further expression of the frequency ω will

be suppressed. In the limit δ → 0, the beam does not wander and is therefore fully

coherent. Increasing δ represents a decrease in spatial coherence.

As the cross-spectral density W (ρ1,ρ2) contains two variables, ρ1 is taken to be

fixed and behavior of W (ρ1,ρ2) is studied as a function of ρ2. Here ρ1 and ρ2

are referred to as the reference point and the observation point respectively. Two

examples of these coherence vortices are shown in Fig. 5.3. In both cases four first-

order coherence vortices are observed. Two of these (the left-most in both figures)

are first-order coherence vortices of the same sign which result from the break-up of

the second-order optical vortex. Evidently no choice of reference point or state of

coherence (other than complete coherence) will maintain a pure second-order vortex,

1In Sec. 5.3, it will be shown that the turbulence effects can be approximated by a Gaussian
function when the cross-spectral density of a wavefield in the atmosphere is studied [Eq. (5.3.12)].
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Figure 5.3: Equal phase contours of the cross-spectral density, with the reference
point at (a) (0.5 mm, 0.5 mm), and (b) (−0.3 mm, 0). In both plots, w0 = 1 mm and
δ = 1 mm.

i.e. the second-order optical vortex is unstable under changes in the state of coherence.

The other two coherence vortices in each figure (the right-most) are of opposite sign

from the first pair.

Fig. 5.4 illustrates the dependence of coherence vortices structure on parameter δ.

It can be readily seen that, as δ → 0, i.e. as the field becomes fully coherent, the

left-most coherence vortices merge and become the second-order optical vortex. It

can also be seen that the right-most coherence vortices recede to the point at infinity.

This observation shows that they are singularities which are ‘hidden’ at the point

at infinity when the field is fully coherent. A similar behavior is seen for a first-

order optical vortex, which has been shown to have an opposite vortex ‘hidden’ at

infinity [129].

In our ‘beam wander’ model [Eq. (5.2.2)], δ characterizes the strength of

perturbations. Strong perturbations correspond to large range of wander, namely
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Figure 5.4: Illustration of the relationship between a second-order optical vortex and
a pair of first-order correlation vortices. The reference point is at (0.5 mm, 0) and
w0 = 1 mm.

large δ. It can be seen from Fig. 5.4 that the separation of the first-order coherence

vortices is directly related to δ. Fig. 5.5 illustrates the separation of the two vortices

(the left-most in Fig. 5.4a) as a function of δ. the separation increases

monotonically with δ, eventually saturating at a finite value. This observation raises

the possibility that this ‘splitting’ could be used as a simple measure of either the

spatial coherence properties of a partially coherent field or, indirectly, the strength

of a turbulent medium which the vortex beam has passed through.
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Figure 5.5: Illustration of the dependence of the correlation vortices separation on
the average beam wander parameter δ. The reference point is at (0.5 mm, 0) and
w0 = 1 mm.

5.3 Atmospheric Turbulence Strength Measurement by Vortex Beams

In Sec. 5.2, it has been shown that a second-order optical vortex is unstable under

perturbations and breaks into a pair of first-order coherence vortices under a decrease

of coherence. The dependence of the coherence vortex separation on the perturbation

strength parameter δ suggests the possible use of coherence vortices as a probe of

the statistical properties of random media. However, it is difficult to experimentally

realize high-order Laguerre-Gauss beams which carry a high-order optical vortex.

On the other side, the phase structure of the cross-spectral density corresponding to

a second-order optical vortex contains four coherence vortices (Fig. 5.3) which are

grouped as two pairs. Isolating one pair of them and measuring the separation is also

challenging.

Recently another kind of coherence singularity was demonstrated [126,127]. It has
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been shown that a ring dislocation exists in the cross-correlation function of a partially

coherent field when passed through a vortex mask and can be observed by a wavefront

folding interferometer. Unlike coherence vortices which are the phase singularities of

the cross-spectral density W (ρ1,ρ2) as a function of the observation point ρ2, a ring

dislocation is a collection of phase singularities of the cross-spectral density W (ρ1,ρ2)

while the reference point ρ1 and the observation point ρ2 are symmetric with respect

to the origin, namely ρ1 = −ρ2. When the wavefield is rotationally symmetric, these

singularities usually form a ring and therefore are referred to as a ring dislocation.

More recently, the properties of the ring dislocation in the the presence of fluctuations

and on propagation in free space were investigated [131, 132]. It is demonstrated

that the radius of this ring dislocation is inversely related to coherence length of

the wavefield. As spatial coherence decreases on propagation through turbulence, it

suggests that a measurement of such a ring dislocation could be used as a measure of

turbulence strength, namely C2
n.

5.3.1 Theoretical Derivation

The propagation geometry is illustrated in Fig. 5.6. After passing through an

idealized vortex mask at the transmitter plane, the incident Gaussian beam possesses

a vortex phase structure. By using the extended Huygens-Fresnel principle [23], the

transmitted field at the receiver plane z = L (in the far-field regime) can be expressed
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Figure 5.6: Illustration of the propagation geometry. The vortex mask of order 1
is placed at the transmitter plane z = 0. It imparts a phase factor exp(iφ′) to the
incident Gaussian beam U0 = exp(−ρ′2/w2

0). For simplicity, the waist plane of the
Gaussian beam is also at the transmitter plane.

in the form

U(ρ, L) = − ik

2πL
exp

(
ikL+

ikρ2

2L

)
×

∫
U(ρ′, 0) exp

[
−i2π ρ

λL
· ρ′ + ψ (ρ,ρ′)

]
d2ρ′, (5.3.1)

where U(ρ′, 0) = exp (−ρ′2/w2
0) exp(iφ′) is the field at the transmitter plane, k is

the wavenumber, w0 is the beam width at the transmitter plane, and ψ(ρ,ρ′) is the

random part of the complex phase of a spherical wave propagating in turbulence.

Coherence properties of the field at the receiver plane are characterized by the cross-

spectral density [see Eq. (2.1.5) in Sec. 2.1]

W (ρ1,ρ2, L) = 〈U(ρ1, L)U∗(ρ2, L)〉

= A

∫ ∫
U(ρ′1, 0)U∗(ρ′2, 0) exp

[
−i2π

(
ρ1 · ρ′1 − ρ2 · ρ′2

λL

)]
× 〈exp [ψ(ρ1,ρ

′
1) + ψ∗(ρ2,ρ

′
2)]〉d2ρ′1d2ρ′2, (5.3.2)
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where A = (1/λL)2 exp [−ik(ρ22 − ρ21)/(2L)], the asterisk indicates complex

conjugation, and the angular brackets denote an ensemble average over the

turbulence fluctuations. When turbulence is homogeneous, the random part of the

complex phase of a spherical wave in Eq. (5.3.2) can be approximated by [see Eq.

(2.3.49) in Sec. 2.3.3]

〈exp [ψ(ρ1,ρ
′
1) + ψ∗(ρ2,ρ

′
2)]〉 ≈ exp

(
−|r|

2 + r · r′ + |r′|2

ρ20

)
= T (r′, r), (5.3.3)

where

ρ0 = (0.55C2
nk

2L)−3/5 (5.3.4)

is the coherence length of a spherical wave propagating in turbulence, r = ρ2 − ρ1,

r′ = ρ′2−ρ′1, and C2
n is the the refractive index structure constant. Here C2

n is assumed

to be a constant over the propagation path. In Appendix B, it will be shown that ρ0

can also represent a spatially-averaged value if C2
n is varying on propagation. With

this approximation, the cross-spectral density at the receiver plane can be written as

W (ρ1,ρ2, L) = A

∫ ∫
U(ρ′1, 0)U∗(ρ′2, 0)T (r′, r)

× exp

[
−i2π

(
ρ1 · ρ′1 − ρ2 · ρ′2

λL

)]
d2ρ′1d

2ρ′2. (5.3.5)

Eq. (5.3.5) may be expressed in a more suggestive form by using the following

Fourier expansions,

T (r′, r) =

∫
T̃ (κ, r) exp(i2πr′ · κ)d2κ (5.3.6)
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U(ρ′j, 0) =

∫
Ũ(κj, 0) exp(i2πρ′j · κj)d2κj (j = 1, 2). (5.3.7)

On substituting Eqs. (5.3.6) and (5.3.7) into Eq. (5.3.5) and applying standard

Fourier transform techniques, one can find that

W (ρ1,ρ2, L) = A

∫
Ũ
( ρ1

λL
− κ, 0

)
Ũ∗
( ρ2

λL
− κ, 0

)
T̃ (κ, r)d2κ, (5.3.8)

where

T̃ (κ, r) = πρ20 exp(−π2ρ20κ
2) exp

(
−3|r|2

4ρ20
+ iπr · κ

)
(5.3.9)

Ũ(κ, 0) = − i
2
π5/2w3

0κ exp(iθ) exp

(
−1

2
π2w2

0κ
2

)
×

[
I0

(
1

2
π2w2

0κ
2

)
− I1

(
1

2
π2w2

0κ
2

)]
. (5.3.10)

In Eq. (5.3.10), θ is the azimuthal angle of κ, I0 and I1 are the zero and first order

modified Bessel function of the first kind respectively. With Eq. (5.3.9) and Eq.

(5.3.10), Eq. (5.3.8) can be written as

W (ρ1,ρ2, L) = A exp

(
−3|r|2

4ρ20

)∫
U1(ρ1,κ)U1

∗(ρ2,κ)p(κ)d2κ, (5.3.11)

where

p(κ) = πρ20 exp(−π2ρ20κ
2) (5.3.12)

U1(ρj, κ) = Ũ(
ρj
λL
− κ, 0) exp(iπκ · ρj) (j = 1, 2). (5.3.13)

By comparison between Eq. (5.1.9) and Eq. (5.3.11), it can be seen that the cross-

spectral density at the receiver plane [Eq. (5.3.11)] can be explained by the ‘beam

wander’ model [129]. Here p(κ) [Eq. (5.3.12)], which satisfies
∫
p(κ)d2κ = 1, is the

probability density function of κ, corresponding to f(ρ0) in Eq. (5.1.9). The field
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U1 is centered on a transverse random location κ, which is limited in a circular area

defined by Eq. (5.3.12).

The direct evaluation of Eq. (5.3.11) by substituting Eqs. (5.3.10), (5.3.12), and

(5.3.13) is difficult. However, it can be simplified by using the following approximation

for Ũ(κ, 0)

Ũ(κ, 0) ≈ − i
2
π5/2w3

0κ exp(iθ) exp

(
−1

2
π2w2

0κ
2

)
. (5.3.14)

This expression contains only the lowest nonzero term of the series expansion of the

modified Bessel functions in Eq. (5.3.10). The use of Eq. (5.3.14) can be explained

by straightforward physical reasoning. The radius of the circular area where the field

center wanders is inversely related to ρ0. For a large ρ0, the field only wanders in a

small area around the origin. Considering the fact that the difference between Eqs.

(5.3.10) and (5.3.14) is negligible when the argument is small, the evaluation of Eq.

(5.3.11) is accurate for small |ρ1| and |ρ2| by substituting Eqs. (5.3.12), (5.3.13),

and (5.3.14). On substitution and choosing (ρ1,ρ2) to be (ρ,−ρ), the approximate

cross-spectral density at the receiver plane is

W (ρ,−ρ, L) =
π6w6

0ρ
2
0

4λ2L2
exp

{
−
[
π2w2

0

λ2L2
+

3

w2
0σ

2
c

+
1

w2
0(1 + σ2

c )

]
ρ2
}

×
[

1

π3w4
0(1 + σ2

c )
2
− λ2L2 + π2w4

0(1 + σ2
c )

2

π3λ2L2w6
0(1 + σ2

c )
3
ρ2
]
, (5.3.15)

where

σc = ρ0/w0 (5.3.16)

is the relative coherence length which is a measure of the global spatial coherence of a

beam on propagation through turbulence. From Eq. (5.3.15), it shows that there exist
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spatial correlation singularities at which the amplitude of the cross-spectral density

W (ρ,−ρ) is zero and the phase is undefined. These spatial correlation singularities

form a ring dislocation whose radius is

ρ = λL

[
w2

0(1 + σ2
c )

λ2L2 + π2w4
0(1 + σ2

c )
2

]1/2
. (5.3.17)

5.3.2 Examples and Analysis

Eq. (5.3.17) is the central analytical result of this section. However, before applying

it to analyze the relationship between the radius of ring dislocation and the turbulence

strength parameter C2
n, it is necessary to give conditions for its accuracy since it

is obtained from Eq. (5.3.15) where the approximation Eq. (5.3.14) is used. An

example of the absolute value of the cross-spectral density W (ρ,−ρ) calculated from

Eq. (5.3.15) is shown in Fig. 5.7. As a comparison, the numerical result obtained

by simulation is also shown in Fig. 5.7. A multiple phase screen method is used

for the simulations. The relative coherence length σc is 7.73, which indicates high

spatial coherence. As shown by Fig. 5.7, the numerical result of |W (ρ,−ρ)| and the

analytic result calculated from Eq. (5.3.15) have good agreement in the central area

around the origin. The simulated radius of such a ring dislocation is 3 mm, while the

radius calculated from Eq. (5.3.17) is 3.2 mm. Therefore, the approximate analytic

expression of the radius of a ring dislocation Eq. (5.3.17) is accurate for large relative

coherence length σc. By numerical simulation, it has been found that Eq. (5.3.17) is

accurate when σc > 0.9.

Fig. 5.8 shows the radius of a ring dislocation as a function of the turbulence
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Figure 5.7: The transverse distribution of the absolute value of the cross-spectral
density W (ρ,−ρ) at the receiver plane (L = 250 m). The solid curve represents
analytic result calculated from Eq. (5.3.15), while the unfilled shapes ◦ represent
numerical result. The wavelength is taken to be λ = 1.55µm, C2

n = 10−13 m−2/3, and
the beam width is taken to be w0 = 5 mm.

strength parameter C2
n. It can be seen that the radius of the dislocation increases

monotonically with a considerable dynamic range in weak and moderate turbulence,

eventually saturating for exceedingly strong turbulence. The simulated radii of some

different C2
n obtained by propagating a Gaussian beam through a vortex mask and

turbulence are also shown in Fig. 5.8. They have good agreement with the radii

calculated from Eq. (5.3.17). As the radius of a ring dislocation can be measured

by a wavefront folding interferometer [126], Eq. (5.3.17) suggests that C2
n can be

obtained by measuring the radius of such a ring dislocation at the receiver plane.

It is worth noting that C2
n can be obtained by measuring the radius of a ring
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Figure 5.8: Illustration of the radius of a ring dislocation as a function of C2
n. The

solid curve represents analytic result calculated from Eq. (5.3.17), while the unfilled
shapes � represent numerical result. The error bars represent the spatial resolution
of the simulations. The propagation distance is taken to be L = 300 m, λ = 1.55µm,
and the beam width w0 = 4 cm.

dislocation even in the strong turbulence regime with some modification. As

illustrated by Fig. 5.8, the measurement is saturated in the strong turbulence

regime. It can be anticipated that the variation of the radius of a ring dislocation is

small and therefore C2
n may be undistinguishable due to the limited resolution of an

imaging system. However, considering the fact that saturation in the strong

turbulence regime corresponds to low spatial coherence at the receiver plane, it can

be solved by increasing spatial coherence, namely increasing the relative coherence

length σc by decreasing either the beam width w0 or the propagation distance L. As

shown in Fig. 5.9, for a Gaussian beam with a small beam width (w0 = 5 mm), the
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Figure 5.9: Illustration of the radius of a ring dislocation of different beam width w0.
The curves are calculated from Eq. (5.3.17). The propagation distance is taken to be
L = 300 m and λ = 1.55µm.

slope of the corresponding plot is larger than that of the beam with a large beam

width (w0 = 4 cm), which indicates a relatively large variation of the radius of ring

dislocation even in the strong turbulence regime.

5.4 Summary

In this chapter, the topological behavior of a second-order optical vortex under

perturbations was first investigated. Due to the perturbations, the field becomes

partially coherent and a second-order optical vortex breaks up into first-order

coherence vortices. Their separation is directly related to the strength of

perturbations. Inspired by this observation, a method to measure atmospheric

turbulence strength by a vortex beam was proposed and its feasibility was
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theoretically investigated. It is shown that the atmospheric turbulence strength

parameter C2
n or its averaged value when C2

n is varying on propagation can be

obtained by measuring the radius of a ring dislocation after a vortex beam passes

through turbulence, even in the saturated regime.

The helical phase structure is crucial for the use of vortex beams in turbulence

applications, as it is robust under turbulence perturbations. In principle the method

for turbulence strength measurement presented in this chapter can be extended to

the measurement of other weakly scattering random media or random fields, such

as the statistical parameters of tissue [133] or the coherence length of a Gaussian

Schell-model beam. In general, it suggests a relatively straightforward and flexible

method to study the statistical properties of a random medium or a random field.



CHAPTER 6: CONCLUSIONS

This dissertation considered the use of nonconventional beam classes in

turbulence applications. The scintillation reduction by incoherent beam arrays and

nonuniformly polarized beams was investigated with the goal to develop general

guides for minimizing beam scintillation on propagation in the atmosphere. The

application of vortex beams for atmospheric turbulence strength measurement was

also studied.

Scintillation reduction is one of the primary concerns in development of free-space

optical communication systems. Through the studies on the scintillation properties

of pseudo-Bessel correlated beams, it has been found that the scintillation rapidly

decreases to an asymptotic limit as the number of the constituent beamlets is

increased. As a partially coherent beam can be decomposed into a collection of

infinite incoherent spatial modes, this observation shows that optimal scintillation

reduction can be achieved by an incoherent beam array instead of a true partially

coherent beam. Since manipulating the coherence properties of an optical beam is

still difficult, it suggests that incoherent beam arrays are the promising partially

coherent sources for free-space optical communications.

The general guidelines of use of incoherent beam arrays for scintillation reduction

were developed. Independence of beamlet propagation in the atmosphere is crucial
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for the overall scintillation reduction of a beam array. It can be achieved by enough

spatial separation between beamlets so that they propagate through uncorrelated

regions of turbulence. The spatial configuration of beam arrays can be either

spatially diverse or directionally diverse. It was shown that with appropriate

beamlet angular separation, pseudo-Bessel correlated beams, a kind of directionally

diverse incoherent beam arrays, can have appreciably small scintillation than

comparable fully coherent beams. Besides sufficient beamlet spatial separation,

maximizing the received intensity should also be following when designing a

incoherent beam array. These two requirements can be met by using a recently

discovered special beam class, Airy beams. It was demonstrated that Airy beams

propagate along parabolic trajectories in free space and can maintain this unique

feature under turbulence-induced perturbations when propagating in the

atmosphere. By choosing appropriate beam parameters and suitable initial

separation, the beamlets of an Airy beam array can propagate mutually

independently in the atmosphere and finally fully overlap to maximize the intensity

caught by the detector on the receiver plane. The overall scintillation of the array is

significantly reduced.

Scintillation reduction by incoherent beam arrays also relies on the selection of

the constituent beamlets with low scintillation. Considering the analogy between a

vectorial beam and a two-mode partially coherent beam, it was demonstrated that a

nonuniformly polarized beam, composed by LG00 and LG01 modes, has lower

scintillation than comparable beams of uniform polarization. Although its
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mechanism for scintillation reduction is also the low correlated mode propagation in

turbulence, the low correlation is the result of different mode profiles. It was found

that the intensity fluctuations of the LG00 and LG01 modes could be as low as

nearly uncorrelated even though they propagate through the similar regions of

turbulence. In addition, the studies on nonuniformly polarized beam propagation in

turbulence suggest that beam scintillation might be further reduced if the two

orthogonally polarized modes can be negatively correlated on propagation in

turbulence.

Techniques for turbulence-induced scintillation reduction also requires knowledge

of the turbulence strength which is characterized by the refractive index structure

constant C2
n. The use of vortex beams for atmospheric turbulence strength

measurement was investigated. As turbulence-induced decrease of spatial coherence,

it was shown that vortex phase structure is transferred from the wavefield function

of a coherent vortex beam to the cross-spectral density of a partially coherent

vortex beam. It was demonstrated that the atmospheric turbulence strength can be

obtained by measuring the radius of the ring dislocation after a vortex beam passes

through turbulence.

Over the decades of studies, the propagation behavior of optical beams in the

atmosphere has been gradually characterized. Due to the complicated nature of

atmospheric turbulence, turbulence effects on optical beam propagation in the

atmosphere are involved. The improvement on the performance of any optical

system operating in the atmosphere relies on the continuous efforts to deepen the
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understanding of the complicated underlying physics of turbulence effects. On the

other hand, eyes should be also put on emerging special beam classes whose newly

discovered exotic properties may be used in turbulence applications. It is hoped

that the results obtained in this dissertation could contribute to this purpose and

inspire new ideas for the work of developing ‘superbeams’ suited for specific

turbulence applications.
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APPENDIX A: DERIVATION OF En

1 , Emn
2 , and Emn

3

In this Appendix, the expressions for En
1 , Emn

2 , and Emn
3 in Sec. 3.1 [Eqs. (3.1.14)-

(3.1.16)] are derived in detail. They are the second order statistical moments which

are defined as

En
1 (ρ, L) =< ψn2(ρ, L) > +

1

2
< ψn1(ρ, L) >2, (A.1)

Emn
2 (ρ, L) =< ψm1(ρ, L)ψ∗n1(ρ, L) >, (A.2)

Emn
3 (ρ, L) =< ψm1(ρ, L)ψn1(ρ, L) > . (A.3)

The expressions for the average intensity < In(ρ, L) > [Eq. (3.1.12)] and the average

cross-intensity < Im(ρ, L)In(ρ, L) > [Eq. (3.1.13)] can be obtained by the similar

derivations as shown in Ref. [10] and Ref. [61] respectively.

By the Rytov approximation, the wavefield in the turbulence can be expressed by

Eq. (3.1.8). For the nth beamlet specified by Eqs. (3.1.6) and (3.1.7), it can be shown

that by using the angular spectrum theory the wavefield at the receiver plane z = L

in the absence of the turbulence is

A0n(ρ, L) =
1√

Np(L)
exp

[
ikL− ρ2

p(L)w2
0

]
exp

[
i(2ku⊥n · ρ− kLu2⊥n)

2p(L)

]
. (A.4)

The first order complex phase perturbation term ψn1(ρ, L) can be evaluated by the

following equation [ [10], Chapter 5, Eq. (36)]

ψn1(ρ, L) =
k2

2π

∫ L

0

dz

∫
exp

[
ik(L− z) +

ik|s− ρ|2

2(L− z)

]
A0n(s, z)

A0n(ρ, L)

n1(s, z)

L− z
d2s. (A.5)

n1(ρ, z) is the turbulence-induced refractive index fluctuation which can be written



124
in the following form

n1(ρ, z) =

∫ ∫
exp(iκ · ρ)dv(κ, z), (A.6)

where dv(κ, z) is the random amplitude of n1(ρ, z). On substituting Eqs. (A.4) and

(A.6) into Eq. (A.5), the following expression is obtained,

ψn1(ρ, L) = ik exp

[
ikLu2⊥n
2p(L)

] ∫ L

0

exp

{
−ik

2p(z)

[
z +

γ(z)(L− z)

p(z)

]
u2⊥n

}
dz

×
∫ ∫

exp

[
−iγ(z)(L− z)κ2

2k

]
exp [iγ(z)κ · ρ]

× exp

[
−iγ(z)(L− z)

p(z)
κ · u⊥n

]
dv(κ, z), (A.7)

where again γ(z) = p(z)
p(L)

. Emn
2 can be obtained by substituting Eq. (A.7) into Eq.

(A.2). With the relationship

< dv(κ, z)dv∗(κ′, z′) >= Fn(κ, |z − z′|)δ(κ− κ′)d2κd2κ′, (A.8)

where δ is the Dirac delta function and Fn(κ, |z − z′|) is a two dimensional spectral

density of the turbulence, it can be shown that, after some calculations,

Emn
2 (ρ, L) = k2 exp

[
ikLu2⊥m
2p(L)

]
exp

[
−ikLu2⊥n

2p∗(L)

]
×

∫ L

0

∫ L

0

exp

{
−ik

2p(z)

[
z +

γ(z)(L− z)

p(z)

]
u2⊥m

}
× exp

{
ik

2p∗(z′)

[
z′ +

γ∗(z′)(L− z′)
p∗(z′)

]
u2⊥n

}
dzdz′

×
∫ ∫

exp

{
− i

2k
[γ(z)(L− z)− γ∗(z′)(L− z′)]κ2

}
× exp

{
−iκ ·

[
L− z
p(L)

u⊥m −
L− z′

p∗(L)
u⊥n

]}
× exp {i [γ(z)− γ∗(z′)]κ · ρ}Fn(κ, |z − z′|)d2κ. (A.9)
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Now the integration variables z and z′ are replaced by η = (z + z′)/2 and µ =

z−z′. With the assumption that the turbulence is delta correlated in the propagation

direction, Fn(κ, µ) has the appreciable values only when µ ≈ 0. Thus the integration

on µ can be extended to be from−∞ to∞ without significant error and let z ≈ z′ ≈ η.

With these approximations and the relationship between Fn(κ, µ) and the power

spectrum of the turbulence Φn(κ)

Φn(κ) =
1

2π

∫ ∞
−∞

Fn(κ, µ)dµ, (A.10)

Eq. (A.9) can reduce to the expression

Emn
2 (ρ, L) = 2πk2 exp

[
ikLu2⊥m
2p(L)

]
exp

[
−ikLu2⊥n

2p∗(L)

]
×

∫ L

0

exp

{
−ik

2p(η)

[
η +

γ(η)(L− η)

p(η)

]
u2⊥m

}
× exp

{
ik

2p∗(η)

[
η +

γ∗(η)(L− η)

p∗(η)

]
u2⊥n

}
dη

×
∫

exp

{
−i [γ(η)− γ∗(η)] (L− η)κ2

2k

}
exp {i [γ(η)− γ∗(η)]κ · ρ}

× exp

{
−i(L− η)κ ·

[
u⊥m
p(L)

− u⊥n
p∗(L)

]}
Φn(κ)d2κ, (A.11)

which is Eq. (3.1.15) for Emn
2 . Eq. (3.1.16) for Emn

3 can be obtained by a similar

derivation except that the following relationship is used

< dv(κ, z)dv(κ′, z′) >= Fn(κ, |z − z′|)δ(κ + κ′)d2κd2κ′. (A.12)

For En
1 defined as Eq. (A.1), it has been shown that it is equivalent to the ensemble

average of the second order normalized Born perturbation term [ [10], Chapter 5, Eqs.

(35) and (39)]. Therefore, it can be derived by using the following equation [ [10],
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Chapter 5, Eq. (40)]

En
1 (ρ, L) =

k2

2π

∫ L

0

dz

∫
exp

[
ik(L− z) +

ik|s− ρ|2

2(L− z)

]
× A0n(s, z)

A0n(ρ, L)

< ψn1(s, z)n1(s, z) >

L− z
d2s. (A.13)

On substituting Eqs. (A.4), (A.6) and (A.7) into Eq. (A.13), it can be shown that,

after integrating with respect to the variable s,

En
1 (ρ, L) = −k2 exp

[
ikLu2⊥n
2p(L)

]
×

∫ L

0

dz

∫ z

0

dz′ exp

{
−ik

2

[
z′

p(z′)
+
γ′(z − z′)
p2(z′)

+
γ(L− z)

p2(z)

]
u2⊥n

}
×

∫ ∫ ∫ ∫ ∞
−∞

< dv(κ, z)dv(κ′, z′) > exp

[
−iγ

′(z − z′)κ′2

2k

]
× exp

[
−iγ

′(z − z′)
p(z′)

κ′ · u⊥n
]

exp

[
−iγ(L− z)|κ + γ′κ′|2

2k

]
× exp

[
−iγ(L− z)

p(z)
(κ + γ′κ′) · u⊥n

]
exp [iγ(κ + γ′κ′) · ρ] , (A.14)

where γ = p(z)
p(L)

and γ′ = p(z′)
p(z)

. Eq. (A.14) can be simplified by using the relationship

Eq. (A.12) and the similar approximations as applied in the derivation of Emn
2 .

Recognizing that γ′ ≈ 1 and the integration on µ is from 0 and ∞, it can reduce to

En
1 (ρ, L) = −πk2 exp

[
ikLu2⊥n
2p(L)

] ∫
Φn(κ)d2κ

×
∫ L

0

exp

[
−ikηu2⊥n

2p(η)

]
exp

[
−ikγ(η)(L− η)u2⊥n

2p2(η)

]
dη, (A.15)

which is Eq. (3.1.14).
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APPENDIX B: RADIUS OF RING DISLOCATION AS A VARYING C2

n

This appendix is used to show that when the refractive index structure constant C2
n

is varying during propagation, the average value C̄2
n can still be obtained by measuring

the radius of a ring dislocation at the receiver plane.

As illustrated by Fig. B.1, atmospheric turbulence between the transmitter plane

and the receiver plane can be divided into slabs of equal thickness. By the slow-

varying assumption, C2
n in each slab is a constant and the difference of C2

n in each two

adjacent slabs is small. The propagation in the first two slabs is taken as an example.

By the extended Huygens-Fresnel principle and the quadratic approximation of the

random phase structure function, the cross-spectral densities at the plane z = L/n

and z = 2L/n are

W1(ρ11,ρ12) ∝
∫ ∫

W0(ρ
′
1,ρ

′
2) exp

[
−ink

2L
(|ρ11 − ρ′1|2 − |ρ12 − ρ′2|2)

]
× exp

(
−|r1|

2 + r1 · r′ + |r′|2

ρ201

)
d2ρ′1d

2ρ′2 (B.1)

W2(ρ21,ρ22) ∝
∫ ∫

W1(ρ11,ρ12) exp

[
−ink

2L
(|ρ21 − ρ11|2 − |ρ22 − ρ12|2)

]
× exp

(
−|r2|

2 + r2 · r1 + |r1|2

ρ202

)
d2ρ11d

2ρ12, (B.2)

where W0(ρ
′
1,ρ

′
2) is the cross-spectral density at the transmitter plane, r′ = ρ′2 − ρ′1,

r1 = ρ12 − ρ11, r2 = ρ22 − ρ21, ρ01 = (0.55C2
n1k

2L
n

)−3/5 and ρ02 = (0.55C2
n2k

2L
n

)−3/5.

For convenience, the new variables (R′, r′), (R1, r1) and (R2, r2) are introduced, where

R′ = (ρ′2 + ρ′1)/2, R1 = (ρ12 + ρ11)/2 and R2 = (ρ22 + ρ21)/2. On substituting Eq.

(B.1) into Eq. (B.2) and taking integral with respect to (R1, r1), the cross-spectral
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Figure B.1: Illustration of the propagation geometry in the case of varying C2
n. The

whole propagation path is divided into n slabs. The thickness of each slab is L/n.
C2
ni is the refractive index structure constant in the ith slab, while i = 1, 2...n.

density at plane z = 2L/n can be written as

W2(R2, r2) ∝
∫
d2R′

∫
d2r′W0(R

′, r′)

× exp

[
−(ρ202 + 7ρ201)|r2|2 + 4(ρ201 + ρ202)r2 · r′ + (7ρ201 + ρ202)|r′|2

4ρ201ρ
2
02

]
× exp

[
ink

2L
(R′ · r′ + R2 · r2 −R′ · r2 −R2 · r′)

]
. (B.3)

By the assumption of small difference of C2
n in the two adjacent slabs, it can be

assumed that

ρ202 + 7ρ201 ≈ 4(ρ201 + ρ202) ≈ 7ρ201 + ρ202 ≈ 8ρ̄12
2, (B.4)

where ρ̄12 is the average coherence length of a spherical wave in the first two slabs.

On substituting Eq. (B.4), Eq. (B.3) can be written as

W2(R2, r2) ∝
∫
d2R′

∫
d2r′W0(R

′, r′) exp

[
−2ρ̄12

2(|r2|2 + r2 · r′ + |r′|2)
ρ201ρ

2
02

]
× exp

[
ink

2L
(R′ · r′ + R2 · r2 −R′ · r2 −R2 · r′)

]
. (B.5)

W2(R2, r2) can also be calculated from W0(R
′, r′) by the extended Huygens-Fresnel
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principle directly, which is

W2(R2, r2) ∝
∫
d2R′

∫
d2r′W0(R

′, r′) exp

(
−|r2|

2 + r2 · r′ + |r′|2

ρ̄122

)
× exp

[
ink

2L
(R′ · r′ + R2 · r2 −R′ · r2 −R2 · r′)

]
. (B.6)

By comparing Eqs. (B.5) and (B.6), one can find that

ρ̄12
2 =

1√
2
ρ01ρ02. (B.7)

When the field is propagating into the third slab, the first two slabs can be treated

as unity whose average coherence length of a spherical wave is ρ̄12. By a similar

derivation, one can show that the average coherence length of a spherical wave in the

whole propagation path L is

ρ̄0
2 = 2−

1
2
−2( 1

2
)nρ

1
2n−2

01 ρ
1

2n−2

02

n∏
i=3

ρ
1

2n−i

0i (n ≥ 3), (B.8)

where

ρ̄0 = (0.55C̄2
nk

2L)−3/5

ρ0i = (0.55C2
nik

2L

n
)−3/5 (i = 1, 2...n). (B.9)

It can be readily seen that the average value C̄2
n can be measured by the radius of a

ring dislocation when it is varying along the propagation path, while C̄2
n is defined by

Eqs. (B.8) and (B.9).


