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ABSTRACT

CHRISTOPHER DIMARCO. Robust interpolation and iterative learning strategies
for modulated tool path planning.

(Under the direction of DR. CHRISTOPHER VERMILLION and DR. JOHN
ZIEGERT)

During single-point metal turning processes, a long, razor-sharp chip nest is often

formed that can be a hazard to both operators and the part being machined. To

combat this, a process called Modulated Tool Path (MTP) machining was developed

by Barkman et al [1] that superimposes a sinusoidal motion on the feed direction

of the tool path, causing the tool to remove itself from the cut and break chips.

As determined by Berglind [2], the amplitude and frequency characteristics of this

sinusoidal motion influence the material removal rate, chip length, and surface finish

of the part, and thus, must be replicated by the machine tool controller as faithfully

as possible. After the appropriate parameters for each MTP movement segment have

been selected, the machine tool controller must attempt to reproduce these movements

as closely as possible. In order to achieve this, a typical controller will rely on two

components:

1. An interpolation strategy, responsible for enforcing physical limitations of the

tool, such as acceleration and jerk limits, and

2. A closed-loop controller to ensure that the machine tool is reaching towards the

setpoint determined by the interpolator at each loop closure.

In this thesis, an alternative strategy for item 1 is proposed, as well as an iterative-

domain technique to improve closed-loop control of repetitive processes. In order to

tailor the standard interpolation strategy (known as jerk-limited linear interpolation)

for MTP manufacturing, a technique called Exponential and Sigmoidal (E/S) inter-

polation has been developed which shows a marked improvement in both tracking
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error and acceleration required for a given trajectory. While item 2, the closed-loop

controller (which is typically a PID type), has been researched in tremendous depth,

it has no provisions for improving its performance during repeated tasks or for reject-

ing iteration-varying disturbances. To combat the first deficiency, an iterative-domain

controller such as Proportional-Derivative Iterative Learning (PD-ILC) could be ap-

plied, however, the second criticism remains. This thesis proposes a variant of PD-ILC

called Disturbance & Performance-Weighted ILC (DPW-ILC) which weights the rel-

evancy of prior control inputs and errors based on criteria of merit, and determines

an appropriate control input for the current iteration. As one of the main criteria for

DPW-ILC is the measure of the disturbance, it is robust to iteration-varying distur-

bances. This thesis will show the vast improvement of DPW-ILC versus PID control

only and a version of iterative control called PD-ILC in the face of these types of

disturbances.
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CHAPTER 1: INTRODUCTION TO MTP

During most metal machining procedures, as a tool tip cuts through the metal

part, a “chip” of continuous removed material is formed (Figure 1.1). In the specific

process of turning on a lathe, where the workpiece is rotating and the tool tip is slow-

moving, the chip that is formed can often approach meters of length and coil around

the part. This coil is usually very sharp metal, and at high rpms can damage the

part’s surface finish or even be hazardous to the machine tool’s operator.

Figure 1.1: Chip nest created by a standard metal turning process. These are often
dangerously sharp and can damage the part and surface finish.

There are several techniques designed to combat this formation of lengthy chips.

The “low-tech” solution is simply to have a technician with gloves periodically stop

the machine and break the chip. The more commonplace technique employs a chip-

breaking tool tip that forces the metal to curl up and occasionally break.

A third solution, created by William Barkman et al [1], uses a standard tool tip,

but oscillates it in and out of the cut in order to break the chip. This Modulated Tool

Path (MTP) procedure [2] superimposes a sinusoidal oscillation tangent to the feed

direction of the tool tip as in Figure 1.2.
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Figure 1.2: MTP Trajectory in a single axis move.

This “ramped sinusoid” is not limited to linear tool movement; the oscillation can

be superimposed on any curve or polyline, but we will constrain ourselves to linear

feeds only in this thesis. The nature of the oscillation is highly critical, as both the

amplitude and frequency can have a profound impact on the length of the chip created

by each oscillation, and the surface finish of the final part [2]. As such, it is critical

that a machine tool controller be capable of replicating the reference MTP trajectory

as faithfully as possible.

Generally, the MTP reference trajectory is programmed into an NC part program

as a 6-point sine wave (see Figure 1.3), or a series of linear segments which provide a

length, direction, and desired feed speed for the tool to move. The desired feed and

position are then interpreted by the controller’s interpolation algorithm in order to

send the machine tool’s servo-control system a position set point for each closure of

the control loop. The jerk-limited linear interpolator as outlined by Altintas [4] is a

common choice, as it is designed to maximize fidelity to the commanded path while

respecting critical jerk and acceleration limits for the machine tool. Unfortunately,

due to the design of the jerk-limited linear interpolator, oscillatory processes such as

MTP can suffer large falloffs in both amplitude and frequency generation [3].
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Figure 1.3: MTP 6 Point Sine Wave Oscillation.

After the interpolator has generated the setpoints for the servo-control system, the

closed-loop control is tasked with enforcing those targets. Time-domain controller re-

search is plentiful: tracking and contour error improvements in servo control [8] & [10],

feedforward and cross-coupling control techniques [7], shaping of reference trajectories

[9], and applying multi-objective optimization to control [11]. Unfortunately, these

strategies rarely make use of any learning during repeated processes and correcting

errors over time, even though servo error is often a stored dataset. Following from

this, these control systems also have no method for minimizing transient errors, or

errors stemming from disturbances that vary in the iteration domain. One such exam-

ple of this is part expansion due to temperature fluctuation. Naturally, these errors

can lead to significant degradation of performance in oscillatory processes like MTP.

Some techniques have been proposed to deal with these situations, such as a neural-

networking procedure [19], but these require operator input to determine successful

passes, and a more internalized process should be developed.

It is the intention of this thesis to propose two improvements for MTP machining:

1. Develop an interpolation algorithm that is more aptly suited to oscillatory tra-

jectories, and
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2. Develop a learning algorithm that can:

(a) Improve accuracy over the span of many iterations

(b) Continue that improvement in spite of iteration-varying disturbances

1.1 Organization of Thesis

The remainder of this thesis is presented thusly:

Chapter 2 documents the issues with jerk-limited interpolation, and presents the

Sigmoid and Exponential Interpolator.

Chapter 3 presents the current control methods of time-domain PD control, and

iterative-domain control using PD-ILC, as well as their failings for MTP and iteration-

varying disturbances.

Chapter 4 presents the framework of DPW-ILC, as well as two applications of the

strategy.

Chapter 5 concludes the thesis and presents attractive options for future work.



CHAPTER 2: INTERPOLATION TECHNIQUES

After a reference trajectory is decided and entered into a machine tool (usually via

a NC part program), it is up to the machine tool’s controller to plan out the trajectory

that will be followed in order to enforce acceleration and jerk limitations on the tool

tip in order to prevent damage to the machine tool. Traditionally, this is done using

a method called linear interpolation.

A simplistic implementation of linear interpolation is laid out by Altintas in [4].

There are three basic segments in the method: acceleration to achieve the desired

feed speed, running at the desired feed speed, and accelerating to the speed of the

next segment. In order to achieve these three segments, jerk is limited to only three

options: maximum positive jerk, zero jerk, maximum negative jerk. After integration,

this gives rise to the characteristic trapezoidal acceleration curve, as shown in Figure

2.1. Integrating further, the final position of the tool tip is shown. The method of

determining the length of each of these segments is mathematically simple, but real

implementation depends on a variety of nested if/then statements to determine the ap-

propriate switching times. It can, therefore, be considered computationally complex,

especially for a process such as MTP, which consists of many small movements.

A highly relevant second artifact of this methodology can be seen in Figure 2.2. As

the desired trajectory is a sawtooth-type oscillation, the linear interpolator smooths

out the oscillations and also includes a varying delay due to startup and feedrate

changes. In normal machining, this is rarely a cause for concern, but in MTP machin-

ing this can lead to inaccuracies in amplitude or frequency depending on the settings

of the machine tool. If the machine tool is configured to complete every move, this



6

Figure 2.1: Profile of Altintas’s Jerk-Limited Linear Interpolation Strategy [4].

will cause frequency falloff, as it will achieve the desired amplitude but will be unable

to match the desired frequency. If, on the other hand, the machine tool is configured

to start the next move at the start of the next move target start time, this will result

in frequency matching with amplitude falloff. These results have been observed by

Wes Love and can be found in [2]. While improvements in machine tool tracking have

been investigated in the fields of advanced controller design [7], improving contour

accuracy [8] [10], input shaping [9], and high performance [11], these enhancements

all make use of the standard linear interpolator and are subject to its pitfalls.
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Figure 2.2: Linear Interpolation Result of a Ramped Sawtooth Oscillation.

2.1 Exponential and Sigmoid Interpolators

Given the deficiencies of jerk-limited linear interpolation as applied to MTP ma-

chining, an alternative strategy, called the Exponential and Sigmoidal Interpolator,

is proposed. The exponential interpolator is based on work by Rymansaib [5] and

demonstrates the usefulness of this technique to sinusoidal trajectories. The exponen-

tial interpolator is then augmented by the sigmoid interpolator, which is a strategy

for joining two segments as well as ending a moment at zero velocity.

2.1.1 Exponential Interpolator at Startup

For Modulated Tool Path machining, each movement can make use of a linear com-

ponent for feed and a sinusoidal component for chip breaking. Making use of super-

position, these two components can be evaluated separately and then summed to get

position, velocity, acceleration, and jerk values. Using the equations that define these

values, acceleration and jerk limits can be imposed via an convergence-aggressiveness

coefficient.

2.1.1.1 Linear Component

The linear component of the exponential interpolator is detailed in Rymansaib [5]

and described here. The linear equation in 2.1 is the baseline desired position (x) and
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slope (m) at time t:

x = mt+ b (2.1)

For initial startup, the exponential equation for the sigmoid interpolator is:

SL = 1− e−αt3 (2.2)

where α is a constant that dictates the quickness of convergence. The order of the

time variable t is 3 to maintain a zero value at t = 0 for acceleration, as will be shown

below. This leads to a sigmoid interpolated position value xL of:

xL = xSL = (mt+ b)(1− e−αt3) (2.3)

It is important to note that at t = 0 and for sufficiently large values of t, xL = x. The

velocity, ẋL, is evaluated as:

ẋL = m− e−αt3(m− 3αmt3 − 3αbt2) (2.4)

which again is equal to 0 at t = 0 since all t-terms = 0 and exponential terms = 1,

leading to m−m = 0. Differentiating a second time, the acceleration, ẍL, is equal to:

ẍL = e−αt
3

(−9α2bt4 − 9α2mt5 + 6αbt+ 12αmt2) (2.5)

At t = 0 acceleration is then equal to zero. With ẍL set equal to a physically realizable

acceleration limit and the values of t known for the movement, a maximum allowable

value for α can be determined numerically.

The result of this startup exponential is shown in Figure 2.3 for several values of α.

Note that as α increases, the planned trajectory reaches the target path more quickly,

and that the tool will exceed the desired feed rate for a small period of time.
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Figure 2.3: Exponential Startup for a Linear Move. As α increases from 1 to 5, the
exponential function more closely approximates the targeted linear move.

2.1.1.2 Sinusoidal Component

The desired sinusoidal component is given by:

x = A sinωt (2.6)

where A is the sine wave amplitude and ω is the angular frequency. As with the

linear component, the sinusoidal component is multiplied by an exponential to control

velocity and acceleration. The exponential form is similar:

SS = 1− e−αt2 (2.7)

However, the order of t is decreased to 2 as it is not required to be increased to

maintain zero acceleration at time step zero in this case. The position equation for

the sinusoidal component is generated by multiplying these together:

xS = xSS = (A sinωt)(1− e−αt2) (2.8)



10

Differentiating twice yields the velocity and acceleration equations:

ẋS = 2Aαte−αt
2

sinωt− Aωe−αt2 cosωt+ Aω cosωt (2.9)

ẍS = −Ae−αt2(4α2t2 sinωt+ ω2eαt
2

sinωt− 2α sinωt−

−4αωt cosωt− ω2 sinωt) (2.10)

At t = 0, both velocity and acceleration equal zero. As with the linear component,

since all values other than α are known, the maximum value can be computed with

a numeric solver to ensure acceleration and velocity maximums are not exceeded.

Figure 2.4 is an example of the interpolated trajectory for several values of α. Figure

2.5 shows the interpolated trajectory when both a linear component and sinusoidal

component are summed.

Figure 2.4: The sinusoidal exponential component of the interpolator for α values
from 1 to 5.

2.1.2 Sigmoid Interpolator at Transitions

A different approach can be used at a transition point, since the desired trajec-

tory is a continuous curve. The sigmoid interpolator utilizes two sigmoids to create

a composite function that sweeps the incoming and outgoing curves smoothly and
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Figure 2.5: Combined Linear and Sinusoidal Exponential Interpolation.

asymptotically between 0 and 1. The sigmoid equation is:

S =
1

1 + e−α(t−c)
(2.11)

where c is the transition point (in time) when the sigmoid value is equal to one, and α

again is a time constant that affects the aggressiveness of the transitions. A positive

α is used for the incoming curve and a negative one for the outgoing. At t = c, both

curves contribute exactly half of their total value to the position at c, guaranteeing the

correct transition point is reached. However, to assure a zero velocity at the transition

point, which is imperative for direction switching, a correction term must be solved

for and added to the sigmoid:

Sin =
a

a+ e−α(t−c)
(2.12)

Sout =
b

b+ e−α(t−c)
(2.13)

The coefficients a and b are the incoming and outgoing correction coefficients, respec-

tively. The input and output trajectories each have a separate correction term that is
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derived from two constraints to be enforced on the transition, firstly:

Sin(c) + Sout(c) = 1 (2.14)

Next, the values of a and b must be selected to determine the blending of the two

curves to be joined. If a = b = 1, there will be an even blending throughout the

transition. For a > b, the sigmoid will transition after c, and a < b will generate a

transition prior to c. A blending ratio R can be selected at the midpoint c as:

R =
Sdesin (c)

Sdesout(c)
(2.15)

Taking note of the fact that:

Sin(c) =
a

1 + a

Sout(c) =
b

1 + b

(2.16)

we can achieve Sin(c)/Sout(c) = R by choosing a and b as:

a = R (2.17)

b =
1

R
(2.18)

Note that these values are unaffected by α and that velocity and acceleration

may increase even if the outgoing trajectory is decreasing. Also, it is unnecessary to

perform this correction on trajectories continuing in the same direction. An example

of a sigmoid calculated in this manner is shown in Figure 2.6. Using these Sin and Sout

values, an acceleration and jerk-limited curve going smoothly through the transition

point and not gouging the part in any portion of the transition, as shown in Figure

2.7.
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As for the sinusoidal component of the path, care must be taken so that the

oscillation does not gouge the part when nearing transition points. To prevent this,

using an overlaying (2.12) and (2.13) with a c value away from the transition point

coupled with an a or b value that is very small (but not zero) will remove the sine

component from the transition trajectory, and may also be used to end a move.

Figure 2.6: Corrected Sigmoid values at transition. The blue curve is the interpolated
value of the incoming segment, and the green curve is the outgoing one.

2.2 Exponential and Sigmoidal Interpolation Results

As shown in Figures 2.9 and 2.8 below, at low acceleration limits the two methods

of trajectory interpolation produce vastly different results, with the exponential/sig-

moidal (E/S) interpolator converging to the desired trajectory quickly. Figures 2.11

and 2.10 show that tracking is similar between the two at high acceleration limits, but

a time delay is still apparent in the linear interpolator.

2.3 Quantitative Analysis

To provide a quantitative comparison of performance between the two interpolation

techniques, a performance index, J , has been defined. J is comprised of a weighted

sum of penalties for tracking error and tool acceleration over the entire machining
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Figure 2.7: Sigmoid transition at t = 5, from a 1:5 slope to a -1:1 slope. Note that
the sigmoid curve does not exceed the intersection of the two lines.

trajectory. This leads to an index of the form:

J =

∫ T

0

[ke(ydes − yact)2 + kaÿ
2]dt (2.19)

T is the run time, ydes is the target position, yact is the interpolated value, and ÿ is the

instantaneous acceleration value. Constants ke and ka are the weighting coefficients

for the error tracking and acceleration. The scalar ke was chosen to be 6 × 102 in
s−in2 ,

and ka
s
in

was set to 1. For comparison, the ramped sinusoid chosen was of slope 3, an

amplitude of 0.15, a frequency of 2 Hz.

2.3.1 Error Tracking

By itself, the error tracking component of the performance index showed a notable

improvement by using the E/S interpolator over the linear interpolator. As shown in

Figure 2.12, the E/S interpolator showed a large advantage in tracking error at low

acceleration limits, but as these limits are increased, that edge lessens significantly.
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Figure 2.8: Low acceleration limit - Linear Interpolator.

Figure 2.9: Low acceleration limit - Exponential Interpolator.

2.3.2 Acceleration Costs

As both of these interpolators are tracking similar curves, it can be expected

that they perform similarly. However, as acceleration limits are increased, the E/S

interpolator tends to dedicate less effort to acceleration. This can be attributed to

the linear interpolator always choosing maximum positve/negative jerk when it is

changing feed speeds. The result is shown in Figure 2.13.

These two indices are then weighted by their respective terms, ke and ka, and the

overall improvement of the E/S interpolator can be seen in Figure 2.14.
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Figure 2.10: High acceleration limit - Linear Interpolator.

Figure 2.11: High acceleration limit - Exponential Interpolator

2.3.3 Alpha Value

The tracking aggressiveness for the E/S interpolator is determined by the α value.

Plotting α vs. J generates the curve shown in Figure 2.15, and shows a minimum-cost

value for α can be determined. At this α value, J is less than one third of the value

for the linear interpolator.

2.3.4 Sigmoid Transition

The E/S interpolator also performed well at transition points. For a 10 inch move-

ment back and forth at 10 in/s, with a 500 in/s2 maximum acceleration, the linear
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Figure 2.12: Tracking error comparison. The upper blue curve is the Linear Interpo-
lator and the lower green curve is the E/S interpolator.

interpolator displayed its characteristic tracking error issues. For the E/S interpola-

tor, the maximum allowable α was determined to be 50. Using the same function

and coefficients for J , the E/S interpolator was 30 times more efficient at tracking the

target trajectory and decreasing the acceleration used over the entire movement. See

Figures 2.16 and 2.17 for detail.

2.4 Exponential/Sigmoidal Interpolator Conclusion

In this section, an alternative interpolation strategy was proposed to replace tradi-

tional jerk-limited techniques. The E/S interpolator was derived and shown to honor

the physical constraints imposed by machining, i.e., jerk/acceleration/velocity/posi-

tion, and to navigate segment transitions without overshooting or gouging the part.

Based upon a performance index consisting of tracking error and acceleration penal-

ties, the E/S interpolator showed up to a 60% improvement over linear interpolation

for low acceleration limits, and up to a 12% improvement at high acceleration lim-

its. Using a “there and back again” movement and transistion, the E/S interpolator

showed a 30-fold improvement over the linear interpolator at the same maximum

acceleration limit.
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Figure 2.13: Achieved acceleration. The upper blue curve is the Linear Interpolator
and the lower green curve is the E/S interpolator.

Figure 2.14: Combined tracking error and acceleration performance indices for both
interpolators.
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Figure 2.15: E/S interpolator α value versus J .

Figure 2.16: Interpolator comparison at transition.
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Figure 2.17: Interpolator comparison at transition, zoomed in.



CHAPTER 3: STANDARD MACHINE TOOL CONTROL STRATEGIES

In order for MTP to function as described, the machine tool controller must be

able to accurately reproduce a trajectory of multiple ramped sinusoids. The two

characteristic manners in which machine tools fail to achieve this are in amplitude

falloff, which can also be seen in that figure, and frequency falloff [3], due to the

reasons stated in the previous chapter. The tool path typically consists of multiple

different ramped sinusoids with different ramp rates and oscillation frequencies that

are knitted together. One example of this is during facing of a cylindrical part:

as the radial distance varies, so must the feed rate and thus the MTP parameters.

Precise tracking of a prescribed trajectory (i.e., tool position versus time) is extremely

important in these types of cases.

Ultimately, two key requirements must be met for successful control of MTP pro-

cesses:

1. Transient and steady-state tracking errors must be kept below a very tight ma-

chining tolerance.

2. The process must be repeatable over hundreds of iterations, under variable en-

vironmental conditions.

3.1 Time-Domain Control

The first method for tracking the desired reference trajectory is within the time-

domain. While it is possible for a machine tool to operate in an open-loop configu-

ration with very well known plant parameters, for the sake of quality control, most

machine tools make use of closed-loop controllers as this provides an error signal for
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the controller to track the performance of the tool. The predominant closed- loop

control strategy used in machine tools is the Proportional-Integral-Derivative (PID)

controller [4], shown in Figure 3.1.

Figure 3.1: PID control system block diagram.

PID control has four separate components that can be used to aid in tracking

the reference signal, ydes. The error signal, e, first makes its way through a filter

with time constant τ . It then branches into the three PID contributers to the control

signal, u: a proportional section (kpe(t)), an integral section (ki
∫ t
0
e(τ)dτ), and the

derivative section (kd
de(t)
dt

). Each has their own tunable coefficient (kp,ki,kd) that

must be determined. The control signal processes through the plant dynamics and

generates the output y. While reasonable performance can be obtained, standard time-

domain control techniques without learning will typically lead to consistently repeated

transient errors that exceed the part tolerance, thereby failing to achieve the first

aforementioned requirement. For example, if one has a PID controller driving a motor

and encoder system (i.e., a feedback system), while the system may function within

specifications, there still is a predictable amount of error in the system’s response to a

driving reference signal due to the system’s time constants (exaggerated in Figure 3.2

for understanding) and deterministic nature. Other time-domain control strategies

will exhibit similar issues. H∞ methods, which attempt to minimize the H∞ norm

of the plant’s closed-loop transfer function, cannot correct transient error or even
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steady-state error. Model predictive control (MPC), which re-optimizes the trajectory

over a set time horizon, suffers the same ails. Even Internal model principle (IMP)-

based control techniques, which can embed sinusoidal trajectories in the controller

such that it is tracking the deviation from a known sinusoid [6], has no method to

correct transient errors. None of these control strategies has any method to correct

for iteration-domain varying disturbances, which can be seen in Figure 3.3 over 500

iterations. To remedy these concerns, we must look into the iterative domain.

Figure 3.2: PID control of an exponentially growing ramped sinusoid MTP trajectory.

Figure 3.3: PID control with iteration-varying disturbances over 500 iterations.
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3.2 Iterative Domain Control

In response to the concerns over repeated transient errors and the availability of

multiple machining iterations to learn from, iterative learning control (ILC) stores

the error and control input trajectories from the previous iteration and manipulates

them to correct the control actuator input for the next iteration [12]. Use of ILC

was pioneered by Arimoto [15] in 1984, and has been extended by Moore and Chen

[16], Alleyne [13], Hoelzle and Barton [20], and many others. The implementation

of ILC is as varied as standard controller design, and also has similarities to those

control structures. For example, some familiar techniques for both feedback controller

and ILC design include proportional-integral-derivative (PID), H∞, and cost-bound

(linear regression) [13].

ILC has proven to be a very effective control technique in eliminating transient

and steady-state error over repeated iterations. However, even learning algorithms

can increase error or even destabilize a system, as most variants of ILC do not have

a method for handling disturbances that vary randomly from one iteration to the

next, which can lead to improper control inputs being generated. For example, a

previously learned control modification for a high value of disturbance will result in an

incorrect control input when the following iteration’s disturbance is low. This becomes

problematic when random disturbances (arising, for example, through temperature

variations) over the machining of hundreds of parts can lead to widely differing part

tolerances and surface finishes.

This can be clearly seen in the use of Proportional-Derivative ILC (PD-ILC) as

developed by Arimoto [15]. Using the SISO discrete-time system dynamics in Equation
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(3.1):

x(t+ 1) = A(di)x(t) +B(di)u(t)

y(t) = C(di)x(t)

e(t) = ydes(t)− y(t)

(3.1)

with A,B,C as the state space matrices, x as the system states, and di as the

iteration-varying disturbance. The system diagram is shown in Figure 3.4, and the

prototypical definition of discrete-time PD-ILC is given by:

ui+1(t) = ui(t) + kpei(t+ 1) + kd(ei(t+ 1)− ei(t)), (3.2)

where i is the iteration index, kp is the proportional gain coefficient, kd is the derivative

gain coefficient, and e is the error. The control input augmentation for each iteration

is determined based on the error and error rate from the previous iteration.

Figure 3.4: PD-ILC system block diagram.

To determine the values of kp and kd that will sufficiently guarantee monotonic

convergence, we must analyze the plant Markov impulse parameters, given by:
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pm = CAm−1B (3.3)

where p is the Markov parameter, andm is the parameter index. With these values,

Norrlof and Gunnarsson [17] determined that a sufficient condition for asymptotic

stability and Lee and Bien [21] showed monotonic convergence is satisfied by:

|1− (kp + kd)p1| < 1 (3.4)

As long as Equation 3.4 is satisfied, kp and kd may be selected to suit application-

specific needs. For constant or zero disturbances, this can result in desired monotonic

convergence as expected (see Figure 3.5. Unfortunately, one those disturbances begin

to vary in the iteration domain, PD-ILC is incapable of improving its performance

after a certain limit (see Figure 3.6).

Figure 3.5: A typical application of PD-ILC over 500 iterations with zero/constant
disturbance.

The main reason for these symptoms is the lack of any determination of the rel-

evance of the current disturbance to the previous iteration’s disturbance. This can

easily be seen by a thought experiment: if, for a given system, the desired output was

5 inches of positive movement in the presence of disturbance level 5. An ILC system
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Figure 3.6: A typical application of PD-ILC over just 100 iterations with an iteration-
varying disturbance.

would converge nicely while the disturbance maintained a value of 5. However, if it

suddenly jumped to 10, or worse, -5, how relevant would the control input be? Ob-

viously, some percentage would be correct, but there would be some error due to the

jump in the disturbance. Once the disturbance varies on every iteration, a result such

as Figure 3.6 appears.

Flexible ILC, a library-based version of ILC pioneered by Hoelzle and Barton [20],

represents an initial effort toward remedying this issue. Flexible ILC stores distur-

bance values and maps the optimal control input through plant inversion and assumed

knowledge of the mapping of disturbance to plant dynamic response. If a new distur-

bance is encountered, it then interpolates between the nearest tabulated disturbance

values to determine the proper control input. While flexible ILC represents an im-

portant step toward the consideration of external disturbances through ILC as well

as library-building, the framework of [20] can be further enhanced through three im-

portant measures:

1. The interpolation algorithm can be extended to consider more than just the

nearest two tabulated disturbances; in this manner, the ILC strategy can make
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use of more than just two past trajectories in its learning.

2. When determining how to weight past control input trajectories, both the dis-

turbance and resulting performance can be taken into account. For example, if

two previous iterations share the same disturbance value but different levels of

performance, the higher-performing control input trajectory should be weighted

more heavily in the ILC iteration.

3. Finally, little if any information should be required regarding the plant and the

mapping of the disturbance to the plant response.

A strategy to apply both of these measures is supplied in the following chapter.



CHAPTER 4: DISTURBANCE AND PERFORMANCE-WEIGHTED
ITERATIVE LEARNING CONTROL

Given the limitations of time-domain and current ILC techniques, this thesis

proposes a new ILC technique, termed Disturbance and Performance-Weighted ILC

(DPW-ILC), which accounts for disturbances that vary from one iteration to the next

and the tracking performance attained under these disturbances. DPW-ILC requires

little a priori knowledge of plant dynamics or mapping of a disturbance to the plant

dynamics. It is assumed, as in all ILC implementations, that the time-domain sys-

tem is stable and that reference trajectory is unchanging. This algorithm stores each

iteration’s control inputs, error signals, and measured disturbance values, then uses a

weighted metric to determine the relevance of each previous iteration to the current

iteration. This metric is based on error signal, error rate, and the similarity of the

disturbance values. Previous iterations with good tracking performance and similar

disturbance values to the currently measured disturbance are weighted more heavily.

The DPW-ILC algorithm in this paper is built on Arimoto’s PD-ILC [15], but can

be generalized to other control methodologies. The DPW-ILC algorithm is validated

on an MTP example where thermal expansion results in significant plant variations

from one iteration to the next. The results presented herein demonstrate a marked

improvement between basic PD-ILC and DPW-ILC under this scenario.

4.1 DPW-ILC Framework

The fundamental structure of DPW-ILC is based on two central tenets:

1. When learning from previous iterations, one should apply more weight to itera-

tions where the disturbance was similar to the presently-measured disturbance.
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2. When learning from previous iterations, one should apply more weight to itera-

tions where good tracking performance was realized.

The overall structure of DPW-ILC, which takes into account these two tenets, is given

in Figure 4.1.

Figure 4.1: DPW-ILC standard layout

In describing the mathematical framework behind DPW-ILC, we will consider a

SISO system with plant dynamics in discrete time given by:

x(t+ 1) = A(di)x(t) +B(di)u(t)

y(t) = C(di)x(t)

e(t) = ydes(t)− y(t)

(4.1)

where A, B, and C are the discrete-time plant matrices, x are the system states, u

is the system input, and y is the system output, ydes is the desired output, and t is

the time index. The value di represents the environmental disturbance signal at the
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present iteration, denoted by i. The disturbance is assumed to vary from one iteration

to the next but is approximated as constant over the course of an iteration. For this

system, the ILC law is given by:

ui+1(t) = f(Ei, Di, t) + g(Ui, Di, t), (4.2)

where the subscript i + 1 represents iteration i + 1 and Ei, Ui, and Di represent

historical error, control input, and disturbance trajectories that are stored within

a library that is updated at every iteration. The stored error, control input, and

disturbance trajectories comprise all past iterations and are therefore given by:

Ui =
[
ui−1 ui−2 . . . ui−m

]
,

Ei =
[
ei−1 ei−2 . . . ei−m

]
,

Di =
[
di−1 di−2 . . . di−m

]
,

(4.3)

where m is the total number of iterations that have been completed and ui, ei, and

di represent the control input, disturbance, and error trajectories, respectively, at

iteration i:

ui =
[
ui(0) ui(1) . . . ui(N − 1)

]T
,

ei =
[
ei(0) ei(1) . . . ei(N − 1)

]T
,

di =
[
di(0) di(1) . . . di(N − 1)

]T
.

(4.4)

In the above, N is the number of discrete time steps in each iteration.

In arriving at expressions for f(Ei, Di, t) and g(Ui, Di, t) in equation (4.2), the cen-

tral idea is to apply more weight to past iterations with similar disturbances and good

performance. This is accomplished through the following general weighted expressions
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for f(Ei, Di, t) and g(Ui, Di, t):

f(Ei, Di, t) = u∗∗(t) = Γ1

m∑
j=1

wj(Ni)f
′
(ei, t), (4.5)

g(Ui, Di, t) = u∗(t) = Γ2

m∑
j=1

wj(Ni)g
′
(ui, t) (4.6)

where wj(Ni) is a weight assigned to each previous iteration’s error and control signal

based on its relevance, Ni, to the current iteration. These weights are taken to be the

same for both control and error signal, and they are assumed to sum to 1 across all

iterations. The “learning functions,” f
′
(ei, t) and g

′
(ui, t), are presently expressed as

generic functions of the error and control signal trajectories, respectively. Finally, Γ1

and Γ2 are user-defined learning gains. At this point in the derivation, two main tasks

are required to fully define the DPW-ILC formulation:

1. The form of f
′
(ei, t) and g

′
(ui, t) must be defined.

2. The form of the weighting functions, wi(Ni), must be defined.

4.1.1 Defining Learning Functions Using PD-ILC

In this work, we will use Arimoto’s PD-ILC [15] in deriving expressions for f
′
(ei, t)

and g
′
(ui, t). Using the system dynamics established above in Equation 4.1, the pro-

totypical definition of discrete-time PD-ILC is given by:

ui+1(t) = ui(t) + kpei(t+ 1) + kd(ei(t+ 1)− ei(t)), (4.7)

where i is the iteration index, kp is the proportional gain coefficient, kd is the derivative

gain coefficient, and e is the error. The control input augmentation for each iteration

is determined based on the error and error rate from the previous iteration. Within

the PD-ILC framework of equation (4.7), f
′
(ei, t) and g

′
(ui, t) are given by:
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f
′
(ei, t) = kpei(t+ 1) + kd(ei(t+ 1)− ei(t)),

g
′
(ui, t) = ui(t).

(4.8)

To determine the values of kp and kd that will sufficiently guarantee monotonic

convergence, we must analyze the plant Markov impulse parameters, given by:

pm = CAm−1B (4.9)

where p is the Markov parameter and m is the parameter index. With these values,

Norrlof and Gunnarsson [17] determined a sufficient condition for asymptotic stability

and Lee and Bien [21] showed monotonic convergence is satisfied by:

|1− (kp + kd)p1| < 1 (4.10)

As long as Equation 4.10 is satisfied, kp and kd may be selected to suit application-

specific needs.

4.1.2 Defining Weighting Functions Based on Performance and Disturbance

Similarity

The central concept of DPW-ILC lies in weighting previous iterations based on the

similarity of their disturbance to the currently measured disturbance and the quality

of tracking performance achieved. This is achieved by computing a relevance index

that quantifies both of the aforementioned measures.

In quantifying disturbance similarity, the current iteration’s measured disturbance

di is compared to all the other stored disturbances by taking the absolute value of the

difference:

d̃ =
[
|di − di−m| |di − di−2| . . . |di − di−1|

]T
(4.11)
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Note that the disturbance is assumed to remain constant over the course of a single

iteration.

Performance relevance is computed simply by considering the tracking error and

rate of change in tracking error for a given iteration. Combined with disturbance

similarity, the overall relevance index between iteration i and j is given by:

Ni,j =
1∫ T

0

[
Neej(t)2 +Nerėj(t)2 +Ndd̃j

2
]
dt

(4.12)

where Ni,j is the relevance index comparing the current iteration i to iteration j. Ne,

Ner, and Nd are the weights for error, error rate, and disturbance distance relevance,

respectively. These weights are user-selected and are designed balance the importance

of disturbance similarity and tracking error. Once these index values have been deter-

mined for each previous iteration, they must be normalized such that the sum of all

relevance indices is 1. As such, we determine the weighting values, wi(Ni), for each

iteration as follows:

wj(Ni) =
Ni,j∑i−1
k=1Ni,k

, (4.13)

where Ni represents the full vector of relevance indices from j = 1 to j = i− 1, given

by:

Ni = [ Ni,1 Ni,2 . . . Ni,i−1 ]T . (4.14)

4.2 Examples

The two following examples will help to demonstrate the implementation of the

DPW-ILC algorithm. Both will make use of a core system which consists of a DC

motor that controls the speed and position of a machine tool. The desired trajectory

consists of an MTP process generated by the E/S interpolator for a 2-segment move.
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In both examples, we will consider the impact of significant iteration-to-iteration

temperature variations on the performance of the MTP process. Local temperature

variations represent some of the most ubiquitous and consequential environmental

disturbances on manufacturing processes, as evidenced for example in [19], thereby

representing an appropriate disturbance source for the validation of DPW-ILC. In

both application examples, the control strategy conforms to the block diagram of Fig.

4.1.

4.2.1 Case I - Motor Control with Thermally Varying Resistance

In this first example of DPW-ILC implementation, a DC motor with temperature-

dependent resistance is considered. The motor is modeled through the following

second-order continuous-time model:

Jω̇ +Bω = Ki

L
di

dt
+R(T )i = V −Kω

(4.15)

where J , B, K, R(T ), and L are defined as in Table 4.1. The dynamic variable i is the

instantaneous current of the circuit and ω is the angular velocity of the motor. The

tool position is given by y, and a filtered PD controller with feedback is used to track

the input in the time domain. The PD controller gains are shown below in Table 4.2.

For this example, we will model a thermal disturbance that affects the electrical

resistance of the motor, changing the time constant of the system. The resistance

varies according to:

R(T ) = R0[1 + αR(T − T0)] (4.16)

R0 is the starting resistance at the starting temperature, T0, which are R(T ) from

Table 4.1 and 0◦C, respectively. αR is the thermal resistance coefficient for copper
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wire, approximately 3.9× 10−3 K−1. A filtered random disturbance is used, allowing

the temperature to vary up to 100◦C in either direction.

Table 4.1: Table of dynamic system variables

Variable Value Units Description
J 0.01 kg −m2 Moment of Inertia - Rotor
B 1 Nms Viscous Friction Constant
K 1 N−m

A
Torque/Back EMF Constants

R(T ) 1 ohms Electrical Resistance
L 0.005 H Electrical Inductance

Table 4.2: Table of PD controller gains

Variable Value Units Description
P 10 V

in.
Proportional Gain

D 1 V−s
in.

Derivative Gain
τfilt 0.01 s Filter Time Constant

4.2.1.1 DPW-ILC Setup

The general layout of the DPW-ILC system is shown in Figure 4.1. While the

algorithm is the same as laid out in Section 2 above, the coefficients for the PD-ILC

core (kp and kd) must be calculated first using the criteria for monotonic convergence

presented in Equations (4.9) and (4.10). After determining the Markov parameter p1

to be 1.6 × 10−3, the values of kp = kd = 1.284 were selected. The relevance index

coefficients must then be selected for use with Equation (4.12). Based on the units of

the measured disturbance relative to the error values, as well as a desire to prioritize

error over error rate, the following values were selected: Ne = 10, Ner = 2, Nd = 0.5.

Both Γ values were set to 1.

4.2.1.2 Results

The implementation of DPW-ILC resulted in tracking the target signal with a high

level of accuracy, improving as the iterations increased, as shown in Figure 4. This

is made clear by the error signal, shown in Figure 5. On the controller side of the

DPW-ILC system, it is still apparent that the control input is being affected even 400
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iterations in Figure 6. Figure 7 provides a graphical depiction of the relevance indices

at the last iteration of the simulation, i.e., N500. Clearly, a small number of iterations

possess high relevance indices when compared to all other iterations. In fact, the three

most relevant iterations are those that have a disturbance very close to that measured

on this iteration and have low errors and error rates.

Figure 4.2: Thermal Resistance DPW-ILC example - Tracking. Only the initial PD
iteration is high enough in error to be seen. All other iterations are very close to the
target.

Figure 4.3: The values of error for several iterations for the Thermal Resistance Ex-
ample.

The results (Figure 8) also show a dramatic improvement over non-ILC PID scheme
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Figure 4.4: The Values of Control Input for several iterations for the Illustrative
Example

and PD-ILC. PD-ILC does perform better than PID, but only to a point, whereas

DPW-ILC shows continuing improvement over extended iterations, as well as mini-

mizing the effect of randomized disturbances.

4.2.2 Case II - Nonlinear Thermal Expansion Example

In the second example, in the place of a thermal disturbance that influences resis-

tance, the thermal variations act on a machine part that expands as the temperature

increases. Furthermore, this thermal effect is modeled in a nonlinear fashion. As a

result of this nonlinear thermal expansion, the actual position of the tool relative to

the part (which is subject to thermal position), denoted by y, differs from the abso-

lute tool position, denoted here by y∗. In this example, y∗ is used for time-domain

feedback, but it is assumed that an estimate of y is available after each iteration is

complete, and therefore the error used to ILC learning between iterations is given by

ydes − y. The temperature-dependent relationship between the part-relative position

(y) and absolute tool position y∗, is given by:

y =
y∗

α1(T − T0) + α2(T − T0)2 + 1
(4.17)

α1 and α2 are two arbitrary thermal expansion coefficients, modeled as 3× 10−6 K−1

and 5× 10−7 K−2, respectively.
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Figure 4.5: The final Relevance Index for the last iteration of 500 for Thermal Re-
sistance example (i.e., the graph shows all of the elements of N500). The handful of
indices with high relevance values share a disturbance (temperature) that is similar
to the measured temperature at iteration 500 and exhibit good tracking performance.

4.2.2.1 DPW-ILC Setup

All PD controller coefficients and motor variables are the same as in Tables 4.1

and 4.2. It follows that the Markov parameters and PD-ILC gains are similar. The Ne

and Ner are the same, but in order to accommodate the large difference between the

disturbance value of temperature and the small physical dimension of the disturbance

effect of distance, Nd has been decreased to 10−4. Both Γ values remain at 1.

4.2.2.2 Results

DPW-ILC tracks the target trajectory in a manner similar to the first example.

The results in this example are less dramatic, as the disturbance-driven error is small,

but still telling. While both variants of ILC show marked improvement over the PD

only control, PD-ILC is unable to converge to zero error beyond a certain point when

there is a changing disturbance applied to the system.

4.3 Conclusion

In this section, a library-based variant of PD-ILC called Disturbance & Performance-

Weighted ILC that is capable of not only improving performance of a repeated task
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Figure 4.6: Comparison of RMS error values for DPW-ILC, PD-ILC, and PID Controls
for Thermal Resistance Example.

Figure 4.7: Tracking of DPW-ILC algorithm for Thermal Expansion example.

over time, but allowing the controller to respond better to iteration-varying distur-

bances such as a temperature fluctuation, was proposed. A general framework for

DPW-ILC was laid out, allowing for the formulation of a system using PD-ILC as the

core of ILC, while DPW-ILC managed the library and relevance weighting. DPW-ILC

was demonstrated with an example for the variance of performance due to thermal

resistivity and another due to non-linear thermal part expansion. In the thermal

resistivity example, DPW-ILC showed a substantial improvement over basic PD con-

trol, as well as a much higher tolerance for disturbance variation over time compared
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Figure 4.8: The final Relevance Index for the last iteration (500) for the thermal
expansion example (i.e., the graph shows all of the elements of N500). Similar to the
first example, this last run has some high relevance values, which are iterations that
have both close proximity to the current measured disturbance and a low error and
error rate.

Figure 4.9: Comparison of RMS error values for DPW-ILC, PD-ILC, and PID Controls
for Thermal Expansion Example

to PD-ILC. These trends continued through the nonlinear thermal part expansion

demonstration, where DPW-ILC showed convergence to zero error, while both PD-

only and PD-ILC hover at a disturbance-limited levels of error for continued iterations.



CHAPTER 5: CONCLUSION

In this thesis, weak links in the process of modulated tool path (MTP) machining

were discussed, and two improvements to machine control strategies were developed.

After an MTP reference trajectory is designed, it is imperative for the machine con-

troller to precisely follow that trajectory.

The first step after the NC part program is determined is to interpolate the neces-

sary positions of the tool at each time step, enforcing physical machine tool limitations.

The jerk-limited linear interpolator, the mainstay method of this process for current

machine tools, was shown to be unsuitable for oscillatory, or more specifically, ramped

sinusoidal trajectories, due to segment delays and large acceleration demands. An al-

ternative, called the Exponential/Sigmoid interpolator, was developed to aggressively

minimize the tracking error and acceleration required by the control software. For the

same MTP trajectory, the E/S interpolator was shown to have a 60% improvement

over the linear interpolator at low accelerations and a 12% improvement at high ac-

celerations. At transitions, the E/S interpolator demonstrated a 30-fold improvement

over the jerk-limited linear interpolator for the same maximum acceleration limit.

After the target positions at each time step are determined, the machine tool must

enforce these movements during machining time. The usual methods for achieving this

were discussed, as well as their limitations. To improve upon the current systems, a

library-based iterative learning control scheme called Disturbance and Performance-

Weighted ILC was developed using a PD-ILC core. DPW-ILC was demonstrated using

two examples: motor performance variance due to a thermal resistivity disturbance,

and non-linear thermal expansion due to a temperature disturbance. In both exam-
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ples, DPW-ILC showed marked improvements over both time-domain (PD) control

and PD-ILC.

The combination of the E/S interpolator and DPW-ILC has shown tremendous

potential for implementation in any machining scenario requiring high-accuracy move-

ment for repetitive oscillatory tasks.

5.1 Future Work

There are several roads which can be traversed in order to improve the accuracy

of MTP machining. First, the Exponential/Sigmoidal interpolator can likely be ex-

ploited to take advantage of the a and b values for different types of trajectories.

Second, the E/S interpolator should be expanded out to multi-axis moves, which may

prove somewhat challenging compared to linear techniques which scale easily. This

interpolation technique will also need to be validated on a machine tool by someone

with greater access to the internal workings of a machine tool controller.

With respect to the DPW-ILC scheme, a “trimming” mechanism could be imple-

mented to remove previous iterations that have been replicated or contain relatively

useless data. Any work along these lines will drastically improve the computation

time between iterations, which can be lengthy as iterations exceed N500. Also, the

relevance index parameters (Ne/Ner/Nd) could be improved or replaced entirely with

other parameters for better convergence. Lastly, DPW-ILC could be re-formulated

to work with other versions of iterative-domain learning strategies to create novel

alternatives.
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APPENDIX A: EXPONENTIAL/SIGMOID INTERPOLATOR GENERATION
MATLAB CODE

1
2 %% Setup

3
4 % time step

5 delta = .01;

6
7 % feeds & speeds

8 x1 = 60;

9 x2 = -40;

10 v1 = 10;

11 v2 = 5;

12
13 % sine freq/amp

14 f1 = 10;

15 a1 = 2;

16 f2 = 20;

17 a2 = 1;

18
19
20 % Alpha Values

21 startAlpha = 5;

22 sigAlpha = 2;

23 sineAlpha = 3;

24 transitionPoint = 1; % 1 second offset

25
26 %% Generate line segments

27
28 %time vectors

29 tVec1 = 0 : delta : x1/v1;

30 tVec2 = tVec1(end)+delta:delta:tVec1(end)+abs(x2)/v2;

31 tVecTotal = [tVec1 tVec2 ];

32
33 xVec1 = zeros(1, length(tVecTotal));

34
35 for ii = 2: length(tVecTotal)

36
37 xVec1(ii) = xVec1(ii -1) + v1*delta;

38
39 end

40
41
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42
43 xVec2 = zeros(1, length(tVecTotal));

44 xVec2 (1) = xVec1(length(tVec1))+x1/v1*v2;

45
46 for ii = 2: length(tVecTotal)

47
48 xVec2(ii) = xVec2(ii -1) + sign(x2)*v2*delta;

49
50 end

51
52 %% Superimpose Sinusoids

53
54 wave1 = a1 * sin(f1*tVecTotal);

55 waveSig1 = sigmf(tVecTotal , [-sineAlpha tVec1(end) -1]);

56 xVec1 = xVec1 + waveSig1 .*wave1;

57
58 wave2 = a2 * sin(f2*(tVecTotal -delta -tVec1(end))); % delta

/tVec1 correction to start at 0

59 waveSig2 = sigmf(tVecTotal , [sineAlpha tVec1(end)+1]);

60 xVec2 = xVec2 + waveSig2 .*wave2;

61
62
63 %% Sigmoid Transition

64
65 % extend segments

66
67 % xVec1Ext = xVec1(end)*ones(1,length(tVec2));

68 % xVec2Ext = xVec2 (1)*ones(1,length(tVec1));

69 % xVec1 = [xVec1 xVec1Ext ];

70 % xVec2 = [xVec2Ext xVec2];

71
72 % correction terms for sigmoid here

73 R = abs(v2/v1);

74
75 a = R;

76 b = 1/R;

77
78 sig1 = a./(a + exp(sigAlpha .*( tVecTotal -tVec1(end))));

79 sig2 = b./(b + exp(-sigAlpha .*( tVecTotal -tVec1(end))));

80
81
82 % generate sigmoid curves

83 %sig1 = sigmf(tVecTotal , [-sigAlpha tVec1(end)]);

84 %sig2 = 1 - sig1;

85
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86 % correct with sigmoid

87 xVecSig = xVec1 .* sig1 + xVec2 .* sig2;

88
89 %% Startup Exponential

90 xVecComplete = xVecSig .* (1-exp(-startAlpha*tVecTotal .^2)

);

91
92 % plot(tVecTotal , xVecComplete)

93 % grid on

94
95 x = xVecComplete;

96 t = tVecTotal;
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APPENDIX B: SIMULINK MODELS FOR DPW-ILC EXAMPLES

Figure B.1: Dynamic Model in MATLAB/Simulink for DPW-ILC Thermal Resistivity
Example.

Figure B.2: Dynamic Model in MATLAB/Simulink for DPW-ILC Error derivative.
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APPENDIX C: DPW-ILC MATLAB CODE (FOR BOTH EXAMPLES)

1 % ********* NOTES *********

2 % DPW -ILC - Variant

3 % Variable types:

4 % ALL_CAPS: program constants

5 % camelHumps: internal variables

6 % lower_delimited: SIGNALS to simulink

7 %

8 % ********** Clear Variables/Close Figures/Clear Command

Window **********

9 clear all

10 close all

11 clc

12
13 % ********** Signal Generation - MUST RUN FIRST!

**********

14
15 % Reference Signal Generation

16 sigGen % run signal generation program

17 reference_signal = [t' x'];
18 TIME_END = t(end);

19
20
21 % ********** Define Constants *********

22
23 % Simulation Constants (MATCH TO SIMULINK MODEL)

24 ITER = 10;

25 TIME_STEP = 0.01;

26 ZERO_TOL = 0.1;

27 Controller_P = 10;

28 Controller_I = 0;

29 Controller_D = 1;

30 Controller_N = 100;

31 tau1 = 0.1;

32 tau2 = 0.1;

33
34 % disturbance weighting

35 W = 1;

36 EPSILON = 1;

37 GAMMA_STAR = 1;

38 GAMMA_DOUBLE_STAR = 1;

39 COST_FNC_ERROR = 10;

40 COST_FNC_ERR_RATE = 2;
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41 COST_FNC_DIST = 0.5;

42
43 % Plant Dynamics (30Nm/30A DC Motor)

44 J = 0.010; % Coulomb friction

45 B_0 = 1; % Viscous Damping Coefficient

46 K = 1; % Torque Constant

47 R_0 = 1; % Resistance

48 L = 0.005; % Inductance

49 T_0 = 0; % Start Temp

50
51 %***************************************

52 % Thermal Expansion Parameters

53 alpha1 = 3e-6;

54 alpha2 = 5e-7;

55
56 % Resistor Thermal Expansion Parameters

57 alpha_R = 3.9e-3;

58 R = R_0;

59
60
61 %% ********** System Initializations **********

62
63 % Generate Plant Dynamics and Variables for Simulink Model

64 s = tf('s');
65 sys = K/((J*s+B_0)*(L*s+R_0)+K^2); % system model

66 [plantNumerator , plantDenomenator] = tfdata(sys ,'v'); %

create plant transfer function

67 [A,B,C,D] = tf2ss(plantNumerator ,plantDenomenator); %

create SS vars

68 pDenStore=plantDenomenator (1); % save denomenator value

for time constant shifting

69
70 sysInt = sys * (1/s);

71 sysIntDT = c2d(sysInt ,0.01);

72 [DTNumerator , DTDenomenator] = tfdata(sysIntDT ,'v');
73 [ADT ,BDT ,CDT ,DDT] = tf2ss(DTNumerator ,DTDenomenator);

74
75 % Kp and Kd for PD-ILC Portion

76 p1 = CDT*ADT ^0*BDT; % 1st Markov Parameter

77 minK = 0/p1;

78 maxK = 2/p1;

79 kRange = maxK -minK -.1; % Range of K values

80 Kp = .001* kRange;

81 Kd = 10;

82
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83 p1 = CDT*ADT ^0*BDT; % 1st Markov Parameter

84 minK = 0/p1;

85 maxK = 2/p1;

86 kRange = maxK -minK -.1; % Range of K values

87 %Kp = .001* kRange;

88 %Kd = 10;

89
90 % control_ILC signal initialization

91 control_ILC = [t' zeros(1,length(reference_signal)) '];
92 controlSignal = control_ILC (:,2) '; % control signal

storage

93
94 % taskbar

95 wait = waitbar(0,'Initializing waitbar ...');
96
97
98
99

100 %% ********** Iteration Program **********

101 for iteration = 1:ITER

102
103 percentage = iteration/ITER;

104 waitbar(percentage ,wait ,sprintf('Working ... %d%%

complete.',round(percentage *100)))
105
106 % ********** Disturbance Value/Signal Generation

**********

107 distSignal = disturbanceVector(iteration) * ones(1,

length(reference_signal));

108 disturbanceStore(iteration) = distSignal(end); %

stores disturbance value

109 disturbanceNorm = abs(disturbanceStore -

disturbanceStore(end));

110 dist_ILC = [t' distSignal '];
111 R = R_0 * (1 + alpha_R *( disturbanceStore(iteration)-

T_0));

112 RStore(iteration) = R;

113
114
115 % ********** Performance Index Calculation **********

116 if iteration > 1

117
118 for itCount = 1:iteration -1

119
120 for tCount = 1: length(reference_signal)
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121
122 performanceErrorStore(itCount ,tCount) =

COST_FNC_ERROR * (error(itCount ,tCount)

.^2);

123 performanceErrorRateStore(itCount ,tCount)

= COST_FNC_ERR_RATE * (errorRate(itCount

,tCount).^2);

124 performanceDistStore(itCount ,tCount) =

COST_FNC_DIST * (( disturbanceNorm(

itCount))).^2;

125
126 end

127
128 performanceStore(itCount ,:) =

performanceErrorStore(itCount ,:) +

performanceErrorRateStore(itCount ,:) +

performanceDistStore(itCount ,:);

129 performanceIter(itCount) = sum(

performanceStore(itCount ,:));

130
131 end

132
133 performanceFlip = 1./( performanceIter+EPSILON);

134 performanceTilde = performanceFlip/sum(

performanceFlip);

135
136 end

137
138 % DW-ILC Initialization for 1st iteration

139 if iteration == 1

140
141 u_star = zeros(1, length(reference_signal));

142 u_double_star = zeros(1, length(reference_signal))

;

143 u_star_store = u_star;

144 u_double_star_store = u_double_star;

145
146 else

147
148 % calculate for each iteration , iter -1 since have

1 fewer value in distTilde , controlSignal -1

since errorRate is difference valued

149 for itCount = 1:iteration -1

150
151 % calculate for each time step
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152 for tCount = 1:( length(reference_signal) -1) %

-1

153
154 u_star_store(itCount+1,tCount) =

GAMMA_STAR * (performanceTilde(itCount)

* (Kp.*error(itCount ,tCount) + Kd.*(

errorRate(itCount ,tCount))));

155
156
157 end

158
159 u_star_store(itCount+1,length(reference_signal

)) = 2* u_star_store(itCount+1,end -1) -

u_star_store(itCount+1,end -2);% arbitrary

EOL correction , slope based

160
161 for tCount = 1: length(reference_signal)

162
163 u_double_star_store(itCount+1,tCount) =

GAMMA_DOUBLE_STAR * performanceTilde(

itCount) * controlStore(itCount ,tCount);

164
165
166
167 end

168
169
170 end

171
172 end

173
174 %sum down columns (don 't do for iteration == 1, will

collapse to scalar)

175 if iteration > 1

176
177 u_star = sum(u_star_store);

178 u_double_star = sum(u_double_star_store);

179
180 end

181
182 % sum the control inputs for the iteration

183 controlSignal(iteration ,:) = u_star + u_double_star;

184
185
186
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187 % Generate the control_ILC signal

188 if iteration > 1

189
190 control_ILC = [t' controlSignal(iteration ,:) '];
191
192 end

193
194 %**************************************************

195 %************ CHOOSE ONE MODEL ********************

196 %**************************************************

197 % Simulate Model

198 sim('DWILC_resistor_model ')
199 sim('DWILC_thermal_model ')
200 %**************************************************

201 %**************************************************

202
203 simulation_output = sys_out.Data;

204 outputStore(iteration ,:) = simulation_output ';
205 controlStore(iteration ,:) = control_out.Data ';
206
207 % error signal

208 error(iteration ,:) = reference_signal (:,2) '-
simulation_output ';

209
210 % Calculate error derivative

211 end_time = t(length(t));

212 e_matrix = [t' error(iteration ,:) '];
213 tau_f = .1;

214 sim('calc_deriv ');
215 errorRateVec = e_dot_filt;

216 errorRate(iteration ,:) = errorRateVec ';
217
218 % calculate RMS error for storage

219 rmsError(iteration) = rms(error(iteration ,:));

220
221
222 end

223
224 % close wait bar

225 close(wait);


