
INTERACTIVE STATIC ANALYSIS FOR APPLICATION SECURITY

by

Jun Zhu

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2015

Approved by:

Dr. Bill (Bei-Tseng) Chu

Dr. Heather Richter Lipford

Dr. Xintao Wu

Dr. Mohamed Shehab

Dr. Mark Pizzato

ii

c©2015
Jun Zhu

ALL RIGHTS RESERVED

iii

ABSTRACT

JUN ZHU. Interactive static analysis for application security. (Under the direction of DR.
BILL (BEI-TSENG) CHU)

Software vulnerabilities have become increasingly pervasive and result in severe data

and financial loss to organizations and individuals. One leading source of software vul-

nerabilities is the insecure code written by developers. Although vulnerabilities could be

addressed through secure programming practices and there have already been a collection

of well documented secure programming practices, developer continues to make same mis-

takes. With the rapidly growing complexity of software, security bugs are difficult to avoid.

This dissertation presents interactive static analysis as a developer-oriented hybrid frame-

work for vulnerability detection and mitigation. This approach integrates static analysis

into Integrated Development Environment (IDE) as a plug-in, facilitating two-way interac-

tion between static analysis and developer. The goal is to assist developer in detecting and

mitigating vulnerabilities during code construction phrase and solicit application specific

knowledge from developer to customize static analysis as well as enable automatic place-

ment of application sensor. Developers are not required to have any knowledge of static

analysis, nor are they security experts.

To demonstrate the effectiveness of interactive static analysis, this dissertation focuses

on access control vulnerability detection. This dissertation finds implicit assumptions of

previous research techniques to automatically detect access control vulnerabilities might

be unrealistic for most web applications through studying six open source PHP web ap-

plications. It demonstrates that a hybrid approach, such as interactive static analysis, is a

iv

much more reasonable for detecting access control vulnerabilities.

This dissertation presents an interactive static analysis prototype for access control vul-

nerability detection as a plug-in in Eclipse PHP IDE [19], called ASIDE-PHP (Application

Security plug-in for the Integrated Development Environment for PHP). It also presents an

extensive evaluation of the prototype with six open source PHP web applications including

a large project named Moodle [71]. The prototype detected 20 zero-day access control

vulnerabilities in addition to finding all access control vulnerabilities detected in previous

works.

Based on the interactive static analysis framework, this dissertation proposes an approach

for automatic placement of application sensors to enable application-based intrusion detec-

tion systems. This work focuses on using application sensors to detect events of failed

access control to detect privilege escalation attacks. It presents a proof of concept analysis

of two open source projects to evaluate the effectiveness of the approach. In addition, it

illustrates a model for automatically inserting application sensors into applications to de-

tect access control events, based on an extensive case study involving six open source PHP

projects.

v

ACKNOWLEDGMENTS

This dissertation is not possible without the guidance of my committee members, help

from my friends, and support from my family.

To begin with, I would like to express my deepest gratitude to my advisor, Dr. Bill

Chu, for his excellent guidance, caring and patience all the way through this dissertation

research journey. It was him, who led me onto this wonderful and fulfilling research journey

of application security. He not only provided me with the excellent atmosphere for doing

Ph.D. research, but also gave me great advice about various aspects beyond research. I

thank him for having faith in me from the beginning, and challenging me while remaining

encouraging all the way through, especially the final months when I needed his support the

most. I am deeply indebted to him.

I am very grateful to Dr. Heather Lipford, who has collaborated all the way through my

dissertation research and advised me on every project, especially the interactive support

for secure programming education project. I thank her for always offering her constructive

feedback that polishes the idea and the work.

I am also very grateful to Dr. Xintao Wu, who advised me on the research of privacy

preserving data mining during the first year of my Ph.D. study. I thank him for helping me

develop very valuable research skills during my first year of study, and also his valuable

feedback on my dissertation research as my committee member.

I would like to thank other members of my dissertation committee, Dr. Mohamed Shehab

and Dr. Mark Pizzato, who have invested valuable time on me. Their valuable advice has

made me improve portions of this dissertation for the better.

vi

I would like to thank Jing Xie for her help when I started working on Eclipse plugin

development. Many thanks to Erik Northrop, Jing Xie for their assistance in conducting

the user study. I also would like to thank Tyler Thomas and Spike E. Dog for their help in

part of the project evaluation. Thanks to all participants for their time in the user study.

I would like to thank my friends and labmates at UNC Charlotte for their help and mak-

ing my Ph.D. study life much more enjoyable. Thank you Li Qi, Kang Ni, Lukun Zheng,

Chen Fu, Jieyan Kuang, Ning Zhou, Mingming Fan, Michael Whitney, Berto Gonzalez,

Alex Adams, Tyler Thomas and more.

Words cannot be enough to express my thanks to my parents, Wen Xiao, Huaiyi Zhu, for

their years of unconditional love and support. They have been always supporting my goal

and encouraging me to do my best. I dedicate this dissertation to them.

Finally, I am deeply grateful to my best friend, and wife, Chenjun Ling, who has always

been supporting me and inspiring me to explore and grow in ways I could never have

imagined.

vii

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES ix

CHAPTER 1: INTRODUCTION 1

1.1. Interactive Static Analysis 3

1.2. Placing Application Sensors for Application Based Intrusion Detec-
tion and Prevention

5

1.3. Summary of Contributions 6

1.4. Dissertation Structure 8

CHAPTER 2: RELATED WORKS 10

2.1. Static Analysis Tools 10

2.2. Automatic Software Vulnerability Detection Techniques 13

2.2.1. Static Analysis to Detect Software Vulnerabilities 13

2.2.2. Dynamic Analysis to Detect Software Vulnerabilities 15

2.2.3. Hybrid Analysis to Detect Software Vulnerabilities 16

2.3. Code Annotation for Vulnerability Detection 17

2.4. Interactive Support for Secure Programming 17

CHAPTER 3: EMPIRICAL STUDY OF RELATED WORKS ON AUTO DE-
TECTION TECHNIQUES FOR ACCESS CONTROL VULNERABIL-
ITY DETECTION

18

3.1. Summary of Related Works on Auto Detection Techniques for Ac-
cess Control Vulnerability Detection

18

3.2. Access Control Vulnerability Taxonomy 20

3.3. Empirical Evaluation of Auto Detection Techniques 23

viii

CHAPTER 4: INTERACTIVE STATIC ANALYSIS FOR ACCESS CON-
TROL VULNERABILITY DETECTION

27

4.1. Interactive Static Analysis Example 27

4.2. Overview of Prototype Implementation ASIDE-PHP 33

4.3. ASTs Generated by Eclipse PDT 35

4.4. SSOs Rules 35

4.5. Interactive Annotation 41

4.6. Vulnerability Detection 42

4.6.1. Annotation Consistency Analysis 42

4.6.2. Access Control Effectiveness Analysis 44

CHAPTER 5: EVALUATION OF INTERACTIVE STATIC ANALYSIS FOR
ACCESS CONTROL VULNERABILITY DETECTION

46

5.1. Evaluation Setup 46

5.2. Vulnerability Detection Results 48

5.3. False Positives for Vulnerability Detection 51

5.4. Impact on Developers 53

5.5. Comparison with Auto Detection 57

5.6. Comparison with Commercial Static Analysis Tools 59

CHAPTER 6: PRIVILEGE ESCALATION DETECTION USING APPLICA-
TION SENSORS

62

6.1. Related Works 63

6.2. Privilege Escalation Detection Based on Application Sensors 65

6.2.1. Determining Candidate Webpages to Place Application
Sensors

68

ix

6.2.2. Evaluation Results 81

6.2.3. Automatic Sensor Insertion 84

CHAPTER 7: CONCLUSION AND FUTURE WORK 91

7.1. Summary of Contributions 91

7.2. Future Work 92

7.2.1. Interactive Static Analysis 93

7.2.2. Placing Application Sensors for Application Based Intru-
sion Detection and Prevention

93

REFERENCES 94

APPENDIX A: ZERO-DAY ACCESS CONTROL VULNERABILITIES DE-
TECTED IN THE EVALUATION

101

APPENDIX B: SEVEN UNSOLVABLE KNOWN ACCESS CONTROL
VULNERABILITIES IN MOODLE 2.1.0 DUE TO LOGIC FLAWS

109

x

LIST OF FIGURES

FIGURE 1: Distribution of access control patterns in Moodle. 25

FIGURE 2: An annotation request is generated (yellow marker). 29

FIGURE 3: Developer hovers over the yellow marker to get a quick tip. 29

FIGURE 4: Developer could click the readmore option, which will open a
webpage within Eclipse providing more explanations about the annota-
tion request and related knowledge.

30

FIGURE 5: Explanation for interactive annotation. 30

FIGURE 6: Developer selects a code snippet and annotates it as a control
check.

31

FIGURE 7: Access control checks (above green highlight), and a vulnerability
warning (lower red highlight).

32

FIGURE 8: Developer could click this option to remove the annotation request
if developer thinks this line of code does not require access control check.

32

FIGURE 9: After developer chose to remove the annotation request, the anno-
tation request marker disappears.

33

FIGURE 10: ASIDE-PHP architecture. 34

FIGURE 11: Illustration of project structure in Eclipse PDT [24]. 36

FIGURE 12: AST illustration of a function declaration in Eclipse PDT [24]. 36

FIGURE 13: Finite state transition machine for the control flow. 60

FIGURE 14: Explanation for interactive annotation. 68

FIGURE 15: Developer annotated access control checks, highlighted in green. 69

FIGURE 16: Part of the sitemap of Wheatblog (some pages are omitted as
ellipsis due to page limit).

70

FIGURE 17: Admin/add link.php is a candidate page. 83

xi

FIGURE 18: Two pages with SSOs (dashed circle) but not considered candi-
date in SCARF.

84

FIGURE 19: Sensor insertion for If-branch. 87

FIGURE 20: Sensor insertion for If-Elseif-branch. 88

FIGURE 21: Sensor insertion for Switch-branch. 89

FIGURE 22: Sensor insertion for function call with abnormal return code. 90

FIGURE 23: Fix changes for CVE-2012-2367 [12]. 110

FIGURE 24: Code of get allowed type() before fix [12]. 111

FIGURE 25: Fix changes for CVE-2012-3397 [14]. 112

FIGURE 26: Fix changes for CVE-2012-2354 [9]. 112

FIGURE 27: Fix changes for CVE-2012-2355 [10]. 113

FIGURE 28: Fix changes for CVE-2012-2358 [11]. 114

FIGURE 29: Fix changes for CVE-2012-3391 [13]. 115

FIGURE 30: Fix changes for CVE-2012-5473 [15]. 116

xii

LIST OF TABLES

TABLE 1: Types of access control vulnerabilities that each technique could
solve

22

TABLE 2: Projects used in evaluation 23

TABLE 3: Distribution of access control patterns in projects 24

TABLE 4: Projects used in evaluation 47

TABLE 5: Security sensitive operations identified in projects Mybloggie,
SCARF, Bilboblog, Wheatblog, and PhpStat

47

TABLE 6: Known Moodle vulnerabilities and associated security sensitive
operations

49

TABLE 7: Vulnerability detection results 49

TABLE 8: False positives for warnings 52

TABLE 9: Total number of annotations requested 53

TABLE 10: False positives for annotation requests 54

TABLE 11: Annotations needed with or without auto-annotation 56

TABLE 12: Wheatblog results (Candidate pages in italic) 82

TABLE 13: SCARF results (Candidate pages in italic) 83

TABLE 14: Summary about access control checks made in open source
projects

85

TABLE 15: Vulnerability detection results to be described in this appendix 101

TABLE 16: Seven unsolvable known access control vulnerabilities in Moodle
2.1.0 and associated security sensitive operations

109

TABLE 17: Illustration of fix changes for CVE-2012-3391 115

CHAPTER 1: INTRODUCTION

Software is widely used to serve a range of applications from electronic medical records

management to financial services. Software vulnerabilities have become increasingly per-

vasive targets for attackers resulting in data and financial loss. A recent Internet security

threat report by Symantec states that an average security incident costs $591,780 for busi-

nesses [36]. In a 2013 report, WhiteHat Security analyzed over 600 corporate websites and

found that 86% of them contained at least one serious security vulnerability. The number

of serious vulnerabilities per website was 56 on average, and it took on average 193 days to

resolve a vulnerability from the time it was discovered [22]. To achieve more secure soft-

ware, defense in depth needs to be enforced for each phase of the software development

lifecycle.

Roughly 50% of all security vulnerabilities result from programming mistakes [67]. Pro-

grammer errors, including security ones, are unavoidable even for well-trained program-

mers. One major cause of programming mistakes is software developer’s heavy cognitive

load dealing with a multitude of issues, such as functional requirements, runtime perfor-

mance, deadlines, and security [54, 77, 95]. Many software vulnerabilities can be addressed

with relatively straightforward coding practices, referred to as secure programming [31],

such as performing validation on user input to prevent various forms of injection attacks.

While secure programming practices have been well documented [87, 60, 79, 48, 20] to

help developers, developers continue to make the same mistakes, either forgetting to apply

2

secure programming practices or performing them incorrectly. To make it worse, software

complexity has been growing rapidly recent years, especially for web applications. Soft-

ware is having ever more complicated business logic or access control logic, making it even

harder for developers to write secure code.

Interactive support for secure programming in the Integrated Development Environment

(IDE) [93, 92, 94] was proposed to provide reminders to developers to help them write

secure code as they construct the application, similar to how a grammar checker in word

processing software helps someone writing. Initial user studies showed the promise of this

approach for validating untrusted input to prevent injection attacks [94]. Interactive code

annotation was proposed as a conceptual idea [93, 92] as a mechanism in which developers

are asked to indicate where secure programming practices were performed. However, no

thorough evaluation of the effectiveness of interactive annotation was performed.

Static analysis tools are widely used to detect software flaws in code. Widely used static

analysis tools include open source ones from the research communities such as Findbugs

[8] and PMD [26], and commercial static analysis tools from vendors such as Fortify SCA

[25], Veracode [18], and Coverity [47]. Most of their use is focused on detecting injec-

tion vulnerabilities [50, 63, 65, 97]. Access control vulnerabilities, another very important

class of software vulnerabilities, are much less researched. There are some recent research

works on automatic detection of access control vulnerabilities [83, 86, 37, 81, 43, 70, 40].

Although these works could detect both known and zero-day access control vulnerabilities,

they have significant limitations due to their implicit assumptions.

Although ideally static analysis tools should be run regularly in the software develop-

ment lifecycle to help developers fix vulnerabilities as they appear, in reality these tools

3

often are not used by regular developers because they require special training. In addition,

a study of developer [49] revealed that false positives of static analysis tools and develop-

ers’ overload during the programming phase are major contributors to the dissatisfaction

and low adoption of static analysis tools by developers. Static analysis tools are usually

used by security specialists in the security code review phase late in the development cycle.

Upon detection of vulnerabilities, security specialists need to collaborate with developers

for vulnerabilities reporting and mitigation, which means additional steps in the software

development process and fixing vulnerabilities late in that process.

1.1 Interactive Static Analysis

Based on interactive code annotation [93, 92], this dissertation proposes interactive static

analysis, a developer-oriented framework that integrates static analysis into the Integrated

Development Environment (IDE) as a plug-in. The primary advantage of this approach is to

facilitate two-way interaction between static analysis and developers and assist developers

in detecting and mitigating vulnerabilities during the code construction phrase. Plug-in to

developer: the plug-in analyzes the source code in the background and reminds developers

about vulnerable code through security warnings in-situ. Developers could interact with the

warnings, get the contextual explanations and mitigation suggestions about the vulnerable

code, and resolve them with the assistance from the plug-in. Developer to plug-in: the de-

veloper is prompted by the plug-in and asked to identify and annotate application-specific

logic critical for security, which was named interactive code annotation [93, 92]. The an-

notations are then leveraged to customize the static analysis enabling more effective static

analysis, which helps discover vulnerabilities and reduce false positives without the inter-

vention by someone with special training in static analysis to write customized rules. In

4

addition, by relying on the annotations, application sensors could be automatically placed,

which could potentially significantly widen the adoption of using application sensors for

intrusion detection.

Developers are not required to have any knowledge of static analysis, nor are they secu-

rity experts. However, they do have to be familiar with basic security concepts (e.g. access

control, encryption) as well as basic secure programming techniques (e.g. input validation,

prepared SQL statements).

What distinguishes interactive static analysis from other forms of static analysis is that

it is continuously customized and refined based on the application specific knowledge ob-

tained from the two-way interaction between static analysis and the developers. Similar to

other common static analysis tools, the static analysis of my approach utilizes a set of tech-

niques that are often used to detect software vulnerabilities, such as data flow analysis and

control flow analysis. Data flow analysis is often leveraged to detect vulnerabilities origi-

nating from improper handling of untrusted data, such as Cross-site Scripting (XSS), SQL

injection. Control flow analysis can be used to detect authentication bypass and privilege

escalation.

Similar to other static analysis tools, an interactive static analysis tool can be configured

by an organization’s Software Security Group (SSG), which is responsible for ensuring

software security as identified by best industry practice [46]. SSG promotes organizational

and/or application-specific programming standards through writing security specifications.

For example, an SSG may list operations that are considered sensitive (e.g. inserting a

weblog into the database) and that the application must provide an access control check.

I performed an in-depth evaluation of interactive static analysis with six open source

5

PHP web applications, including a large project named Moodle [71]. I detected 20 zero-

day access control vulnerabilities in addition to finding all access control vulnerabilities

detected in previous works. Based on this study I discovered the limits of related works

in automatic detection of access control vulnerabilities and demonstrated the effectiveness

and benefits of my approach.

1.2 Placing Application Sensors for Application Based Intrusion Detection and

Prevention

No techniques or tools could detect all the vulnerabilities in a piece of software. For

example, it can be easily shown that finding all buffer overflow vulnerabilities in a program

using static analysis is computationally undecidable. Intrusion detection systems (IDS)

[29] have been leveraged to detect signs of intrusions or attacks. For intrusion detection,

most of the research efforts [28, 38, 39, 56, 72, 84, 59, 27, 35, 42, 45, 52, 53, 55, 61, 64,

69, 74, 88, 96, 78] have been focused on host-based or network-based intrusion detection,

but none of them is effective in detecting application specific attacks, because they are

unable to capture the application context information. For example, privilege escalation

is a common attack against high value applications. In general it cannot be detected by

existing intrusion detection mechanisms.

There have been some attempts, both in the research community as well as in the open

source community, to achieve application layer intrusion detection. One way of application

layer intrusion detection is through Web application firewall (WAF) [76], which acts as a

filter and applies preconfigured rules to an HTTP conversation. WAF is able to detect

common actions of a known attack sequence such as basic SQL injection or Cross-site

Scripting attacks. However, because it has no insights about application specific logic, it is

6

unable to detect many application specific attacks, and thus it is not a sufficient prevention

approach for critical high value applications, such as financial applications.

As another way of application layer intrusion detection, Watson et al. [89] proposed

to use application sensors to detect attacks. It puts sensors inside the application and ob-

tains application context information so that it is able to detect application specific attacks.

OWASP AppSensor [90] provides a reference implementation of sensors to detect intru-

sions based on inputs, which requires developers to manually put the sensor code in places

that need sensors. Requiring developers to manually write sensor code would prevent wide

adoption of this approach. Little research has been performed toward how to automatically

instrument applications with application sensors for intrusion detection.

Based on the interactive static analysis framework, this dissertation proposes an approach

for automatic placement of application sensors to enable application-based intrusion detec-

tion systems. This work focuses on using application sensors to detect events of failed

access control to detect privilege escalation attacks. It presents a proof of concept analysis

of two open source projects to evaluate the effectiveness of the approach. In addition, it

illustrates a model for automatically inserting application sensors into applications to de-

tect access control events, based on an extensive case study involving six open source PHP

projects.

1.3 Summary of Contributions

Contributions of this dissertation include,

1. I propose a framework, interactive static analysis, that helps developers write more

secure code and mitigate access control vulnerabilities during code construction phase.

7

It also enables customized static analysis for vulnerability detection and automatic

placement of application sensors for intrusion detection.

2. I found implicit assumptions of previous research techniques to automatically detect

access control vulnerabilities is unrealistic for most web applications. This is estab-

lished through studying six open source PHP web applications. I demonstrate that

a hybrid approach, such as interactive static analysis, is a much better approach for

detecting access control vulnerabilities.

3. I build an interactive static analysis prototype for access control vulnerability detec-

tion as a plug-in in Eclipse PHP IDE [19], called ASIDE-PHP (Application Security

plug-in for the Integrated Development Environment for PHP). I conduct an extensive

evaluation of the prototype using six open source PHP web applications including a

large project named Moodle [71], and detect 20 zero-day access control vulnera-

bilities in addition to finding all access control vulnerabilities detected in previous

works.

4. The scalability of application-based intrusion detection systems (IDSs) is signifi-

cantly limited by the lack of an easy way for placing application sensors, I propose

automatic placement of application sensors based on interactive static analysis. Fo-

cusing on using application sensors for intrusion detection of privilege escalation

attacks, I propose to detect privilege escalation attacks by relying on application sen-

sors associated with access control failures, and conduct a proof of concept analysis

of two open source projects which demonstrates the effectiveness of my approach. In

addition, I illustrate a model for automatically inserting application sensors into ap-

8

plications to detect access control events, based on an extensive case study involving

six open source PHP projects.

1.4 Dissertation Structure

The rest of this dissertation is organized as follows.

Chapter 2 provides a survey of research fields that are closely related to this dissertation.

These include vulnerabilities detection techniques, static analysis tools, annotations, and

interactive support for secure programming in the IDE.

Chapter 3 describes a comparative study of six open source PHP applications that finds

that implicit assumptions of previous research techniques can significantly limit their ef-

fectiveness to automatically detect access control vulnerabilities.

Chapter 4 presents a more effective hybrid approach to mitigate access control vul-

nerabilities. Developers are reminded in-situ of potential access control vulnerabilities,

where self-review of code can help them discover mistakes. Additionally, developers are

prompted for application-specific access control knowledge, providing samples of code

that could be thought of as static analysis by example. These examples are turned into code

patterns that can be used in performing static analysis to detect additional access control

vulnerabilities and alert the developer to take corrective actions. This chapter presents an

implemented prototype, a plug-in in Eclipse PHP IDE [19] named ASIDE-PHP (Applica-

tion Security plug-in for the Integrated Development Environment for PHP).

Chapter 5 describes the evaluation of six open source applications with the ASIDE-PHP,

which detected 20 zero-day access control vulnerabilities in addition to finding all access

control vulnerabilities detected in previous works.

9

Chapter 6 presents an approach, based on interactive static analysis, to automatically

place sensors in applications to detect privilege escalation, a common type of application

level attack. This chapter presents a proof of concept analysis of two open source projects

and demonstrates the effectiveness of privilege escalation detection by relying on applica-

tion sensors associated with access control failures. I illustrate a model for automatically

inserting application sensors into applications to detect access control events, based on an

extensive case study involving six open source projects.

Chapter 7 summarizes dissertation outcomes and outlines some future research direc-

tions.

CHAPTER 2: RELATED WORKS

Related works closely relevant to this dissertation falls into 5 strands: Static analysis

tools, automatic software vulnerability detection techniques, code annotation for vulnera-

bility detection, interactive support for secure programming, and intrusion detection and

prevention. Among them, the related works on intrusion detection and prevention are less

related to the generalized framework interactive static analysis, and thus I put the related

works on it under the specific chapter on application based intrusion detection.

2.1 Static Analysis Tools

Static analysis tools are widely used to detect software defects in code. In this section,

I will focus on surveying static analysis tools, research works on static analysis techniques

will be surveyed in next section. Widely used static analysis tools include open source ones

from the research community such as Findbugs [8] and PMD [26], and commercial ones

from industry vendors such as Fortify SCA [25], Veracode [18], and Coverity [47]. Accord-

ing to McGraw [66], the bulk of the benefits of static analysis come from customization:

such as writing custom rules or custom detectors. Effective detection of software vulner-

abilities often requires application-specific knowledge for several reasons. First, default

rules for static analysis often generates many false positive warnings. One empirical study

[57] revealed that both Fortify SCA [25] and Coverity Prevention [47] had significant false

positive rates that imposed serious impact on the effectiveness of analysis. Static analy-

sis false positives are generally caused by the lack of application specific knowledge. For

11

example, default rules in static analysis tools warn developers to validate untrusted input,

regardless of whether proper input validation code has already been added. To suppress

these warnings in cases when input validation functions have been provided, application

specific knowledge must be incorporated into the static analysis. Second, applications of-

ten must satisfy certain security invariants or constraints, e.g. access control requirements.

Such invariants or constraints are by nature application specific. In order to accurately

detect missing security invariants or constraints, application specific knowledge must be

incorporated into the analysis.

Static analysis tools provide different ways for incorporating application specific knowl-

edge. Commercial static analysis tools such as Fortify SCA [25] support it through the

writing of custom rules. Some open source static analysis tools such as PMD [26] sup-

port it through the writing of custom checkers. Putting specific textual annotations in the

source code is also a way supported by many static analysis tools such as Fortify SCA [25],

Coverity [47] and Klocwork [17], for incorporating application specific information. All

of these ways requires special training for developers. The first two ways require training

in writing custom static analysis rules or detectors, and thus usually the rules or detectors

are written by security specialists requiring close collaboration between security specialists

and developers, because developers are the only ones that know the application specific in-

formation. As a result, these two ways render high cost to achieve the customization. The

third approach, writing specific textual annotations in source code, requires the learning of

a specific annotation language and how to apply the correct annotations for different cases,

and remembering to write the corresponding annotations when encountering cases where

annotations are needed. This not only puts an extra training requirement on developers

12

but also an extra cognitive load requirement that developers are unlikely to always fulfill,

since developers have already been heavily loaded with many priorities and tend to forget

or make mistakes [54, 77, 95]. And thus, all the major available ways of incorporating ap-

plication specific information into the static analysis have significant drawbacks preventing

their wide use in practice.

My interactive static analysis approach attempts to overcome those drawbacks. My ap-

proach reminds developers about vulnerable code and asks for specific code annotations by

displaying warnings alongside the corresponding lines of code. Developers could annotate

a code snippet in a point-and-click fashion under the guidance of a concise contextualized

explanation and instructions attached to the warnings. There is no need to learn a new

specification language or textual annotation language and with little requirements for close

collaboration between security specialists and developers in the process. Moreover, devel-

opers are not required to initiate the annotation process; they are not required to always

keep in mind they need to write annotations for particular cases when they are writing their

code. Developers would be prompted with a warning requesting for specific annotations

when annotations are needed.

Ideally static analysis tools should be run regularly in the software development lifecy-

cle to help developers fix vulnerabilities as they appear. However, in practice these tools

often are not used by regular developers because they require special training, instead, they

are usually used by security specialists in the security code review phase late in the de-

velopment cycle. And thus, upon detection of vulnerabilities, security specialists need to

collaborate with developers for vulnerability reporting and mitigation, which means ad-

ditional steps in the software development process and fixing vulnerabilities late in the

13

development process. Recently, with the aim of helping developers detect and fix vulner-

able code within the development environment early in the software development process,

several vendors including Coverity [47] and GrammaTech [16] integrated their static anal-

ysis with an Integrated Development Environment (IDE) such as Eclipse, which displays

static analysis generated warnings besides vulnerable code in the IDE’s editor and a code

issues review dashboard in the problem view of the IDE through a plugin in the IDE. Al-

though their integration might be a valuable attempt to help developers detect and mitigate

vulnerabilities in the IDE, it does not provide any benefits for static analysis customiza-

tion, and thus a lot of vulnerabilities, such as logic flaws that relate to application specific

information, may still remain unsolved. The proposed interactive static analysis approach

is able to obtain application specific knowledge from developers directly and enables the

customization of static analysis, which could make it more easily realize the full benefit of

using static analysis to detect software vulnerabilities.

2.2 Automatic Software Vulnerability Detection Techniques

Automatic vulnerability detection techniques include static analysis, dynamic analysis,

and hybrid analysis.

2.2.1 Static Analysis to Detect Software Vulnerabilities

Injection vulnerabilities usually result from improper handling of untrusted data. Com-

mon injection vulnerabilities include SQL injection, Cross-site Scripting (XSS), Command

Injection, etc. Research into injection vulnerability detection has a long history, as many

static analysis techniques have been proposed to detect injection vulnerabilities via data

flow analysis [50, 63, 65].

Access control vulnerabilities stem from failure to properly check access credentials

14

before granting access to sensitive resources. Compared with injection vulnerabilities, de-

tection of access control vulnerabilities using static analysis is much more difficult because

access control logic varies a lot across different applications. A number of techniques have

been proposed to address specific types of access control models such as vulnerabilities

associated with role-specific access control [40, 81, 82, 85]. Son et al. [82] proposed a

static analysis and code transformation approach to detect access control errors along with

providing fixes automatically. It constructs an access control template (ACT) which can be

based either on user input or program analysis. ACT is then used to find access violations

and propose fixes. Doupe et al. [40] proposed a control flow path based approach to detect

a specific type of vulnerability called Execution After Redirect (EAR), which causes the

application to continue execution after intended redirection and thus leads to violation of

intended access control and unauthorized execution of security-sensitive code. There are

other research works on access vulnerability detection, I will describe them in the related

work comparison section in Chapter 3 and compare them with my approach there.

These approaches detect access control vulnerabilities via some automatic program anal-

ysis techniques. Strong assumptions (e.g. a limited model of role-based access control or

SQL-based database access) are often made for the analysis to be effective, making them

difficult to apply to real-world applications, which often involve exceptions. In contrast,

my interactive static analysis approach relies on developers to provide application specific

information to help with static analysis and does not impose any assumptions on how ap-

plications are built, which represents a much wider effectiveness and practical impact in

vulnerability detection.

15

2.2.2 Dynamic Analysis to Detect Software Vulnerabilities

Different from static analysis, dynamic analysis requires the instrumentation and exe-

cution of the target application in order to perform the analysis. It observes applications’

runtime behaviors through execution.

Felmetsger et al. [41] proposed an approach to detect application-specific logic flaws.

The approach first extracts potential invariants for function parameters and session vari-

ables through dynamic execution, and then identifies violations for these inferred invari-

ants through model checking together with symbolic execution of application source code.

Specifically, it only utilizes the most likely real invariants that corresponds to explicit

checks on the execution control path in the code and involves comparison between per-

sistent database object and session variables. Newsome et al. [73] automatically detects

overwrite attacks via dynamic taint analysis towards compiled binary program, it rewrites

binary at runtime and can detect majority of overwrite attacks with no false positives. Bisht

et al. [32] focused on detecting a special logic vulnerability which results from the incon-

sistent validation of the parameters between server-side code and client-side code in forms

of web applications. It is a black-box analysis approach. It generates malicious inputs as

well as benign inputs based on the parameter constraints found by its analysis, and feeds

both inputs into the web application to detect vulnerabilities. One vulnerability is identified

if the responses from the web application with both inputs are the same. [33] improves the

analysis precision of [32] through leveraging white-box analysis.

Since my approach is based on static analysis techniques, my approach differs from dy-

namic analysis in the same aspects as static analysis differs from dynamic analysis. Static

16

analysis does not require the instrumentation and execution of the target application, and

thus it can be applied anytime when developers are writing their code. Static analysis con-

servatively identifies all potential vulnerabilities which produce false positives. Dynamic

analysis has better analysis precision compared with static analysis, but it can not guarantee

the completeness of its analysis.

2.2.3 Hybrid Analysis to Detect Software Vulnerabilities

Hybrid analysis combines the advantages of both static and dynamic analysis in order to

further increase the accuracy of the analysis.

Balzarotti et al. [30] targets detecting weak or faulty sanitization, which they argued

could not be detected by solely static analysis or dynamic analysis. They described Saner,

a tool that verifies the correctness of sanitization routines. It first captures and builds a

model for how untrusted input is sanitized through conservative static string analysis, and

identifies weak or faulty sanitization by generating a large collection of malicious inputs as

attack vectors to exploit the sanitization routines that are regarded as suspicious.

Monica et al. [58] proposed a holistic approach that combines model checking, dynamic

checking, runtime detection and static analysis. Specifically, model checking is utilized to

increase the accuracy of static analysis. Given a property or specification, model checking

is able to verify the correctness of a system by exploring the space of the finite-state system.

Hybrid analysis techniques focus on vulnerability detection with increased accuracy

while my approach focuses on providing in-situ support to help developers in detecting

and mitigating vulnerabilities while they are writing their code.

17

2.3 Code Annotation for Vulnerability Detection

Asking developers to provide security related annotations has been shown to be very

effective at detecting security vulnerabilities (e.g. Microsoft SAL [68], FindBugs [8] an-

notation language, and annotation toolkit [75]). However, majority of existing annotation

approaches are text-based and rely on the initiatives of the developers, which means the de-

veloper must learn the annotation language and then remember to write those annotations

under appropriate circumstances when the developer is writing code. Given that omission

is a common cause of error by developers, developers would benefit from assistance in

remembering and performing security annotations.

2.4 Interactive Support for Secure Programming

Interactive support for secure programming in the Integrated Development Environment

(IDE) [93, 92, 94] was proposed to provide reminders to developers to help them write

secure code as they construct the application, similar to how a grammar checker in a word

processing software helps someone writing. Initial user studies showed the promise of this

approach for validating untrusted input to prevent injection attacks [94]. Interactive code

annotation was proposed as a conceptual idea in [93, 92] as a mechanism in which develop-

ers are asked to indicate where secure programming practices were performed. However,

no thorough evaluation of the effectiveness of interactive annotation was performed.

CHAPTER 3: EMPIRICAL STUDY OF RELATED WORKS ON AUTO DETECTION
TECHNIQUES FOR ACCESS CONTROL VULNERABILITY DETECTION

Access control vulnerabilities due to developer mistakes have been consistently ranked

amongst the top software vulnerabilities [21]. Previous research efforts have primarily con-

centrated on using automatic program analysis techniques to detect access control vulnera-

bilities [83, 86, 37, 81, 43, 70]. While these works have led to discovery of access control

vulnerabilities in open source projects, there has not been any study evaluating their limits.

I conducted a comparative study using six open source PHP applications, many of them

used by related works as part of their evaluations. I found that the implicit assumptions

made by these previous research techniques have significant limitations.

3.1 Summary of Related Works on Auto Detection Techniques for Access Control

Vulnerability Detection

To detect access control vulnerabilities, one must first have a correct access control

model. Since usage of formal access control model specification languages are not widespr-

ead, such a model could be constructed either manually or inferred using data mining tech-

niques. Previous researchers have attempted to automatically learn a correct access control

model from source code and use it to detect likely vulnerabilities [83, 86, 37, 81, 43, 70]. I

collectively refer to these approaches as auto detection.

Tan et al. [86] detects access control vulnerabilities through mining the program for

program-wide patterns and considers deviations or anomalies as bugs. Dalton et al. [37]

19

detects authentication and access control vulnerabilities by performing dynamic informa-

tion flow tracking on user credentials. It ensures that only properly authenticated users

could access privileged resources, and prevents authentication bypass and access control

attacks based on untrusted user credentials.

Son et al. [81] attempted to detect access control vulnerabilities automatically by exploit-

ing several heuristics about the way programs are structured. First, code that implements

distinct user role functionality and its access control checks reside in distinct methods and

files. They compute commonality values between different files and partition the files into

roles using a commonality threshold. Second, they compute branch asymmetry values,

the ratio of statements in the successful branch vs. failed branch. The heuristic is that a

security check is likely to have a large asymmetry number. So an asymmetry threshold

value might suggest candidate access control checks. Based on the above two heuristics,

they then infer correct access control checks as repetition of access control checks above a

certain threshold in the same role.

Gauthier et al. [43] proposed to detect security weaknesses and vulnerabilities based on

the heuristic that syntactically similar security-sensitive code fragments should be protected

by similar checks. They first detect security-sensitive code clones based on a query-radius

threshold value, and then based on the heuristic that access control checks are usually

correctly enforced in majority cases within these code clones while wrongly enforced in

minority cases, they identify the minority cases as security weaknesses or vulnerabilities.

Monshizadeh et al. [70] defines a four-tuple authorization context representing the ac-

cess control rules, including developer identification of (global) access control variables. It

detects privilege escalation vulnerabilities based on the consistency analysis on authoriza-

20

tion contexts. Inconsistencies in authorization context are regarded as vulnerabilities.

3.2 Access Control Vulnerability Taxonomy

To better characterize approaches for access control vulnerability detection, I developed

a taxonomy of access control software flaws. This taxonomy is developed based on the

point of view of vulnerability detection and mitigation. I use the term Security Sensitive

Operation (SSO) to refer to an operation that requires access control checks (e.g. updating

a database table). The types of access control vulnerabilities targeted by previous research

can be described by the following taxonomy.

(1) Missing: If there is no access control checks on an execution path leading to an SSO.

Below is an example which has a Missing flaw. Because query(”INSERT INTO ac-

count...”) is an SSO, but there is no access control checks on the execution path leading to

it.

que ry (”INSERT INTO a c c o u n t . . . ”) ; / / SSO

(2) Inconsistent: There exist duplicate instances of the same SSO in the code but the con-

trol checks for them are not implemented consistently while their intended access control

policy should be equivalent.

Listing 1, 2 are two code examples sharing the same SSO query(”INSERT INTO blog...”),

their access control check policy should be equivalent, but their implementations shown in

italics are different, and thus there exists an Inconsistent flaw.

Listing 1: Code example with wrong access control checks (access control checks are

shown in italics)

21

require login() ;

require capability(’insertBlog’, $context) ;

que ry (”INSERT INTO blog . . . ”) ; / / SSO

Listing 2: Code example with correct access control checks(access control checks are

shown in italics)

require login() ;

i f (isguestuser()) {

p r i n t e r r o r (’ n o g u e s t s ’ , ’ c h a t ’) ;

}

query (”INSERT INTO blog . . . ”) ; / / SSO

(3) Untrusted data: access control check is based on untrusted variables, such as vari-

ables coming from untrusted data sources that can be manipulated by an attacker.

Below shows a code example which has an Untrusted data flaw. The Boolean expression

in italics session id=’$id’ is an access control check for the SSO DELETE FROM sessions,

it is constraining the session id field with a variable $id, which is an untrusted variable

because it comes from a common untrusted data source $ GET, and thus, this example has

an Untrusted data flaw.

$ i d =(i n t) $ GET [’ s e s s i o n i d ’] ; / / u n t r u s t e d da ta

query (”DELETE FROM s e s s i o n s WHERE session id=’$id’”) ; / / SSO

22

Table 1: Types of access control vulnerabilities that each technique could solve.

ASIDE-PHP [37] [81] [43] [70]
Missing X

Inconsistent X X X X
Untrusted data X X X
Logic errors

(4) Logic errors: Other logic errors in an access control check. These are logic errors for

access control that have no known method for automatic detection.

Below shows a code example which has a Logic error. The Boolean expression in italics

is the access control check for the SSO INSERT INTO blog, which consists of two Boolean

expressions concatenated by an operator ”Or”. One Boolean expression checks whether the

username input by the user matches the username stored in the database; the other checks

whether the password input by the user matches the password stored in the database. It

has a logic error, because it uses a wrong operator ”Or” to concatenate the two Boolean

expressions. The correct way is to use ”And”, because it should check whether both the

username and password input by the user match the record stored in the database.

i f ($username input from user == $username in db Or $password input from user ==

$password in db) {

query (”INSERT INTO blog . . . ”) ; / / SSO

}

Table 1 summarizes types of errors addressed by previous research. The ASIDE-PHP

column represents my work, which will be discussed in detail later in the chapter.

Most auto detection approaches learn a correct access control model based on observed

access control patterns. Throughout this chapter, I use the term access control check to

23

Table 2: Projects used in evaluation.

Project LOC Description
Mybloggie 2.1.3 [70] 8874 Blogging system
SCARF 1.0 [70] 1318 Conference discussion forum for papers
Wheatblog 1.1 [81] 4032 Blogging system
Bilboblog 0.2.1 [37] 2000 Blogging system
PhpStat 1.5 [37] 12,700 Application presenting IM statistics
Moodle [43] 625,000 Course management

refer to a fragment of code that implements an access control policy. An access control

pattern is a tuple of (access control check, SSO) representing a code instance where the

access control check is performed for the SSO. Inferring the correct access control model

for a given SSO requires multiple access control patterns. Once the access control model

for an SSO is learned, one can easily identify vulnerabilities as code instances where the

correct access control check does not appear. Therefore in [81, 43, 70] detecting missing

access control is a special case of inconsistent access control checks. A natural question

then arises: do applications have sufficiently large numbers of access control patterns to

support learning of an accurate access control model. I conducted a study of six open

source projects to find out.

3.3 Empirical Evaluation of Auto Detection Techniques

I selected six open source PHP-based projects for this evaluation. They are summarized

in Table 2. References next to each project indicate the papers in which a given project has

been used as part of their evaluations.

I focused my evaluations on SSOs that are database operations. The techniques discussed

here can be easily extended to other type of SSOs such as file operations. Besides Moodle,

all other projects have easy to understand functions and a small number of database tables

so it is fairly straightforward to identify security sensitive database operations through code

reviews. I manually examined each SSO instance and identified access control checks in the

24

Table 3: Distribution of access control patterns in projects.

Project Insert Update Delete Select
Mybloggie 2.1.3 2,2,2,1,1 2,2,1,1,1 2,2,1,1
SCARF 1.0 1,1,1,1,1,1,1 4,3,2,2,1,1,1 2,1,1,1,1
Bilboblog 0.2.1 1 1 1
Wheatblog 1.1 1,1,1,1,1,1 2,1,1,1,1,1,1 1,1,1,1,1 2,2,1
PhpStat 1.5 2,1,1,1,1,1 6,6,3,2,1,1 2,1,1

source code. Table 3 summarizes my findings for projects MyBloggie, SCARF, Biboblog,

Wheatbog, and PhpStat. Numbers in the table are access control patterns found. Columns

headed with insert, update, delete, and select represent types of SSOs involved in these

access control patterns. For example, for project SCARF, there are five access control

patterns involving database delete operations. One pattern is repeated twice while the rest

are not repeated. It is clear that in the majority of cases, an SSO either appear only once in

an access control pattern or the number of patterns it appears in is very small.

Because of the large number of tables in Moodle (over 250) as well as Moodle’s large

code base, I identified SSOs as database operations involved in known access control vul-

nerabilities (details described in Section 5.1). I believe this gives an accurate estimated list

of SSOs because Moodle is professionally maintained and has very good documentation

of security fixes. I identified 31 SSOs in Moodle following this method and manually an-

notated access control logic associated with each of them. Figure 1 shows my results on

the distribution of access control patterns involving these 31 SSOs. Each bar represents

the number of repeated access control patterns. The median number of repetitions for an

access control pattern is one.

Low repetitions of access control patterns limit the performance of auto detection ap-

proaches. At one extreme, consider the case that an access control pattern only appears

once in the code. The auto detection approach will not be able to construct a correct access

25

Figure 1: Distribution of access control patterns in Moodle.

control model for such a case. More generally, the confidence of the constructed access

control model depends on the size of repeated access control patterns as well as ”noise” in

code instances. Here ”noise” refers to branching logic that may look like access control

but is in fact not related to access control (e.g. business logic to select what table to update

depending on application context). If code instances contain much non-security related

branching logic in addition to access control checks, a larger number of code pattern repe-

titions are needed to ”learn” how to separate the two kinds of branching logic. Threshold

values were used by auto detection approaches to make these decisions. However, it is

not clear how the combination of size of access control pattern repetition and branching

complexity affect the accuracy of access control model extraction. It is also not clear how

thresholds tuned for one project can be applied to another project.

Furthermore, auto detection techniques typically assume that there is only one unique

26

access control check for a given SSO. This is however not always the case. I will provide

concrete examples where an application may have multiple access control checks for the

same SSO in Section 5.3.

At the observed level of repetition of access control patterns, auto detection approaches

will have large false negatives (details in Section 5.2). I am thus motivated to take a hybrid

approach in which I seek developer input to identify access control models for SSOs. I

argue that such an approach will be more effective provided that it does not cause too much

distraction to the developers. I will describe the hybrid approach in next Chapter.

CHAPTER 4: INTERACTIVE STATIC ANALYSIS FOR ACCESS CONTROL
VULNERABILITY DETECTION

As described in Chapter 3, I conducted a comparative study using six open source PHP

applications to evaluate the limits of previous research works on automatic detection of

access control vulnerabilities, which found that the implicit assumptions made by these

previous research techniques have significant limitations. Detecting access control vulner-

abilities automatically is hard because it is difficult to infer intention of the developer based

on source code alone. I propose a hybrid approach called interactive static analysis. In this

chapter, I will describe the interactive static analysis framework in details, and use concrete

examples and my prototype implementation to illustrate it. I will describe the evaluation of

the framework and prototype in Chapter 5.

4.1 Interactive Static Analysis Example

I refer to my prototype implementation as ASIDE-PHP (Application Security plug-in for

the Integrated Development Environment for PHP). In this section I use an example from

the open source project Moodle to illustrate key concepts of interactive static analysis and

how it might work in practice. A Moodle chat room is created by a teacher for a specific

course. Only logged-in users with required chat capability should send messages to the

chat room. Listing 3 and Listing 4 show two code snippets from two different Moodle

files that I use for this example. Listing 4 has an access control vulnerability, which I will

explain below.

28

Listing 3: Code snippet from /mod/chat/gui basic/index.php of Moodle

r e q u i r e c a p a b i l i t y (’mod / c h a t : c h a t ’ , $ c o n t e x t) ;

$DB−> i n s e r t r e c o r d (’ c h a t m e s s a g e s ’ , $newmessage) ;

$DB−> i n s e r t r e c o r d (’ c h a t m e s s a g e s c u r r e n t ’ , $newmessage) ;

Listing 4: Code snippet from /mod/chat/gui sockets/index.php of Moodle

i f (i s g u e s t u s e r ()) {

p r i n t e r r o r (’ n o g u e s t s ’ , ’ c h a t ’) ;

}

/ / c h a t l o g i n u s e r () c a l l s d a t a b a s e i n s e r t i o n t o t a b l e s

c h a t m e s s a g e s , c h a t m e s s a g e s c u r r e n t

i f (! $ c h a t s i d = c h a t l o g i n u s e r ($cha t−>id , ’ s o c k e t s ’ ,

$g roup id , $ c o u r s e)) {

p r i n t e r r o r (’ c a n t l o g i n ’) ;

}

Identifying SSOs is an important step in a secure software development lifecycle (SS-

DLC) [46] because knowing which data elements have security implications is critical for

threat modeling [80]. A Software Security Group (SSG) within organizations often coor-

dinates the SSDLC activities with development teams. In such an environment, security

sensitive operations (e.g. operations SELECT, INSERT, UPDATE, DELETE on specific

database tables) will be identified. This is the primary information required as input to

interactive static analysis. My example involves two Moodle database SSOs: INSERT to

29

Figure 2: An annotation request is generated (yellow marker).

Figure 3: Developer hovers over the yellow marker to get a quick tip.

chat messages and chat message current.

ASIDE-PHP continuously analyzes the source code in the background as the developers

write code in Eclipse. When an SSO is detected, a yellow notification is placed alongside

such as in line 50 in Figure 5 because it involves two Moodle database SSOs: INSERT

to chat messages and chat message current. The developer can hover over the notifica-

tion icon to get a quick tip about what the notification icon means, as shown in Figure 3.

Developer could click on the notification to interact with ASIDE-PHP, as shown in Figure

fig:asidephpReadmore, a list of options is shown to developer, developer could click on the

first option, which will open a web page within Eclipse providing more explanations about

the annotation request and related information. When developer chooses the second option

”make annotation” as shown in Figure 5, an explanation box will be shown besides the op-

tion to illustrate what the option means and what the developer should do. In this example,

ASIDE-PHP is asking for the developer to highlight access control logic for inserting data

into tables chat messages and chat messages current. The function called on line 50 in

Figures 5 invokes those database insertion operations.

30

Figure 4: Developer could click the readmore option, which will open a webpage within
Eclipse providing more explanations about the annotation request and related knowledge.

Figure 5: Explanation for interactive annotation.

The developer selects the code snippet that he thinks is access control check as shown

in Figure 6, and performs the annotation by highlighting the code containing the intended

access control logic as shown in Figure 7 (lines 27 and 29 in green). This process is referred

to as interactive annotation because no additional language syntax is required and it is

integrated into the IDE. By providing the annotation, the developer is reminded to write

code for access control checks, and will have an opportunity to reflect on the checks as

they are being annotated. This reflection provides an additional opportunity for developers

to self-review their code and notice mistakes they or others may have made. One nice

effect of interaction annotation is that it can quickly identify cases where the developer has

inadvertently left out the access control logic for a SSO entirely (the missing error type

31

Figure 6: Developer selects a code snippet and annotates it as a control check.

discussed in Section 3.2).

ASIDE-PHP uses static analysis techniques to detect vulnerabilities. In this example,

ASIDE-PHP noticed that both code snippets from Listing 3 and Listing 4 perform the

same SSOs: inserting records to tables chat messages and chat messages current, but the

two access control checks are different. This is an example of using duplication of access

control checks to find inconsistent access control checks for the same SSO. ASIDE-PHP

alerts the developer that there is a likely vulnerability, as shown by the red mark besides line

50 in Figure 7. This example is indeed a known Moodle vulnerability, CVE-2013-2242,

where an unauthorized user can insert messages to a chat room. The vulnerable code in

32

Figure 7: Access control checks (above green highlight), and a vulnerability warning
(lower red highlight).

Figure 8: Developer could click this option to remove the annotation request if developer
thinks this line of code does not require access control check.

Listing 4 only checks to make sure a user is not a guest user but did not ensure the user has

the authorization for a particular chat room.

Besides, if developer thinks the line of code with the yellow icon as shown in Figure

2 does not require access control check, he could choose the third option in the options

list to remove the annotation request as shown in Figure 8, and then the yellow icon will

disappear as shown in Figure 9.

33

Figure 9: After developer chose to remove the annotation request, the annotation request
marker disappears.

This example demonstrates key components of the interactive static analysis approach.

First, vulnerability detection and mitigation is aimed at the developer, with the goal of

providing assistance to help developers with this task. The notifications also provide de-

velopers in-situ reminders of the security implications of their code. Static analysis utilizes

application specific access control knowledge requested from the developer, to aid in the

detection of vulnerabilities. Together, this approach could potentially reduce the cost of

vulnerability detection through earlier detection and reduced demand on software security

experts.

4.2 Overview of Prototype Implementation ASIDE-PHP

I implemented an interactive static analysis prototype as a plug-in for Eclipse IDE for

PHP, called Application Security in IDE for PHP (ASIDE-PHP), which constantly scans

source code in the workspace. The plug-in is based on Eclipse framework, which provides

the infrastructure facilitating the transformation of source code into Abstract Syntax Tree

(AST), AST manipulation libraries as well as interface and interaction libraries. Figure

10 provides an overview of major components of ASIDE-PHP, which takes as input: (a)

Abstract Syntax Trees (ASTs) of the application generated by Eclipse PDT [19], and (b) a

set of security sensitive operations (SSOs) specified by the Software Security Group (SSG).

ASIDE-PHP then uses these to generate annotation requests to the developer. With the

annotations provided by the developer, static analysis is used to detect vulnerabilities.

34

Figure 10: ASIDE-PHP architecture.

Related auto detection approaches have avoided studying access control related to SE-

LECT operations for database tables [81, 70], because they may lead to overwhelming

false positives. Applications often read sensitive information from tables without the need

of performing access control checks. For example, a password may be read from a database

table as part of the login process without access control checks. I overcome this limitation

by considering sensitive SELECT operations only when sensitive data retrieved from the

SELECT operation flows to a page-displaying API, for example echo() or print() in PHP.

Frequently used page-displaying APIs for major web application development platforms

are well known. They are often represented as default sinks by commercial static analysis

tools to detect cross-site scripting vulnerabilities. If, instead of being displayed, a sensitive

information read impacts other SSOs, access control checks would be performed for these

SSOs.

35

ASIDE-PHP then performs path coverage analysis to generate annotation requests, which

are displayed to a developer as shown in Figure 2, details are described in Section 4.5. The

developer could interact with these requests and make annotations through ASIDE-PHP,

as shown in Figure 5. Based on new annotations, ASIDE-PHP performs static analysis

to detect vulnerabilities and display warnings to developers. Static analysis can be per-

formed in a background thread, and should not block the developer’s interaction with the

IDE. While the current implementation is not yet optimized for efficiency, I believe these

techniques can be efficiently implemented because they fit nicely with multi-core computer

architecture.

4.3 ASTs Generated by Eclipse PDT

Based on Eclipse PHP Development Tools (PDT) [19], the plug-in ASIDE-PHP could

obtain information about the projects opened in the Eclipse workspace. Relevant informa-

tion used by ASIDE-PHP include: source packages in a project as illustrated in Figure 11,

and what is the code in a specific line of a chosen source file. Eclipse PDT provides APIs

to access and manipulate a source file as an AST. Code elements, such as function decla-

ration, statement, function call, Boolean expression, are represented as an AST node in the

AST, for example Figure 12 shows an AST illustration of a function declaration, all code

elements in a function declaration could be accessed based on Eclipse PDT APIs. Each

time an annotation is made on a code snippet by the developer, the annotation will be kept

with that code snippet as auxiliary information, so it is identifiable.

4.4 SSOs Rules

A set of security sensitive operations (SSOs) could be specified by the Software Se-

curity Group (SSG) in the format of XML in ASIDE-PHP. The SSOs rules include two

36

Figure 11: Illustration of project structure in Eclipse PDT [24].

Figure 12: AST illustration of a function declaration in Eclipse PDT [24].

parts: abstract SSOs rules and concrete database operation APIs. Abstract SSOs rules de-

fine the security sensitive database operations in a conceptual and programming-language-

independent way. For example, ”insert operation on table account” is an abstract SSO rule,

security specialist needs to write a rule shown below. Every <sso></sso>pair represents

an abstract SSO rule. The tag operationType specifies the database operation type, which

could be insert, delete, update or select, and the tag tableName specifies the name of the

table on which the database operation runs against.

<s s o>

37

<o p e r a t i o n T y p e> i n s e r t< / o p e r a t i o n T y p e>

<tableName>a c c o u n t< / tab leName>

< / s s o>

Concrete database operation APIs define the database operation APIs existing in spe-

cific programming languages. For example, mysql query is a concrete database API in

PHP programming language. There are two types of database operation APIs, parameter-

ized database operation APIs and unparameterized database operation APIs. For example,

in project Moodle [71], it has database operation API insert record, which is a parameter-

ized database operation API. Its usage is shown below, table name ’account’ is explicitly

specified in its first parameter as a constant.

$DB−> i n s e r t r e c o r d (’ a c c o u n t ’ , $ a c c o u n t) ;

To specify the parameterized database operation API insert record, security specialist

needs to write a rule shown below. The tag id denotes the name of the API; the tag type

indicates the database operation type of the API, for parameterized database operation API,

allowed type include select, delete, update, and insert, in this example type is database

”insert” operation; the tag tableParam specifies which parameter of the API represents

table name, 0 represents the first parameter; the tag language represents the programming

language to which the API belongs. In the example, insert record is an API in PHP.

<DBOperat ion i d =” i n s e r t r e c o r d ” t y p e =” i n s e r t ” , l a n g u a g e =”PHP

”>

38

<t a b l e P a r a m>0< / t a b l e P a r a m>

< / DBOperat ion>

For unparameterized database operation APIs, which refer to cases where the API takes

a SQL string as its parameter and the SQL string contains information about table name and

operation type. For example, below is a unparameterized database SQL query example, the

operation type is ”update” and table name is ”account”.

m y s q l q u e r y (” u p d a t e a c c o u n t s e t password = ’$pwd ’ where

u s e r i d = ’$ t h e u s e r i d ’ ” , $db) ;

To specify the unparameterized database operation API mysql query, security specialist

needs to write a SSO rule shown below. The tag id denotes the name of the API; type

”all” indicates that this API could be database SELECT, DELETE, UPDATE, or INSERT,

its operation type is specified in the SQL string which stays as a parameter of the API;

the tag sqlStringParam specifies which parameter of the API represents the SQL string, 0

represents the first parameter; the tag language represents the programming language to

which the API belongs, in the example, mysql query is an API in PHP.

<DBOperat ion i d =” m y s q l q u e r y ” t y p e =” a l l ” , l a n g u a g e =”PHP”>

<s q l S t r i n g P a r a m>0< / s q l S t r i n g P a r a m>

< / DBOperat ion>

Listing 5 shows a complete example of SSOs rules, which includes four abstract SSOs

rules as shown in the four pairs of <sso></sso>, one unparameterized database operation

39

API as shown between the pair of <unparameterizedDBOperations></unparameterizedD-

BOperations>, and four parameterized database operation APIs shown between the pair of

<parameterizedDBOperations></unparameterizedDBOperations>.

Listing 5: Example SSOs Rules

<s s o s>

<u n p a r a m e t e r i z e d D B O p e r a t i o n s>

<DBOperat ion i d =” m y s q l q u e r y ” t y p e =” a l l ” , l a n g u a g e =”PHP”>

<s q l S t r i n g P a r a m>0< / s q l S t r i n g P a r a m>

< / DBOperat ion>

< / u n p a r a m e t e r i z e d D B O p e r a t i o n s>

<p a r a m e t e r i z e d D B O p e r a t i o n s>

<DBOperat ion i d =” i n s e r t r e c o r d ” t y p e =” i n s e r t ” , l a n g u a g e =”PHP

”>

<t a b l e P a r a m>0< / t a b l e P a r a m>

< / DBOperat ion>

<DBOperat ion i d =” d e l e t e r e c o r d ” t y p e =” d e l e t e ” , l a n g u a g e =”PHP

”>

<t a b l e P a r a m>0< / t a b l e P a r a m>

< / DBOperat ion>

<DBOperat ion i d =” u p d a t e r e c o r d ” t y p e =” u p d a t e ” , l a n g u a g e =”PHP

”>

<t a b l e P a r a m>0< / t a b l e P a r a m>

40

< / DBOperat ion>

<DBOperat ion i d =” s e l e c t r e c o r d ” t y p e =” s e l e c t ” , l a n g u a g e =”PHP

”>

<t a b l e P a r a m>0< / t a b l e P a r a m>

< / DBOperat ion>

< / p a r a m e t e r i z e d D B O p e r a t i o n s>

<s s o>

<o p e r a t i o n T y p e> i n s e r t< / o p e r a t i o n T y p e>

<tableName>a c c o u n t< / tab leName>

< / s s o>

<s s o>

<o p e r a t i o n T y p e>d e l e t e< / o p e r a t i o n T y p e>

<tableName>a c c o u n t< / tab leName>

< / s s o>

<s s o>

<o p e r a t i o n T y p e>u p d a t e< / o p e r a t i o n T y p e>

<tableName>a c c o u n t< / tab leName>

< / s s o>

<s s o>

<o p e r a t i o n T y p e> s e l e c t< / o p e r a t i o n T y p e>

<tableName>a c c o u n t< / tab leName>

< / s s o>

41

< / s s o s>

4.5 Interactive Annotation

Web applications differ from other applications in that they do not have a unique program

entry point, or ”main program”. One can identify program entry points for web applica-

tions. For example, I distinguish two types of files with .PHP extensions. First, a file may

contain only class and/or function definitions. Second, a file may contain executable code

outside of function and class definitions. The second type of file is referred to as a program

entry as a URL can invoke it.

ASIDE-PHP requests interactive annotation at the program entry level because it most

likely corresponds to an application use case. Access control policies are often defined for

use cases. Placement of an annotation request at this level makes it easier for a developer to

identify intended access control code. ASIDE-PHP expects annotations for access control

logic to consist of statements that could divert the execution path away from performing the

SSO. For example, in Listing 3, method invocation require capability(”capability name”)

throws an exception if the capability indicated by capability name is not satisfied. More

specifically, annotated code should satisfy several requirements: (1) it must be on the exe-

cution path from the program entry point to the SSO; (2) it must consist of either (2.a) a set

of Boolean expressions in a branch/conditional statement that lead to altering the execu-

tion path leading to the SSO involved, or (2.b) method invocations that could either throw

exceptions or terminate the execution.

ASIDE-PHP enumerates all the execution paths from every program entry point to every

SSO by computing program call graphs. This process is referred to as path coverage anal-

42

ysis because it ensures that for every execution path thus identified, there must be at least

one annotation for an access control check ”covering” this path. ASIDE-PHP generates

an annotation request for the developer for each path without an annotation. For exam-

ple, in Figure 2, there exists an execution path from the program entry point index.php to

the SSO INSERT to chat messages, via function call chat login user($chat->id, ’sockets’,

$groupid, $course) on line 50. ASIDE-PHP thus generates an annotation request for line

50, shown as a yellow notification beside the code line.

4.6 Vulnerability Detection

Vulnerability detection in ASIDE-PHP is based on three mechanisms. First, the interac-

tive annotation process encourages developers to self-review the access control logic and

detect errors. This is particularly effective to help discover cases of missing access control

checks. The second mechanism is based on the observation that the same SSOs normally

require the same access control checks. The third mechanism is based on the observation

that the annotated control checks should be (access) control effective, meaning they rely on

trusted data for control decisions, rather than untrusted data or uninitialized variables.

4.6.1 Annotation Consistency Analysis

Differences in access control checks for the same SSOs often indicate a mistake. I

adapted a method proposed by Son et al. [82] to determine whether two annotations match.

I briefly summarize the steps of this process below and explain it through an example.

1. Obtain the calling context of an annotated check, using program slicing [91], con-

taining all statements to which the annotated check has data dependency. Listings 6,

7, 8 shows slices of code with annotations for control checks represented in italics.

43

2. Given the annotated check and its calling context, extract the access control template

(ACT) of the annotated check, an abstract representation of the access control check

along with its data dependencies for determining matches.

3. Given two ACTs, ACT a and ACT b, for each statement in ACT a, check if there

exists only one statement in ACT b that matches it, and vice versa. The order of

statements does not matter, because I consider their data dependency as part of the

matching. Two statements match iff (a) their AST structures and operators are iso-

morphic, and (b) their data dependencies also match.

Consider the examples in Listings 6, 7, 8. The code in Listing 6 matches code in Listing 8

because the annotated access control checks refer to the same function call has capability().

The first parameters in both instances match as both refer to the same constant. The second

parameters are variables but both can be traced to the same constant ”admincontext”. On

the other hand, Listing 7 and Listing 8 do not match because the second parameters are

traced to different values.

Listing 6: This access control check matches c but not b

$ c o n t e x t = ” a d m i n c o n t e x t ” ;

/ / a n n o t a t e d check

i f (has capability(’moodle/blog:create’, $context)) {

$DB−> i n s e r t r e c o r d (’ b log ’) ; / / SSO

}

44

Listing 7: This check does not match with either a or c

$ c o n t e x t = ” s t u d e n t c o n t e x t ” ;

/ / a n n o t a t e d check

i f (has capability(’moodle/blog:create’, $context)) {

$DB−> i n s e r t r e c o r d (’ b log ’) ; / / SSO

}

Listing 8: This access control check matches a but not b

$newcon tex t = ” a d m i n c o n t e x t ” ;

/ / a n n o t a t e d check

i f (has capability(’moodle/blog:create’, $newcontext)) {

$DB−> i n s e r t r e c o r d (’ b log ’) ; / / SSO

}

4.6.2 Access Control Effectiveness Analysis

Access control decisions must be made based on trusted data such as a constant or data

validated by the application (e.g. values in a web session). I use an example from SCARF to

motivate my discussions. In Listing 9, the developer may annotate the Boolean expression

WHERE session id=’$id’ as a check for the SSO DELETE FROM sessions. ASIDE-PHP

analyzes the annotated expression session id=’$id’, and identifies it is constraining the

session id field with a variable $id. ASIDE-PHP performs data flow analysis for $id and

finds it is from a common untrusted data source $ GET, and therefore ASIDE-PHP regards

the annotated access control check to have no access control effectiveness, and reports it as

45

an access control vulnerability.

Listing 9: editsession.php in SCARF

$ i d =(i n t) $ GET [’ s e s s i o n i d ’] ; / / u n t r u s t e d da ta

query (”DELETE FROM s e s s i o n s WHERE s e s s i o n i d = ’ $ i d ’ ”) ; / / SSO

Given an annotated access control check, ASIDE-PHP performs taint propagation data

flow analysis. I use default taint sources in commercial static analysis tools (e.g. $ GET).

ASIDE-PHP generates a vulnerability warning if any variable used in an annotated access

control check can be traced to a taint source.

CHAPTER 5: EVALUATION OF INTERACTIVE STATIC ANALYSIS FOR ACCESS
CONTROL VULNERABILITY DETECTION

I evaluated ASIDE-PHP’s effectiveness using six open source PHP applications. Five of

the six applications, Mybloggie, SCARF, Bilboblog, Wheatblog, and PhpStat, were used by

auto detection research. They are summarized in Table 4. References next to each project

indicate the papers in which a given project has been used as part of their evaluations. I

thus use them to compare ASIDE-PHP’s performance. In addition I chose Moodle to find

out how ASIDE-PHP performs in a large-scale complex application. Moodle is an open

source e-learning platform with thirteen stable releases and over 73 million users across

273 countries [23]. Moodle has over 625,000 LOC and 2,000 PHP files.

I evaluated ASIDE-PHP against these projects with the following research questions: (a)

How would ASIDE-PHP impact the developer’s work flow? (b) How effective is ASIDE-

PHP at mitigating known vulnerabilities? (c) What is the number of false positives? (d)

How does ASIDE-PHP’s ability to detect vulnerabilities compare with related work? (e)

What are the limitations of ASIDE-PHP in detecting access control vulnerabilities?

5.1 Evaluation Setup

Projects Mybloggie, SCARF, Bilboblog, Wheatblog, and PhpStat have relatively simple

functions so I performed manual code review to identify security sensitive operations as

shown in Table 5. I could not perform a thorough code review of Moodle because of its size.

Moodle has 199 documented vulnerabilities for all versions. I selected Moodle version

47

Table 4: Projects used in evaluation.

Project LOC Description
Mybloggie 2.1.3 [70] 8874 Blogging system
SCARF 1.0 [70] 1318 Conference discussion forum for papers
Wheatblog 1.1 [81] 4032 Blogging system
Bilboblog 0.2.1 [37] 2000 Blogging system
PhpStat 1.5 [37] 12,700 Application presenting IM statistics
Moodle [43] 625,000 Course management

Table 5: Security sensitive operations identified in projects Mybloggie, SCARF,
Bilboblog, Wheatblog, and PhpStat.

Project SSOs

Mybloggie 2.1.3
Insert: POST TBL, COMMENT TBL, CAT TBL, USER TBL
Update: POST TBL, COMMENT TBL, CAT TBL, USER TBL
Delete: POST TBL, COMMENT TBL, CAT TBL, USER TBL

SCARF 1.0
Insert: comments, papers, files, authors, sessions, users, options
Update: comments, papers, files, sessions, users, options
Delete: comments, files, authors, sessions, users

Bilboblog 0.2.1
Insert: article
Update: article
Delete: article

Wheatblog 1.1

Insert: tblComments, tblCategories, tblLinks, tblPosts, tblUsers
Update: tblPosts, tblUsers, tblLinks, tblCategories, tblComments, wbtbl settings
Delete: tblPosts, tblUsers, tblLinks
Select: tblUsers, wbtbl settings

PhpStat 1.5
Insert: stat file, stat alias, stat user, stat time, stat wordcount
Update: stat file, stat user, stat alias
Delete: stat file, stat alias, stat user

2.1.0 released in 2011 because it contains the largest number (19) of known access control

vulnerabilities in any stable release. Based on bug fix logs, I determined that 13 of them

were connected with access control vulnerabilities for database tables: CVE-2013-2242,

2012-4408, 2012-3392, 2012-0797, 2012-2356, 2012-2367, 2012-3397, 2012-2354, 2012-

2355, 2012-2358, 2012-3391, 2012-2359, and 2012-5473. Three vulnerabilities, CVE-

2011-4293, 2012-4407 and 2012-3390, were access control vulnerabilities related to file

access. I was not able to determine the source of failed access control in the remaining three

cases: CVE-2012-0798, 2011-4309, and 2011-4303. Since my prototype implementation

is targeting sensitive operations on database tables, I focused my efforts on examining the

13 CVEs connected with database tables. My approach can be extended to cover many

file accesses as well. Read and write operations on sensitive files could be considered as

48

SSOs. It is straightforward to specify file paths of the sensitive files and the file read and

write APIs. For example, ”$sensitiveFile = fopen(”customers”, ”w”); fwrite($sensitiveFile,

$txt);” writes $txt into the file specified by the sensitiveFilePath, so we can specify an SSO:

fwrite into file customers. This approach will work as long as file names can be determined

via data flow analysis.

Thirty-one database table operations are connected with the 13 selected CVEs, as shown

in Table 6. Because these 13 CVEs are classified as access control vulnerabilities, I assume

that the 31 database table operations are SSOs. I ran ASIDE-PHP against the Moodle 2.1.0

code base with the 31 identified SSOs. I simulated a developer by making interactive anno-

tations of access control checks responding to ASIDE-PHP requests. This effort spanned

70 files with an average of 223 lines of code per file. I used the following types of clues

in identifying access control checks: (a) Developer comments, (b) Function and variable

names, (c) Reported security fixes to access control vulnerabilities, and (d) Context and

flow of the program.

5.2 Vulnerability Detection Results

Table 7 summarizes vulnerabilities discovered by ASIDE-PHP across all six projects.

The column ”known vulnerability” includes reports from other approaches discussed in

Chapter 3 and the 13 known access control vulnerabilities from Moodle. In the table, [M]

represents missing checks, [I] represents ”inconsistent”, [UT] represents ”untrusted data”,

and [L] stands for ”other logic error”.

Except for 7 logic errors in Moodle, ASIDE-PHP was able to discover all 26 known

vulnerabilities. I will discuss these 7 logic errors in a later section. ASIDE-PHP discovered

20 zero day access control vulnerabilities. Listing 10 shows a zero-day example where a

49

Table 6: Known Moodle vulnerabilities and associated security sensitive operations.

Brief Description SSOs
Unauthorized chat room access (CVE-2013-2242) Insert: chat messages, chat messages current, chat users

Unauthorized reset (CVE-2012-4408)

Delete: event, role capabilities, role assignments,
groupings, comments, grade outcomes,
grade settings, course completion crit compl,
groups members, groupings groups, assignment
Update: event

Unauthorized forum deletion (CVE-2012-3392) Delete: forum subscriptions
Deleted user can maintain access (CVE-2012-0797) Insert: external tokens

Unauthorized access to question-bank (CVE-2012-2356) Insert: question
Update: question

Unauthorized addition of calendar event (CVE-2012-2367) Insert: event
Update: event

Unauthorized access to group information (CVE-2012-3397) Select: groups
Unauthorized reading of messages (CVE-2012-2354) Select: message, message read
Unauthorized addition of quiz questions (CVE-2012-2355) Insert: quiz question instances

Unauthorized database modifications (CVE-2012-2358) Insert: data records, data content
Update: data records

Unauthorized read of forums (CVE-2012-3391) Select: forum

Privilege escalation (CVE-2012-2359) Insert: role capabilities
Update: role capabilities

Unauthorized information access (CVE-2012-5473) Select: user

Table 7: Vulnerability detection results.

Project Known Vul. Known Vul. by ASIDE-PHP 0-day Vul. by ASIDE-PHP
Moodle 2.1.0 6[I], 7[L] 6[I] 1[I]
Mybloggie 2.1.3 3[M], 3[UT] 3[M], 3[UT] 15[M]
SCARF 1.0 1[M], 10[UT] 1[M], 10[UT]
Bilboblog 0.2.1 1[UT] 1[UT]
Wheatblog 1.1 1[M] 1[M]
PhpStat 1.5 1[M] 1[M] 4[M]

developer created a comment ”Added security”, from which I can infer that the developer

intended to add a control check for the SSO, but wrote it incorrectly. With ASIDE-PHP,

this issue will be detected right at the point of annotation. Once the developer annotates

the expression !isset($ SESSION[’username’]) && !isset($ SESSION[’passwd’] as access

control. ASIDE-PHP will identify that this is an invalid check because function echo() does

not generate an exception. This check will not alter the execution path leading to the SSO.

ASIDE-PHP will notify the developer to write a valid check so that this vulnerability could

be mitigated.

Listing 10: Vulnerable code in del.php in Mybloggie 2.1.3

50

/ / Added s e c u r i t y

i f (! i s s e t ($ SESSION [’ username ’]) &&

! i s s e t ($ SESSION [’ passwd ’])) {

echo ”<m e t a h t t p−e q u i v =\” R e f r e s h \” c o n t e n t =\”2 ; u r l =” .

s e l f u r l () . ” / l o g i n . php \” />” ;

}

s q l q u e r y (”DELETE FROM ” . POST TBL . ”

WHERE p o s t i d = ’ $ p o s t i d ’ ”) ; / / SSO

Listing 11 illustrates another zero-day finding confirmed and patched by the Moodle

development team (CVE-2014-0122). The SSOs involved are INSERT into database tables

chat messages, and chat messages current, the same operations as involved in the example

in Listing 3. The vulnerable code is in file ”chat ajax.php”. It was discovered by comparing

this code instance with the code instance shown in Listing 3.

Listing 11: Vulnerable code in chat ajax.php in Moodle 2.1.0

i f (!$chatuser = $DB->get record(’chat users’, array(’sid’=>$chat sid))) {

th row new m o o d l e e x c e p t i o n (’ n o t l o g g e d ’ , ’ c h a t ’) ;

}

i f (!isloggedin()) {

th row new m o o d l e e x c e p t i o n (’ n o t l o g g e d ’ , ’ c h a t ’) ;

}

$DB−> i n s e r t r e c o r d (’ c h a t m e s s a g e s ’ , $message) ;

51

$DB−> i n s e r t r e c o r d (’ c h a t m e s s a g e s c u r r e n t ’ , $message) ;

Moodle requires that only logged in users with access to a particular chat room can insert

chat messages. Moodle maintains a temporary table of users currently in chat rooms. The

vulnerable code checks the temporary table as a proxy for the fact that a given user has the

appropriate chat authorization. It did not account for the case where a user’s chat privilege

may be revoked after he entered the chat room. Besides the two zero-day examples I

just discussed here in this section, the other 18 zero-day findings have been listed out in

appendix A.

In addition, using the same technique, ASIDE-PHP found two other zero day Cross-

site Request Forgery vulnerabilities in Moodle 2.1.0 affecting the most recent release of

Moodle. They have been confirmed and patched by the Moodle development team (CVE-

2014-0010, CVE-2014-0126).

5.3 False Positives for Vulnerability Detection

False positive warnings arise when ASIDE incorrectly alerts the developer of a potential

vulnerability. We found false positives resulting from vulnerability detection based on

annotation inconsistency. Table 8 summarizes the false positives for warnings generated

by annotation inconsistency. For example, in Moodle 2.1.0, 19 warnings were generated

because there exist 19 sets of inconsistencies where different access control checks were

annotated for the same SSO. Among them, 12 are true positives leading to the discovery of

7 vulnerabilities, including a zero-day. Note that ASIDE may generate multiple warnings

per vulnerability. This is because multiple sensitive operations are often grouped together.

It is possible to have more than one form of valid access control check for the same SSO

52

Table 8: False positives for warnings.

Project Total warnings generated False positives Why false positives?by inconsistency for warnings
Moodle 2.1.0 19 7 Group difference, Context difference
Mybloggie 2.1.3 1 0 N/A
SCARF 1.0 0 0 N/A
Bilboblog 0.2.1 0 0 N/A
Wheatblog 1.1 1 1 Context difference
PhpStat 1.5 1 1 Context difference

and it is impossible to detect semantic equivalency in general. An SSO may appear to have

multiple forms of associated access control checks for several reasons. First, SSOs often

occur in groups. For example in Moodle, insertions into the following tables often occur

together: chat messages, chat messages current, chat users. Two such groups may require

different access control authorities even when they share some common SSOs. Therefore,

from the perspective of a given SSO, it has different access control checks when it belongs

to different groups.

Second, a given access control policy may have semantically equivalent but syntactically

different implementations. The third cause is due to application context difference as illus-

trated in Listing 12 and Listing 13. In this example both function calls role change permiss-

ion() in Listing 12 and reset role capabilities() in Listing 13 insert information into the

security sensitive table role capabilities. Thus, they both have the same SSO. However,

changing role permission requires the ”review role” whereas resetting role capabilities re-

quires the ”manage role” as indicated in the code. I found similar situations in Wheatblog

and PhpStat where the same SSO may use a different access control check depending on

either an administrator context or a user context.

Listing 12: Code snippet from /moodle210/admin/roles/permissions.php

require login($course, false, $cm);

53

Table 9: Total number of annotations requested.

Project Total annotations requests Annotations per file
Moodle 2.1.0 186 (0.093, 2.67)
Mybloggie 2.1.3 21 0.32
SCARF 1.0 27 1.42
Bilboblog 0.2.1 2 0.08
Wheatblog 1.1 24 0.49
PhpStat 1.5 30 2

require capability(’moodle/role:review’, $context);

r o l e c h a n g e p e r m i s s i o n ($ r o l e i d , $ c o n t e x t , $ c a p a b i l i t y −>name ,

CAP PREVENT) ;

Listing 13: Code snippet from /moodle210/admin/roles/manage.php

require login() ;

require capability(’moodle/role:manage’, $systemcontext) ;

r e s e t r o l e c a p a b i l i t i e s ($ r o l e i d) ;

5.4 Impact on Developers

Developer adoption is critical for the success of interactive static analysis. One way to

measure developer usability is to look at interactive annotation requests per file because it

diverts a developer’s attention from writing code. In an IDE environment a file is always

the focus of the developer’s attention. Table 9 summarizes annotations requests for all six

projects.

Results from Moodle only have an estimated range because I estimated the set of SSOs

using a process described in Section 5.1. A total of 186 annotation requested were gener-

ated based on identified SSOs for Moodle. Average annotation request per file is estimated

between 0.093 and 2.67. Many Moodle files will not contain any SSOs at all. The lower

54

Table 10: False positives for annotation requests.

Project Total annotations requests False requests Why false positives for requests?
Moodle 2.1.0 186 20 install
Mybloggie 2.1.3 21 3 install
SCARF 1.0 27 3 install, registration, password recovery
Bilboblog 0.2.1 2 0 N/A
Wheatblog 1.1 24 3 registration, login
PhpStat 1.5 30 0 N/A

number is based on total files in Moodle while the higher number is based on files contain-

ing at least one SSO. For the other five projects I was able to get a more precise estimate

of the number of annotation requests because I have identified all the SSOs through code

review. The data suggest that a developer will receive no more than 2 annotation requests

per file.

A false positive in annotation requests (aka. False requests), arises when there is no ac-

cess control check needed. An example for such a situation is code for system installation,

during which security sensitive database tables are initialized. Such a situation is different

from online system maintenance functions, which require appropriate authorization checks.

System installation often is run in a special setting before the system is brought online. In

such a mode explicit access control checks in the source code are not necessary. Such false

positives are generated because it is difficult for ASIDE-PHP to differentiate online system

maintenance functions and offline system initialization functions as both of them are con-

tained in files with .PHP extensions. Excluding the small group of PHP files performing

installation functions from the interactive static analysis process can easily eliminate these

false requests. Another example of false requests involves user registration, login and pass-

word recovery functions where sensitive tables are accessed but no access control checks

are needed. Table 10 summarizes my false positive findings.

Overall, ASIDE-PHP generated 290 requests for annotation for all six projects. I iden-

55

tified 29 of these requests as unnecessary requests. 23 out of the 29 false requests belong

to code performing system installation. One can eliminate these requests quite easily by

excluding the group of PHP files performing installation from the interactive static analysis

process. For example in Moodle, six of the 70 files I studied are dedicated to installation.

Five out of the 29 false requests occurs in login, registration and password recovery.

Automatic Annotation could be used to reduce the number of annotation requests at a

risk of somewhat reduced capacity on vulnerability detection. This may be a viable choice

if minimizing developer interruption is a high priority.

In my evaluation of the six applications, I had two observations. First, given an access

control check for an SSO, if the exact same code pattern is found associated with the same

SSO in a different file, then there is a very high probability that this code pattern is the ac-

cess control check in that second file. I thus could with high confidence make an automatic

annotation.

Our second observation is that multiple SSOs in one file often share access control

checks. For example, in Listing 14, SSO 1 and SSO 2 shares the same check require admin().

Thus once a developer finishes making an access control check annotation for SSO 1, it is

likely to be the access control check for all other SSOs on the execution path (e.g. SSO 2

in Listing 14), and thus ASIDE-PHP automatically annotates require admin() as the check

for SSO 2 in Listing 14 as well.

Listing 14: Example code of applying auto-annotation

require admin() ; / / c o n t r o l check

i f (i s s e t ($ GET [’ d e l e t e ’])) {

56

Table 11: Annotations needed with or without auto-annotation.

Project
Annotations Annotation Annotation requests Annotation requests
requests requests with auto annotation per file with

per file auto annotation
Moodle 2.1.0 186 0.093,2.67 48 0.024,0.69
Mybloggie 2.1.3 21 0.32 15 0.23
SCARF 1.0 27 1.42 11 0.58
Bilboblog 0.2.1 2 0.08 2 0.08
Wheatblog 1.1 24 0.49 17 0.37
PhpStat 1.5 30 2 4 0.27

query (”DELETE FROM comments WHERE

comment id = ’ $comment id ’ ”) ; / / SSO 1

} e l s e i f (i s s e t ($ GET [’ app rove ’])) {

query (”UPDATE comments SET approved = ’1 ’ WHERE comment id = ’

$comment id ’ ”) ; / / SSO 2

}

Table 11 shows the results of reductions in annotation requests if automatic annotation

heuristics were used. The average number of requests per file can be reduced to well below

one. However, with auto annotation, I may not detect one of the known vulnerabilities

discussed in Section 5.2, shown in Listing 4. I found that vulnerability by comparing two

duplicates of access control checks for the same SSO. One of the duplicates is a proper sub-

set of the other, the correct access control check. If the developer annotated the vulnerable

check without noticing his mistake, the duplicated one would be incorrectly annotated auto-

matically, thus missing the opportunity of finding this vulnerability. However, if the correct

access control check had been annotated first, I would still be able to find the vulnerability.

57

5.5 Comparison with Auto Detection

ASIDE-PHP is able to detect all 26 vulnerabilities found by related work auto detection

approaches. In addition ASIDE-PHP found 20 zero-day vulnerabilities that were missed

by related work. This supports my claim that auto detection has significant limitations in

detecting access control vulnerabilities because there are insufficient access control patterns

for them to learn access control models for SSOs. ASIDE-PHP performs better because it

relies on developer input to identify access control models.

None of the related work provided false negative analysis. My analysis suggests that

they are likely to have high false negatives. For example, in Mybloggie and Wheatblog I

found more zero-days than vulnerabilities reported by related work that used the same ap-

plications for evaluation. Moodle provides an additional source for false negative analysis

as it has well documented vulnerability findings. Seven of the 13 Moodle vulnerabilities

could not be discovered by any of the methods discussed in this chapter. I examined all 7

cases in detail. Each case can be attributed to subtle logic errors. In each case, there are no

other access control patterns one can compare to. It is not surprising that logic errors are

unavoidable in a large complex application. Thus, there is unlikely to ever be an automated

method to identify all access control vulnerabilities. The best industry practice to discover

logic errors is still through manual code reviews [44].

ASIDE-PHP can offer useful assistance to manual code reviews by saving annotations in

the IDE. First, through interactive annotation, it encourages developers to self-review the

code. They may be able to detect and quickly correct access control vulnerabilities even in

cases where the access control code pattern is not repeated. Second, interactive annotation

58

can reduce the cost of manual code review by capturing developer’s design rational and

helping a reviewer to highlight access control concerns during code review. It can help

reviewers zoom in on critical parts of the code quickly. It can also be incorporated into a

team development environment where peer review of critical access control logic can be

tracked to reduce human errors.

In addition to new projects, interactive static analysis can be applied effectively to projects

with a large legacy code base as well. Developers will be requested to provide interactive

annotations either upon addition of new code, or modifications of existing code. Such

annotations can be used to trigger automatic annotation and detect vulnerabilities in the

legacy code.

Interactive static analysis is not without challenges, including: (a) how to motivate de-

veloper adoption, and (b) how to deal with annotation errors, which may be unavoidable.

Developer adoption should be addressed first by designing a tool that is easy to use and

provides the least possible disruption to developer’s normal workflow. For example, in

Section 5.4 I illustrated that unnecessary developer interruption could be minimized. There

is a strong incentive for organizations to adopt a low cost and effective secure programming

tool, and influence their developers to use it.

While developer input is the most reliable source of application knowledge, human er-

rors are unavoidable. Incorrect annotations may lead to false negatives. My prototype

implementation does not contain any mechanism to account for human errors. A number

of strategies may be used to detect human errors, including:

Identify omissions. I observed that access control checks for different SSOs often have

shared parts. So if a term (e.g. a Boolean expression or function call) which has been part

59

of an annotation for an access control check for one SSO and is not part of an annotation

for another SSO even though it is along an execution path from a program entry point, this

may be pointed out as a possible annotation omission.

Peer review. An annotation may be reviewed by a second developer working on related

pieces of code.

It is important to remember that vulnerabilities found by any tool ultimately are sub-

ject to the review of a developer. Final actions depend on the developer, the same people

interactive analysis relies on for providing interactive annotations.

5.6 Comparison with Commercial Static Analysis Tools

Writing custom rules is the approach adopted by most commercial static analysis tools,

such as Fortify SCA [25]. I take the code snippet shown in Listing 15 as an example and

write a custom rule, in Fortify SCA, for its access control requirements. The security sensi-

tive operation $DB->insert record() requires the access control check require permission()

before its execution. To write an access control custom rule for it, one first needs to model

this requirement as a finite state machine, as shown in Figure 13. Each box represents a

state; each arrow represents a transition between two states triggered by certain code pat-

terns. In this example, the program must be in the checkState state before the security

sensitive operation can be carried out securely. BrokenAccess represents the state when a

broken access control vulnerability occurs, upon which Fortify SCA will report a warning.

With this model in mind, one can write a custom rule as illustrated in Listing 16 where one

first defines all the states shown in Figure 13 and then defines the transitions between the

states.

60

Figure 13: Finite state transition machine for the control flow.

Listing 15: Example code snippet with SSO and control check

require permission() ;

$DB−> i n s e r t r e c o r d () ;

This example illustrates the disadvantage of writing custom rules, in that it requires

learning of new concepts and specification languages. Such training is unlikely to be widely

available for average developers. This type of analysis is typically performed by software

security experts collaborating with developers who would provide the required application

specific knowledge. Such an arrangement contributes to the high cost of writing custom

rules.

Listing 16: A custom control flow rule for Fortify SCA

<C o n t r o l f l o w R u l e f o r m a t V e r s i o n =” 3 . 2 ” l a n g u a g e =”PHP”>

<VulnCa tegory>Broken Access C o n t r o l< / Vu lnCa tegory>

<!−− F u n c t i o n d e f i n i t i o n s f o r r e q u i r e p e r m i s s i o n ,

i n s e r t r e c o r d are o m i t t e d −−>

<D e f i n i t i o n><! [CDATA[

s t a t e s t a r t S t a t e (s t a r t) ;

61

s t a t e c h e c k S t a t e ;

s t a t e s e n s i t i v e S t a t e (e r r o r) ; <!−− BrokenAccess −−>

s t a r t S t a t e −> c h e c k S t a t e { r e q u i r e p e r m i s s i o n () }

s t a r t S t a t e −> s e n s i t i v e S t a t e { i n s e r t r e c o r d () }]]>

< / D e f i n i t i o n>

< / C o n t r o l f l o w R u l e>

CHAPTER 6: PRIVILEGE ESCALATION DETECTION USING APPLICATION
SENSORS

Current intrusion detection systems (IDS) are primarily based on network traffic sen-

sors. Network-based IDS are not aware of the application context and are unable to detect

stealthy attacks on high value application targets. For example, a web-based application

using https for transport may be subject to privilege escalation attacks. Network sensors

cannot effectively detect such attacks or subsequent leakage of information. Privilege es-

calation attacks, however, can be detected by application sensors reporting events of failed

access control checks. Most successful attacks do not succeed on the first try. Attackers

typically go through a process of reconnaissance and exploration. Thus failed attempts pro-

vide valuable clues to detect on-going attacks and enable preemptive actions (e.g., revoked

compromised credentials).

Intrusion detection based on application events has been used before in customized sit-

uations. For example, account lockout due to repeated failed login attempts is a type of

application-based intrusion detection and prevention. IDS based on application sensors is

different from Web Application Firewalls (WAF) [76] in that WAF treats the application as

a black box, and thus will not be effective at detecting privilege escalation attacks. Applica-

tion sensors are embedded within the application itself and can provide application context

information. Watson et. al. [89] proposed to use application sensors to detect attacks

through malicious input. They developed a framework where application sensors report

63

malicious input events to a centralized monitoring system where events can be correlated

to detect attacks. However, no research has addressed how to automatically instrument

applications with sensors for intrusion detection.

Relying on developers to manually insert application sensors is unlikely to lead to wide

adoption. First, inserting sensors is extra effort that is not part of the application specifica-

tion and that will add to the work load of the developers, both in terms of programming and

testing to make sure the added sensor does not change application functions. Second, as

part of normal application maintenance, application sensors must be updated and tested to

make sure they are in sync with relevant application logic. I believe that developers should

be focused on developing applications (and practice secure programming!). Instrument-

ing application sensors should be (a) done in an automated way, (b) without changing the

intended functions of the application, and (c) having minimal performance impact.

For the rest of the chapter I describe an approach that can automatically instrument a

web-based application to detect privilege escalation attacks. This is accomplished in two

steps. First I describe an approach to identify candidate web pages to insert application

sensors to detect failed attempts to access sensitive information. I evaluate this approach

based on two open source applications. Second, I present a model, based on analysis of

six open source applications, on how to automatically insert application sensors without

impacting application logic.

6.1 Related Works

In this section, I will mainly survey related work in intrusion detection.

NIST [29] defines intrusion as an attempt to compromise the confidentiality, integrity,

and availability, or bypass the security protection mechanism for a computer system or

64

network. Intrusion detection system (IDS) [29] is defined as the system monitoring and

analyzing the events happening on the computer or network to detect signs of intrusions.

IDSs detect intrusion mainly based on three methodologies: signature-based detection,

anomaly-based (behavior-based) detection, and stateful protocol analysis (specification-

based). The focus of the related work in this chapter is not to survey and compare literatures

based on their detection methodologies, but to survey literature on IDSs based on where

the IDSs are deployed and the types of events or activities toward which the detection

methodologies are applied.

Based on where they are deployed and what events or activities they monitor and capture,

IDS could be categorized into four types, host-based IDS, network-based IDS, wireless-

based IDS, and mixed IDS. A host-based IDS monitors and captures suspicious host ac-

tivities and host characteristics for severs running services, and hosts containing sensitive

information [62]. A network-based IDS monitors and captures network traffic at specific

network segments via sensors and analyzes them to detect suspicious incidents [62]. A

wireless-based IDS is similar to network-based IDS, the only difference is that it monitors

and captures wireless network traffic, such as wireless sensor network traffic, etc. Mixed

IDS is a type of IDS that adopts multiple different types of IDS to achieve more accurate

detection, for example, adopting network-based IDS and host-based IDS together.

There has been extensive research on host-based IDS and network-based IDS. Research

works [28, 38, 39, 56, 72, 84, 59] are host-based IDSs, which monitor and capture host

characteristics such as usage of disk and memory. Research works [28, 38, 39, 56, 72, 84,

59, 27, 35, 42, 45, 52, 53, 55, 61, 64, 69, 74, 88, 96, 78] are network-based IDSs, which

monitor and capture network traffic, such as network packages and sequence of commands.

65

Although the four types of IDSs are useful in detecting some common intrusions, none

of them are effective in detecting application specific attacks, because they are unable to

captures the application context information. To achieve application layer intrusion de-

tection, there have been very few research efforts. One way of application layer intrusion

detection is through a Web application firewall (WAF) [76]. WAF acts as a filter and applies

preconfigured rules to an HTTP conversation. It is a generic attack detection mechanism, it

is able to detect common actions of a known attack sequence such as basic SQL injection or

cross-site scripting attacks. However, because it has no insights about application specific

traffic, it is unable to detect many application specific attacks, and thus it is not a sufficient

prevention approach for critical high value applications, such as financial applications.

As another way of application layer intrusion detection, Watson et. al. [89] proposes

to use application sensors to detect attacks. Their tool puts sensors inside the application

and obtains application context information so that it is able to detect application specific

attacks. OWASP AppSensor [90] provides a reference implementation of sensors to detect

intrusions based on inputs, which requires developers to manually put those sensors code

in places that need sensors. Requiring developers to manually write sensor code would

prevent wide adoption. Little research has been performed toward how to instrument those

application sensors. In this chapter, I discuss using application sensors to detect privilege

escalation attacks, and focus on automatically instrumenting application sensors. I provide

an approach on automatically placing application sensors via interactive static analysis.

6.2 Privilege Escalation Detection Based on Application Sensors

Privilege escalation is a common attack against high value applications such as financial

management, human resource, and electronic medical records by exploiting application

66

vulnerabilities. Previous research efforts have been focused on secure coding [51, 98, 93,

34] to reduce vulnerabilities. However it is impossible to eliminate software vulnerabilities

as no software of any complexity can be expected to be bug free. My focus is to place

sensors inside an application to report failed attempts to gain access to protected resources.

Such events are good indicators for a privilege escalation attack. In the physical world,

this is analogous to a security guard identifying a suspicious individual attempting to gain

access to a high security building. Application-based intrusion prevention has a richer

range of responses than a typical network counterpart, e.g. account lockout and process

termination, to stop the attacker before he succeeds in finding an exploitable vulnerability.

This is because the application sensors can provide detailed application context, such as

the login credential of a potential attacker.

However not all access failures reliably signal attacks. For the rest of discussion, I as-

sume the application is web-based. In a web-based application a typical user navigates

application functions by following links and menu items. For example an application may

require users to login before writing comments. However, a comment link is always avail-

able on web pages even if the user has not logged in. Clicking on the comment link will

lead to an access control failure but it is not indicative of an attack.

Forced browsing is defined as an action where a subject visits a web page without fol-

lowing available links and menu items. Forced browsing is often associated with privilege

escalation attacks [85], because the attacker is actively looking for an access control vul-

nerability. My approach is to place application sensors to detect forced browsing events to

detect privilege escalation attacks.

It should be pointed out that there are scenarios where an innocent user may exhibit

67

forced browsing behavior. The most common case is a user refreshing a page after session

expiration. False alarms are unavoidable in IDS systems and can be minimized by consid-

ering context information. For example malicious forced browsing differs from innocent

cases in that an attacker often attempts forced browsing on multiple pages over a short

period of time. The focus of this chapter is automatic placement of application sensors. I

leave improving accuracy of intrusion detection for future work.

The focus of this research is to insert application sensors into web-based applications

to detect forced browsing events. I assume the application is developed in an environment

where secure software development is a priority in that serious efforts are made to minimize

software vulnerabilities. By relying on interactive static analysis proposed in Chapter 3,

a reliable set of access control checks are captured through interactive code annotation.

I use an example from the open source course management application Moodle [71] to

illustrate key concepts. A Moodle chat room is created by a teacher for a specific course.

Only logged-in users with required chat capability should send messages to the chat room.

Listing 17 shows a code snippet from Moodle. The example involves two Moodle database

SSOs: INSERT to chat messages and chat message current.

Listing 17: Example code snippets from Moodle. Access control checks are shown in

italics

require login($course, false, $cm) ;

i f (isguestuser()) {

p r i n t e r r o r (’ n o g u e s t s ’ , ’ c h a t ’) ;

}

68

Figure 14: Explanation for interactive annotation.

i f (! $ c h a t s i d = c h a t l o g i n u s e r ($cha t−>id , ’ s o c k e t s ’ ,

$g roup id , $ c o u r s e)) {

p r i n t e r r o r (’ c a n t l o g i n ’) ;

}

The developer is prompted at the line of code where SSOs are called, as shown on

line 50 in Figure 14. Following the instruction, the developer performs the annotation

by highlighting the code containing the intended access control logic as shown in Figure

15 (lines 27 and 29 in green). Through this process, a reliable set of access control checks

are captured via point-and-click interaction, which is easy for developers to use.

6.2.1 Determining Candidate Webpages to Place Application Sensors

Figure 16 shows part of a sitemap for Wheatblog, an open source PHP application. A

sitemap shows possible navigation paths by following links inside web pages. It is a di-

rected graph where each node is a web page. A link from page C to D is a conditional

link if this link is displayed on page C pointing to D only if certain access control checks

are satisfied. They are shown as dashed links in Figure 16. Conditional links are often

found in an index page where links pointing to pages accessing sensitive information are

69

Figure 15: Developer annotated access control checks, highlighted in green.

displayed after the user has been authorized. In other words web applications often ”hide”

links to pages accessing sensitive information until the access control credential of the user

is checked first. Because web-applications are multi-entrant, access control checks must be

repeated in every page accessing sensitive information to prevent forced browsing attacks.

An unconditional link from page A to page B means there is a web link displayed in page

A referring to page B without the need to satisfy access control checks. They are shown as

solid links in Figure 16.

Web applications are built with intended execution paths. Intended starting pages (typi-

cally files named index.php in various directories), are assumed to be provided as input to

constructing the sitemap [85]. For example, in Figure 16, index.php and admin/settings.php

70

Figure 16: Part of the sitemap of Wheatblog (some pages are omitted as ellipsis due to
page limit).

are entry pages. The dashed box in Figure 16 indicates a set of pages that are candidates for

placing application sensors for forced browsing. This is because each page has at least one

SSO and it cannot be reached from an entry point via a path consisting of unconditioned

links. That is to say, links to pages in the dashed box are protected by access control logic.

I will describe how to identify conditional links in the next subsection. Therefore access

control failure reports by application sensors in these pages are good indications of forced

browsing.

The whole process of identifying candidate pages for sensor placement consists of the

following steps. The first step is to construct a rough site map by extracting links from the

source files. I call it a ”rough” sitemap because the sitemap at this stage does not distinguish

conditional vs. unconditional links. Second, identify conditional links that are displayed

based on some access control conditions. Third, identify candidate pages to place sensors.

Input to this process includes: (a) a set of SSOs, (b) a set of access control checks for each

SSO, (c) all web page source files (.php files), and (d) a set of entry web pages.

71

6.2.1.1 Rough Sitemap Construction

A PHP file refers to a file with .php extension. A PHP file may contain function defi-

nitions as well as PHP executable program. Some PHP files contain function definitions

only. Such a file is not a web page and its role is to define shared functions. A PHP web

page is a PHP file with a PHP executable program that is not part of any function definition.

Execution of a PHP web page starts with the first statement in the file that is not part of a

function definition.

The most complex part of building the sitemap is extracting links out of web pages

because finding the link target of an HTML output string is a non-trivial task. Based on PHP

library function calls for output, such as ’echo’ and ’print’, I could locate the HTML output

strings. For example, Listing 18 and Listing 19 show example code snippets displaying

a web link. For both examples, I use regular expressions to match and locate the HTML

anchor, form, frame tags, etc. Listing 18 represents a static link, pointing to editsession.php.

Listing 19 represents a dynamic link, because $lang is a string variable. Identifying its

target involves resolving string variable $lang, which is a complicate task. Sun et. al. have

looked into this problem and have come up with an approach that can detect many types

of dynamic links [85]. I leverage the link extraction algorithm proposed by [85] to obtain

the link targets of all the links in the web page, details of the link extraction algorithm

are described in [85]. The rest of the algorithm follows a fairly standard graph building

process. It should be noted that the sitemap is represented as a multigraph as it is possible

to have parallel links in one page pointing to another page.

Listing 18: Static link example from SCARF.

72

p r i n t ”<a h r e f = ’ e d i t s e s s i o n . php ’>(e d i t) ” ;

Listing 19: Dynamic link example.

p r i n t ”<a h r e f =” . $ l a n g . ” . ” php>Anchor ” ;

I use an example adapted from Wheatblog shown in Figure 16 to illustrate the algorithm.

The first step of the sitemap construction is to put all known entry pages into a worklist

queue. Then I pick a node from the worklist queue, suppose it is index.php. If the node

has not been processed before, I use the approach by Sun et. al. [85] to extract all links

from a PHP webpage. This process will return tuples (index.php, admin/edit post.php)

and (index.php, admin/delete post.php). For page nodes with no links identified on it,

tuples (nodes,) will be returned, represents null. Tuples representing links to web pages

outside the application are filtered. After the filtering step, these tuples will be added to

the sitemap. Nodes admin/edit post.php and admin/delete post.php will be added to the

worklist. I remove index.php from the worklist and add it to the visited set to prevent

processing it again. This process continues until the worklist is empty.

6.2.1.2 Identify Conditional Links

As mentioned in the interactive static analysis in chapter 3, access control checks could

be either Boolean expressions or function calls that could throw exceptions or terminate the

execution. I consider the following types of Boolean expressions:

(a) Boolean expression in if-branch. E.g. if(expr), elseif(expr).

(b) Boolean expression in switch-branch. E.g. switch(expr) case expr1: ... ; the Boolean

expression is expr == expr1.

73

Listing 20 shows an example code snippet in which Boolean expression $ SESSION[’lo-

ggedin’] != null is the access control check. Listing 21 shows an example in which a

function call require loggedin() is the access control check, and require loggedin() is a

function that may cause the execution to terminate. Some access control checks could be

part of the WHERE clause in SQL statements. I did not include these cases in my proof

of concept evaluation. Monshizadeh et al. [70] has developed an approach to work with

access control code in SQL statements and that can be integrated with my approach.

Listing 20: Example code of Boolean expression as access control check shown in italic

i f ($ SESSION[’loggedin’] != null) {

query (”INSERT INTO comments ”) ;

}

Listing 21: Example of function call as access control check shown in italic

require loggedin() ; / / may cause e x e c u t i o n t o t e r m i n a t e

query (”INSERT INTO comments ”) ;

A PHP execution sequence can be changed by either particular PHP library function

calls that terminate the execution of current program, such as exit() or die(), or by throwing

of exceptions. I collectively refer to these function calls as function calls with abnormal

return code. When considering exceptions, all subclasses of the PHP class Exception must

be considered. For example, in Listing 22 function print error() abnormally returns the

execution by throwing a moodle exception, a developer-defined subclass of Exception.

74

Listing 22: print error() is abnormal return code in Moodle.

f u n c t i o n p r i n t e r r o r ($ e r r o r c o d e , $module = ’ e r r o r ’ , $ l i n k =

’ ’ , $a = n u l l , $ d e b u g i n f o = n u l l) {

th row new m o o d l e e x c e p t i o n ($ e r r o r c o d e , $module , $ l i n k , $a ,

$ d e b u g i n f o) ;

}

Extract Security Critical Variables from access control checks

Ultimately access control checks rely on the values of the program variables involved in

these checks to make the determination. For example in Listing 23 $ SESSION[’privilege’]

== ’admin’ is an Boolean expression access control check. It relies on the value of the

variable $ SESSION[’privilege’] to determine whether it returns TRUE or FALSE, which

then determines whether the SSO will be executed.

Listing 23: Example of Boolean expression as access control check

i f ($ SESSION[’privilege’] == ’admin’) / / a n n o t a t e d check

query (”DELETE FROM s e n s i t i v e t a b l e ”) ; / / SSO

A variable is regarded as involved in an access control check if the variable impacts

the control flow leading to the execution of an SSO. Listing 24 shows an example of sev-

eral annotated access control checks for one SSO, two of them are Boolean expressions,

$ SESSION[’user’] == null and $reviewable, and one is function call require permission()

with abnormal return code. Listing 25 shows the definition of require permission(). So by

75

analyzing the inter-procedural data and control flow related to the three checks, variables

involved in them include: global variable $reviewable which is declared outside a function

and can be accessed outside a function or accessed within a function with global keyword;

super-global variable $ SESSION[’permission level’] and $ SESSION[’user’] are always

available in all scopes and can be accessed without using the keyword global; local variable

$permission level which is declared within a function and can be only accessed within the

function.

Not all variables involved in access control checks serve security functions. Some of

them may relate to application flow, for example, passing value from one variable to another

variable. $permission level is just passing the value from $ SESSION[’permission level’]

so that the value of $ SESSION[’permission level’] could be compared with null or 0,

shown as $permission level == null, $permission level >0. The variables hold the autho-

rization or authentication state throughout the program are $ SESSION[’permission level’],

$ SESSION[’user’] and $reviewable, which are regarded as access control related. Based

on my studies of six open source PHP projects, it is observed that in PHP web applica-

tions authentication or authorization state information is usually held by untainted global or

super-global variables, and access control decisions rely on values held by those global and

super global variables. In the examples shown in Listings 23, 24, 25, SESSION state vari-

ables $ SESSION[’privilege’], $ SESSION[’permission level’], and $ SESSION[’user’] are

trusted super-global variables; $reviewable which obtains its data from a type of trusted

data source, database, is a trusted global variable.

Listing 24: Example of multiple access control checks for one SSO

76

i f ($ SESSION[’user’] == null) / / a n n o t a t e d check

e x i t () ;

require permission() ; / / a n n o t a t e d check

$ r e v i e w a b l e = mysql query (”SELECT r e v i e w a b l e FROM ” .

REVIEWS TABLE . ”) ;

i f ($reviewable) { / / a n n o t a t e d check

query (”INSERT INTO REVIEWS TABLE . ”) ; / / SSO

}

Listing 25: Definition of require permission().

f u n c t i o n r e q u i r e p e r m i s s i o n () {

$ p e r m i s s i o n l e v e l = $ SESSION [’ p e r m i s s i o n l e v e l ’] ; / / da ta

from super−g l o b a l v a r i a b l e

i f ($ p e r m i s s i o n l e v e l == n u l l)

e x i t () ;

i f ($ p e r m i s s i o n l e v e l > 0)

r e t u r n ;

e l s e

e x i t () ;

}

I define a security critical variable as follows:

(1) It is directly or indirectly referenced by an access control check through inter-procedural

77

data flow chain.

(2) It is either a global or super-global variable.

(3) It is a trusted variable, that is not tainted by data from an untrusted data source such

as user input (e.g. super global variables $ POST and $ GET represents user input, and

they are not trusted variable).

For example, function call require admin() is an identified access control check for SSOs

in web application SACRF. Listing 26 shows the definition of it, and as a related func-

tion is admin() is shown in Listing 27. There exists a reference chain: require admin()

->is admin() ->$ SESSION[’privilege’], and thus, the security critical variable extracted

from require admin() is $ SESSION[’privilege’] because it indirectly references the vari-

able $ SESSION[’privilege’], which is a super-global variable and is regarded as trusted

data and not tainted. There are other identified access control checks for SSOs in SCARF, I

simplify the case for the sake of illustration, and suppose the set of identified access control

checks for SSOs in SCARF, the set of security critical variable is {$ SESSION[’privilege’]};

Listing 26: require admin() declaration in functions.php in SCARF.

f u n c t i o n r e q u i r e a d m i n () {

i f (! i s a d m i n ())

d i e (”You don ’ t have a c c e s s t o view i t ”) ;

}

Listing 27: is admin() declaration in functions.php in SCARF.

f u n c t i o n i s a d m i n () {

78

i f ($ SESSION [’ p r i v i l e g e ’] == ’ admin ’) r e t u r n TRUE ;

e l s e r e t u r n FALSE ;

}

Listing 28 gives another example to illustrate Boolean expressions as the identified ac-

cess control check for SSOs and the taint propagation involved in the process to deter-

mine whether the variable is trusted or tainted. The identified access control check is

Boolean expression $user level == ’Admin’ && $action ==’deleteAll’. There exist data

flow reference chains from the check, $user level == ’Admin’ && $action ==deleteAll’ -

>$user level ->$ SESSION[’user level’] and $user level == ’Admin’ && $action ==’dele-

teAll’ ->$action ->$ GET[’action’]. So initially, the set of variables obtained is $user level,

$action, $ SESSION[’user level’], $ GET[’action’]}. Then in order to obtain the security

critical variables, first, I remove the variables that are not global or super-global variables,

so variables $user level, $action are removed; second, I further remove global variables that

capture untrusted data, because $ GET[’action’] is data from user input and it is widely re-

garded as a tainted source, $ GET[’action’] is removed. Then the obtained set of security

critical variables is {$ SESSION[’user level’]};

Listing 28: Example of Boolean expression as access control check

$ a c t i o n = $ GET [’ a c t i o n ’] ;

$ u s e r l e v e l = $ SESSION [’ u s e r l e v e l ’] ; / / da ta from g l o b a l

v a r i a b l e s

i f ($user level == ’Admin’ && $action ==’deleteAll’) / / a n n o t a t e d check

79

query (”DELETE FROM s e n s i t i v e t a b l e ”) ; / / SSO

Determining conditional links

For each link in the sitemap, I determine whether it is displayed conditioned upon some

access control checks. I make this determination based on the observation that access

control logic used to determine displaying of the link share security critical variables, such

as global session variables, with access control logic for SSOs. Since the access control

checks for SSOs have already been identified via interactive code annotation, my approach

is to analyze the source code to look for whether conditions placed upon displaying links

share the same security critical variables as access control checks for SSOs.

Given all the links in an application and the identified access control checks for SSOs,

steps to identify conditional links are summarized in the following,

1. Extract a set of security critical variables from the set of identified access control

checks for SSOs, referred to as SCV ssos.

2. For each link l given,

(a) First, identify all potential access control checks for displaying of the link (de-

tailed in next paragraph), referred to as a set of potential control checks for the

link.

(b) Second, extract a set of security critical variables from the set of potential con-

trol checks for the link, referred to as SCV link l.

(c) Third, compare SCV link l with the set of security critical variables for SSOs

SCV ssos, if the two sets share one or more elements (variables), then the link

80

is regarded as a conditional link.

Identify all potential access control checks for displaying of a link

Potential access control checks for displaying of a link include, (1) Boolean expres-

sions being the condition for conditional branches that determine whether the code for

displaying of the link will be executed, and (2) function calls that contain one or more

such conditional branches. Inter-procedural control dependence analysis is performed to

find conditional branches that determine whether the code for displaying of the link will

be executed. Boolean expressions being the condition of such conditional branches are

added into the set of potential access control checks; in addition, function calls that contain

one or more such conditional branches are also added into the set. Listing 29 shows an

example from application SCARF, the if-branch if(is admin()) determines whether the link

displaying code will be executed, so Boolean expression is admin() is added into the set of

potential access control checks.

Listing 29: Example in showsessions.php in SCARF.

i f (i s a d m i n ()) {

p r i n t ” <a h r e f = ’ e d i t s e s s i o n . php ’>(e d i t) ” ;

}

Suppose the set of potential access control checks for displaying of the link ’editses-

sion.php’ is {is admin()}, the definition of is admin() is shown in Listing 27. Then by

following step 2.(b) of the process, the set of security critical variables for displaying

of the link ’editsession.php’, SCV editsession.php is {$ SESSION[’privilege’]}. Then

81

SCV link editsession.php shares an element (variable) $ SESSION[’privilege’] with the

set of control checks for SSOs SCV ssos which is {$ SESSION[’privilege’]}. And thus

is admin() is considered as a valid check, and the link ’editsession.php’ shown in Listing

29 is considered as a conditional link.

6.2.1.3 Identify Candidate Pages

Based on the rough sitemap constructed in Section 6.2.1.1 and the set of conditional

links identified in Section 6.2.1.2, a candidate web page for inserting application sensors is

a web page satisfying the following conditions: (1) the page has at least one SSO, and (2)

there does not exist any navigation paths from any entry page to it with only unconditional

links.

The process of identifying candidate pages is straightforward, based on the set of condi-

tional links, I tag all the links on the rough sitemap as either conditional or unconditional,

and transform the sitemap into a weighted graph. Then the problem of identifying a candi-

date page is equivalent to the problem of identifying pages with SSOs to which the shortest

paths from any entries are weighted larger than a threshold. In Figure 16, all page nodes

with a star on its top right are pages with SSOs; six pages in the dashed box are identified

as candidate pages.

6.2.2 Evaluation Results

I performed a proof-of-concept evaluation using two PHP open source projects Wheat-

blog and SCARF that were used in previous research [85, 83, 81, 37, 43, 70]. Wheatblog is

a blogging application with over 4000 lines of code. SCARF is a conference paper discus-

sion forum with over 1300 lines of code. I applied all fixes to all known vulnerabilities in

these projects. I seek to answer the following questions: (a) what are the likely false pos-

82

Figure 17: Admin/add link.php is a candidate page.

itive scenarios for inserted application sensors: i.e. a forced browsing event is incorrectly

detected; and (b) false negatives: a forced browsing event is not identified by the approach

outlined in Section 6.2.1.

Table 12 and Table 13 summarize my results for Wheatblog and SCARF respectively.

Each row represents a page, e.g. the web page in row 3, admin/add post.php, has one

SSO; page 17 has an unconditional link pointing to it, pages 10-14 and 18 have conditional

links pointing to it. Pages identified as a candidate for insertion of application sensors are

shown in italics. Figure 17 shows a part of the constructed sitemap. Dashed links represent

conditional links, solid links for unconditional links, and dashed box represents pages with

SSO. From the figure, one can see that admin/add link.php is a candidate page, because

one cannot navigate to it using unconditional links.

Page admin/add post.php, on row 3, on the other hand is not a candidate page because

it is pointed to by entry pages admin/index.php. This means an unauthorized user could

access admin/add post.php by clicking a visible link on page admin/index.php.

Among all the 14 pages with SSOs, 10 pages are considered as candidate pages for

putting sensors by the algorithm described in Section 6.2.1. The results for SCARF are

similarly reported below, with 4 candidate pages out of 14. All candidate pages re-quire

administrative privileges and are ”hidden” behind administrative login pages.

The accuracy of the algorithm described in Section 6.2.1 can be evaluated based on its

false positives and false negatives. A false positive is when I mistakenly identify a page

83

Table 12: Wheatblog results (Candidate pages in italic).

No. PHP executable file
Num of Pages having Pages having

SSOs in it unconditional conditional
links to it links to it

1 admin/add category.php 1 12
2 admin/add link.php 1 13
3 admin/add post.php 1 17 10-14, 18
4 admin/delete category.php 1 12
5 admin/delete comment.php 2 10
6 admin/delete link.php 1 13
7 admin/delete post.php 1 15,19
8 admin/edit categories.php 1 12
9 admin/edit comment.php 1 10
10 admin/edit post.php 0 5,15,19
11 admin/edit post 002.php 1 10
12 admin/manage categories 0 17 4,8,10-14,18
13 admin/manage links.php 0 17 2,6,10-14,18
14 admin/manage links 002.php 1 13
15 admin/manage posts.php 0 17 7,9-14,18
16 admin/manage users.php 3 17 10-14,18
17 admin/index.php 0 Entry page Entry page
18 includes/header.php 0 3,5,10,11,17,19-25,27-29 12-16,26,30
19 index.php 0 Entry page Entry page
20 add comment.php 2 21
21 view by permalink.php 0 19,20,22-24
22 view by category.php 0 18,19,21,23,24,27 15
23 view by archive.php 0 25 26
24 view by title.php 0 18
25 archive.php 0 26
26 update archive.php 0 Entry page Entry page
27 list category.php 0 Entry page Entry page
28 registration.php 0 18
29 view links.php 0 Entry page Entry page
30 admin/settings.php 1 Entry page Entry page

as only reachable by conditioned links (i.e. one must first be authorized before accessing

the page). Such a situation could occur, for example, due to inaccuracy of my approach to

identify conditioned links. I examined all candidate pages in Tables 12 and 13 and did not

find any such case.

False negative refers to situations where a forced browsing event would be missed. I

examined every page in Wheatblog and SCARF and, based on the intended application

function, determine whether a forced browsing attack could occur on the page. I found

two cases in SCARF, as illustrated in Figure 18. In both cases, the condition used to check

whether a link should be displayed has no relation with code written for access control for

the SSO. These are indicated by a marked link in Figure 18. Page 10, index.php, checks

84

Table 13: SCARF results (Candidate pages in italic).

No. PHP executable file
Num of Pages having Pages having

SSOs in it unconditional conditional
links to it links to it

1 editpaper.php 8 7-9
2 addsession.php 1 7
3 editsession.php 6 9
4 useroptions.php 3 7 5
5 comments.php 3 8 7
6 generaloptions.php 3 7
7 header.php 0 1-6,8-14
8 showpaper.php 0 9 1,3
9 showsessions.php 0 3,12
10 index.php 0 Entry page Entry page
11 fogot.php 0 12
12 login.php 0 5,7
13 install.php 0 10
14 register.php 0 7,10,12

to make sure an administrative account has been created before displaying links to pages 7

and 9. These are false negatives only for an uninitialized system. As soon as the system is

initialized, they are not false negatives.

6.2.3 Automatic Sensor Insertion

Access control checks for SSOs in six open source PHP applications are summarized in

Table 14. For example, SCARF has 24 instances where SSOs are invoked. For each SSO

invocation I identified the corresponding access control code. All 24 access control checks

are function calls with abnormal return code. In contrast all 21 access control checks in

Wheatblog involve conditional statements. Based on analysis of these empirical results, I

create a model for automatic insertion of application sensors as described below.

Various information could be captured by sensors by calling APIs or retrieving global

variables. For example, in PHP, a session id could be obtained by calling session id(),

client host and IP address could be obtained by retrieving from global variable $ SERVER.

The sensor could also provide a serialized object for session content along with time and

date stamps. For the rest of the chapter, I focus on how to insert an application sensor into

85

Figure 18: Two pages with SSOs (dashed circle) but not considered candidate in SCARF.

Table 14: Summary about access control checks made in open source projects.

Project LOC Description

Num of Access Access control
access control check is function
checks check is call with
made conditional abnormal

statement return code

SCARF 1,318 Conference discussion 24 0 24forum for papers
Wheatblog 4,032 Blogging system 21 21 0
FreeWebShop 8.613 Online store 56 56 0
Mybloggie 8,874 Blogging system 18 18 0

PhpStat 1.5 12,700 Application presenting 30 30 0IM statistics
Moodle2.1.0 625,000 Course management 166 64 102

a piece of access control check code to report the event of the access control failure. This

must be in done in such a way that does not impact the normal application flow. For this

purpose, I use the function call sensor() to denote such an application sensor.

Since application sensors are used to capture failure events of access control checks, they

should be placed on all execution paths other than the path leading to execution of the SSO.

As described in previous section, access control checks could be Boolean expressions or

function calls with abnormal return code. Among Boolean expressions, there are Boolean

86

expressions in if-branch, or switch-branch. I did not observe any access control checks

involving iteration logic. I first describe sensor insertion for Boolean expression access

control checks, then for function call access control checks.

6.2.3.1 Sensor Insertion for Boolean Expression Access Control Checks

I illustrate the sensor insertion through examples. Figures 19, 20, 21 show code examples

for different cases when the SSO stays in if-branch, if-elseif branch, and switch branch. The

left side of each figure is the code before sensor insertion, in which access control check is

in italics, the right side is the code after sensor insertion, in which the newly inserted code

is shown in bold. In all these cases, sensors are put on the paths other than the execution

paths leading to the SSO. For example, in Figure 20, three different cases exist for where

the SSO stays within the if-elseif-branch, each row in the figure represents a case, case

1 means access control is granted if Boolean expression condition a evaluates to true, and

after sensor insertion, sensors have been put into all branches other than the execution paths

leading to the SSO, and during the process an explicit else branch is created to enable the

insertion.

6.2.3.2 Sensor Insertion for Function Call Access Control Checks

I illustrate the sensor insertion for this case through an example adapted from SCARF.

Figure 22 shows the code example before sensor insertion, in which the access control

check is in italics and abnormal return code is marked with comments; Figure 22 shows

the code examples after sensor insertion, in which the newly inserted code is shown in

bold. Since access control check require login() dominates the path flowing to the SSO,

access control failure is represented by the abnormal return of the access control function,

require login(). This means application sensors should be inserted in the require login()

87

Figure 19: Sensor insertion for If-branch.

right before the abortion of normal execution path, as shown in Figure 22. There may exist

multiple abnormal returns, each needs to be instrumented with a sensor. There might be

further function calls in the definition of function require login(), whose definition contains

abnormal return code and needs to be analyzed. But the general analysis process is the

same.

88

Figure 20: Sensor insertion for If-Elseif-branch.

89

Figure 21: Sensor insertion for Switch-branch.

90

Figure 22: Sensor insertion for function call with abnormal return code.

CHAPTER 7: CONCLUSION AND FUTURE WORK

Software vulnerabilities have become increasingly pervasive targets for attackers and

result in severe data and financial loss to organizations and individuals. One leading source

of software vulnerabilities is the insecure code written by developers. Although many of the

vulnerabilities could be addressed through secure programming practices and there have

already been a collection of secure programming practices well documented, developers

continue to make same mistakes. With the rapidly growing complexity of software, security

bugs are difficult to avoid.

7.1 Summary of Contributions

This dissertation presents a generalized framework, interactive static analysis, a developer-

oriented hybrid model for vulnerability detection and mitigation, which integrates static

analysis into the Integrated Development Environment (IDE) as a plug-in, facilitating two-

way interaction between static analysis and developer. Developers are not required to have

any knowledge of static analysis, nor are they security experts. The goal of this approach

is to assist developers in detecting and mitigating vulnerabilities during code construction

phrase and solicit application specific knowledge from the developer to customize static

analysis. In particular, I focus on using this approach for detecting access control vul-

nerabilities. This approach also enables automatic placement of application sensor for

application based intrusion detection.

Focusing on access control vulnerability detection, this dissertation found some unrea-

92

sonable implicit assumptions of previous research techniques to automatically detect access

control vulnerabilities, which significantly limit the performance of the auto detection tech-

niques, such as leading to large false negatives. This is demonstrated through studying six

open source PHP web applications. It argues that a hybrid approach, such as interactive

static analysis, is a much more reasonable approach for detecting access control vulnera-

bilities.

This dissertation presents an interactive static analysis prototype for access control vul-

nerability detection as a plug-in in Eclipse PHP IDE [19], called ASIDE-PHP (Application

Security plug-in for the Integrated Development Environment for PHP). It describes an ex-

tensive evaluation of the prototype with six open source PHP web applications including a

large project named Moodle [71]. In addition to finding all access control vulnerabilities

detected by previous work, it found 20 zero-day access control vulnerabilities.

Based on the interactive static analysis framework, this dissertation proposes an approach

for automatic placement of application sensors to enable application-based intrusion detec-

tion systems. This work focuses on using application sensors to detect events of failed

access control to detect privilege escalation attacks. A proof of concept analysis of two

open source projects has been conducted to evaluate the effectiveness of the approach. In

addition, it illustrates a model for automatically inserting application sensors into applica-

tions to detect access control events, based on an extensive case study involving six open

source PHP projects.

7.2 Future Work

This dissertation has laid a foundation for future research in this direction. I outline some

open areas for further research.

93

7.2.1 Interactive Static Analysis

First, because developer adoption is a critical success factor for interactive static analysis,

one must design an appropriate user interface and interaction for developers. To this end,

the design must be intuitive, fit seamlessly into developer workflow, and minimize unneces-

sary distractions. More research is also needed towards automatic annotation mechanisms

to minimize unnecessary interactive annotations.

Second, it would be interesting to explore more hybrid heuristics, involving developer

input as well as program analysis, to further improve the performance of detecting access

control vulnerabilities. For example, the notion of auto annotation can be expanded by

incorporating more program analysis heuristics to reduce the number of annotations re-

quested to developers.

Third, it will be very interesting to applying interactive static analysis to discover vul-

nerabilities other than access control vulnerabilities, such as insecure API usage.

7.2.2 Placing Application Sensors for Application Based Intrusion Detection and

Prevention

More empirical evaluations of applications of different types and complexity are needed

to validate the results presented here. Future directions include looking at different ways

for sensor implementation, evaluating the correctness of inserted sensors and its impact on

performance, expanding forced browsing detection to include cases where access controls

are enforced as part of the SQL statement, and examining strategies for accurate intrusion

detection using application sensors.

94

REFERENCES

[1] Cve-2012-2354. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-2354.

[2] Cve-2012-2355. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-2355.

[3] Cve-2012-2358. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-2367.

[4] Cve-2012-2358. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-2358.

[5] Cve-2012-3391. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-3391.

[6] Cve-2012-3397. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-3397.

[7] Cve-2012-5473. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-5473.

[8] Findbugs. http://findbugs.sourceforge.net/.

[9] Fix changes for cve-2012-2354. http://git.moodle.org/gw?p=moodle.
git;a=commit;h=48e03792ca8faa2d781f9ef74606f3b3f0d3baec.

[10] Fix changes for cve-2012-2355. http://git.
moodle.org/gw?p=moodle.git;a=commitdiff;h=
76cf77e4d3e3ca30a2a983aa71bc5a2090133668.

[11] Fix changes for cve-2012-2358. http://git.
moodle.org/gw?p=moodle.git;a=commitdiff;h=
e8027a40cd16f50402a6c13f3bfd3128639a797c.

[12] Fix changes for cve-2012-2367. http://git.
moodle.org/gw?p=moodle.git;a=commitdiff;h=
3c0ea9b2841a3af83b3726d981d6f12d5b73bd4c.

[13] Fix changes for cve-2012-3391. http://git.
moodle.org/gw?p=moodle.git;a=commitdiff;h=
35124c3c4fd4692a54359fe32d3c29e2590dbb83.

[14] Fix changes for cve-2012-3397. http://git.
moodle.org/gw?p=moodle.git;a=commitdiff;h=
a098f340fe2864d91ac056fc90250564883e62a9.

95

[15] Fix changes for cve-2012-5473. http://git.
moodle.org/gw?p=moodle.git;a=commitdiff;h=
76fb0443b6f84e25d7ea983829e78b5556f2fcdf.

[16] Grammatech. http://www.grammatech.com/.

[17] Klocwork. http://www.klocwork..com/.

[18] Veracode static aanlyzer. http://www.veracode.com/products/static.

[19] Eclipse php ide. http://projects.eclipse.org/projects/tools.
pdt, 2012.

[20] Owasp secure coding practices quick reference guide. https://http:
//www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_
Guide_v2.pdf, 2013.

[21] Top ten vulnerabilities. https://www.owasp.org/index.php/Top_10_
2013-Top_10, 2013.

[22] Whitehat security website security statistics report. https://http://www.
whitehatsec.com/assets/WPstatsReport_052013.pdf, 2013.

[23] Moodle statistics. http://moodle.org/stats/, 8 2014.

[24] Eclipse pdt ast model illustration. http://www.eclipse.org/pdt/
articles/ast/PHP_AST.html, 2015.

[25] Hp fortify static code analyzer. http://www8.hp.com/us/en/
software-solutions/software.html?compURI=1338812-.
UUnHuVthvUY, 3 2015.

[26] Pmd. http://pmd.sourceforge.net/, 2015.

[27] O. Alomari and Z. A. Othman. Bees algorithm for feature selection in network
anomaly detection. Journal of Applied Sciences Research, 8(3):1748–1756, 2012.

[28] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Technical report,
Technical report, 2000.

[29] R. Bace and P. Mell. Nist special publication on intrusion detection systems. Techni-
cal report, DTIC Document, 2001.

[30] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Saner: Composing static and dynamic analysis to validate sanitization in web
applications. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages
387–401. IEEE, 2008.

[31] M. Bishop and B. Orvis. A clinic to teach good programming practices. In Pro-
ceedings of the 10th Colloquium for Information Systems Security Education, pages
168–1174, 2006.

96

[32] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. Venkatakrishnan. Notamper:
automatic blackbox detection of parameter tampering opportunities in web applica-
tions. In Proceedings of the 17th ACM conference on Computer and communications
security, pages 607–618. ACM, 2010.

[33] P. Bisht, T. Hinrichs, N. Skrupsky, and V. Venkatakrishnan. Waptec: whitebox analy-
sis of web applications for parameter tampering exploit construction. In Proceedings
of the 18th ACM conference on Computer and communications security, pages 575–
586. ACM, 2011.

[34] B. Chess and J. West. Secure programming with static analysis. Pearson Education,
2007.

[35] Y. Y. Chung and N. Wahid. A hybrid network intrusion detection system using sim-
plified swarm optimization (sso). Applied Soft Computing, 12(9):3014–3022, 2012.

[36] S. Corporation. Symantec global internet security threat report. White Paper, Syman-
tec Enterprise Security, 1, 2013.

[37] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing authentication
& access control vulnerabilities in web applications. In USENIX Security Sym-
posium, pages 267–282, 2009.

[38] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection sys-
tems. Computer Networks, 31(8):805–822, 1999.

[39] H. Debar, M. Dacier, and A. Wespi. A revised taxonomy for intrusion-detection
systems. In Annales des télécommunications, volume 55, pages 361–378. Springer,
2000.

[40] A. Doupé, B. Boe, C. Kruegel, and G. Vigna. Fear the ear: discovering and mitigating
execution after redirect vulnerabilities. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 251–262. ACM, 2011.

[41] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward automated detection
of logic vulnerabilities in web applications. In USENIX Security Symposium, pages
143–160, 2010.

[42] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez. Anomaly-
based network intrusion detection: Techniques, systems and challenges. computers
& security, 28(1):18–28, 2009.

[43] F. Gauthier, T. Lavoie, and E. Merlo. Uncovering access control weaknesses and
flaws with security-discordant software clones. In Proceedings of the 29th Annual
Computer Security Applications Conference, pages 209–218. ACM, 2013.

[44] P. Guo. Refining students’ coding and reviewing skills. Communications of the ACM,
57(9):10–11, 2014.

97

[45] S.-J. Horng, M.-Y. Su, Y.-H. Chen, T.-W. Kao, R.-J. Chen, J.-L. Lai, and C. D.
Perkasa. A novel intrusion detection system based on hierarchical clustering and
support vector machines. Expert systems with Applications, 38(1):306–313, 2011.

[46] M. Howard and S. Lipner. The security development lifecycle. O’Reilly Media, In-
corporated, 2009.

[47] C. inc. Coverity static analysis verification engine. http://www.coverity.
com/products/coverity-save.html.

[48] O. inc. Secure coding guidelines for the java programming language. http://www.
oracle.com/technetwork/java/seccodeguide-139067.html, 2013.

[49] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t software devel-
opers use static analysis tools to find bugs? In Software Engineering (ICSE), 2013
35th International Conference on, pages 672–681. IEEE, 2013.

[50] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting web
application vulnerabilities. In Security and Privacy, 2006 IEEE Symposium on, pages
6–pp. IEEE, 2006.

[51] H. L. T. T. Jun Zhu, Bill Chu. Mitigating access control vulnerabilities through inter-
active static analysis. In ACM Symposium on Access Control Models and Technolo-
gies. ACM, 2015.

[52] P. Kabiri and A. A. Ghorbani. Research on intrusion detection and response: A survey.
IJ Network Security, 1(2):84–102, 2005.

[53] A. Kartit, A. Saidi, F. Bezzazi, M. El Marraki, and A. Radi. A new approach to in-
trusion detection system. Journal of theoretical and applied information technology,
36(2):284–289, 2012.

[54] A. J. Ko and B. A. Myers. A framework and methodology for studying the causes
of software errors in programming systems. Journal of Visual Languages &
Computing, 16(1):41–84, 2005.

[55] C. Kolias, G. Kambourakis, and M. Maragoudakis. Swarm intelligence in intrusion
detection: A survey. computers & security, 30(8):625–642, 2011.

[56] C. Kruegel and T. Toth. A survey on intrusion detection systems. In TU Vienna,
Austria. Citeseer, 2000.

[57] J. A. Kupsch and B. P. Miller. Manual vs. automated vulnerability assessment: A case
study. In First International Workshop on Managing Insider Security Threats (MIST),
pages 83–97, 2009.

[58] M. S. Lam, M. Martin, B. Livshits, and J. Whaley. Securing web applications with
static and dynamic information flow tracking. In Proceedings of the 2008 ACM SIG-
PLAN symposium on Partial evaluation and semantics-based program manipulation,
pages 3–12. ACM, 2008.

98

[59] A. Lazarevic, V. Kumar, and J. Srivastava. Managing cyber threats: issues, ap-
proaches, and challenges. Chapter: A survey of Intrusion Detection techniques.
Boston: Kluwer Academic Publishers, doi, 10:b104908, 2005.

[60] D. LeBlanc and M. Howard. Writing secure code. Pearson Education, 2002.

[61] Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai. An efficient intrusion detection sys-
tem based on support vector machines and gradually feature removal method. Expert
Systems with Applications, 39(1):424–430, 2012.

[62] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. Intrusion detection system: A
comprehensive review. Journal of Network and Computer Applications, 36(1):16–24,
2013.

[63] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java applications
with static analysis. In Usenix Security, pages 18–18, 2005.

[64] J. Mar, I.-F. Hsiao, Y. C. Yeh, C.-C. Kuo, and S.-R. Wu. Intelligent intrusion detection
and robust null defense for wireless networks. International Journal of Innovative
Computing Information and Control, 8(5A):3341–3359, 2012.

[65] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security flaws
using pql: a program query language. In ACM SIGPLAN Notices, volume 40, pages
365–383. ACM, 2005.

[66] G. McGraw. Talk on static analysis tools. http://www.informit.com/
articles/article.aspx?p=1680863.

[67] G. McGraw. Software security. Security & Privacy, IEEE, 2(2):80–83, 2004.

[68] Microsoft. Microsoft sal annotations. http://msdn.microsoft.com/
en-us/library/ms235402.aspx, 2011.

[69] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan. A survey of
intrusion detection techniques in cloud. Journal of Network and Computer Applica-
tions, 36(1):42–57, 2013.

[70] M. Monshizadeh, P. Naldurg, and V. Venkatakrishnan. Mace: Detecting privilege es-
calation vulnerabilities in web applications. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 690–701. ACM, 2014.

[71] Moodle.org. Moodle. https://moodle.org/.

[72] A. Murali and M. Rao. A survey on intrusion detection approaches. In Information
and Communication Technologies, 2005. ICICT 2005. First International Conference
on, pages 233–240. IEEE, 2005.

[73] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. 2005.

99

[74] A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Computer Networks, 51(12):3448–3470,
2007.

[75] X. Qie, R. Pang, and L. Peterson. Defensive programming: Using an annotation
toolkit to build dos-resistant software. ACM SIGOPS Operating Systems Review,
36(SI):45–60, 2002.

[76] M. J. Ranum. Thinking about firewalls. In Proceedings of Second International
Conference on Systems and Network Security and Management (SANS-II), volume 8.
Citeseer, 1993.

[77] J. Reason. Human error. Cambridge university press, 1990.

[78] F. Sabahi and A. Movaghar. Intrusion detection: A survey. In Systems and Networks
Communications, 2008. ICSNC’08. 3rd International Conference on, pages 23–26.
IEEE, 2008.

[79] R. C. Seacord. The CERT C secure coding standard. Pearson Education, 2008.

[80] A. Shostack. Threat modeling: Designing for security. John Wiley & Sons,
2014.

[81] S. Son, K. S. McKinley, and V. Shmatikov. Rolecast: finding missing security checks
when you do not know what checks are. ACM SIGPLAN Notices, 46(10):1069–1084,
2011.

[82] S. Son, K. S. McKinley, and V. Shmatikov. Fix me up: Repairing access-control bugs
in web applications. In NDSS, 2013.

[83] S. Son and V. Shmatikov. Saferphp: Finding semantic vulnerabilities in php ap-
plications. In Proceedings of the ACM SIGPLAN 6th Workshop on Programming
Languages and Analysis for Security, page 8. ACM, 2011.

[84] P. Stavroulakis and M. Stamp. Handbook of information and communication security.
Springer Science & Business Media, 2010.

[85] F. Sun, L. Xu, and Z. Su. Static detection of access control vulnerabilities in web
applications. In USENIX Security Symposium, 2011.

[86] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. Autoises: Automatically inferring
security specification and detecting violations. In USENIX Security Symposium, pages
379–394, 2008.

[87] K. R. Van Wyk. Secure coding: principles and practices. ” O’Reilly Media, Inc.”,
2003.

[88] S.-S. Wang, K.-Q. Yan, S.-C. Wang, and C.-W. Liu. An integrated intrusion detection
system for cluster-based wireless sensor networks. Expert Systems with Applications,
38(12):15234–15243, 2011.

100

[89] C. Watson, M. Coates, J. Melton, and D. Groves. Creating attack-aware software
applications with real-time defenses. Crosstalk-September/October, 2011.

[90] C. Watson, D. G. J. Melton, J. A.-Z. R. B. Michael, C. C. M. J. Reynolds, and
M. Coates. Appsensor guide. 2008.

[91] M. Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, pages 439–449. IEEE Press, 1981.

[92] J. Xie, B. Chu, and H. R. Lipford. Idea: interactive support for secure software
development. In Engineering Secure Software and Systems, pages 248–255. Springer,
2011.

[93] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton. Aside: Ide support for web appli-
cation security. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 267–276. ACM, 2011.

[94] J. Xie, H. Lipford, and B.-T. Chu. Evaluating interactive support for secure program-
ming. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 2707–2716. ACM, 2012.

[95] J. Xie, H. R. Lipford, and B. Chu. Why do programmers make security errors? In
Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium
on, pages 161–164. IEEE, 2011.

[96] M. Xie, S. Han, B. Tian, and S. Parvin. Anomaly detection in wireless sensor net-
works: A survey. Journal of Network and Computer Applications, 34(4):1302–1325,
2011.

[97] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting languages.
In USENIX Security, volume 6, pages 179–192, 2006.

[98] J. Zhu, J. Xie, H. R. Lipford, and B. Chu. Supporting secure programming in
web applications through interactive static analysis. Journal of Advanced Research,
5(4):449–462, 2014.

101

APPENDIX A: ZERO-DAY ACCESS CONTROL VULNERABILITIES DETECTED

IN THE EVALUATION

As mentioned in the evaluation section in Chapter 5, I detected 20 zero-day access con-

trol vulnerabilities in the evaluated projects. Since two of them have already been discussed

in Chapter 5, I will describe the 18 remaining ones in this appendix. A brief overview is

shown in Table 15. I will describe the findings in each project separately in the following

sections.

Table 15: Vulnerability detection results to be described in this appendix.

Project 0-day Vul. by ASIDE-PHP

Mybloggie 2.1.3 14[Missing check]

PhpStat 1.5 4[Missing check]

In this section, for each zero-day vulnerability, I list out its vulnerable code and give a

brief explanation of the affected SSO (operation on database table).

Fourteen missing check vulnerabilities in Mybloggie 2.1.3

1. Vulnerable code about INSERT INTO USER TBL in adduser.php of Mybloggie,

there exists no access control checks for it.

$ r e s u l t = $db−>s q l q u e r y (”INSERT INTO ” . USER TBL . ” SET

u s e r = ’ $ u s e r ’ , password = ’ $password ’ , l e v e l = ’ $ l e v e l ’ ”) ;

/ / SSO

2. Vulnerable code about INSERT INTO CAT TBL in addcat.php of Mybloggie, there

exists no access control checks for it.

102

$ r e s u l t = $db−>s q l q u e r y (”INSERT INTO ” . CAT TBL . ” SET

c a t d e s c = ’ $ c a t d e s c ’ ”) ; / / SSO

3. Vulnerable code about INSERT INTO POST TBL in add.php of Mybloggie, there

exists no access control checks for it.

$query = mysql query (”INSERT INTO ” . POST TBL . ” SET

u s e r i d = ’ $ u s e r i d ’ , s u b j e c t = ’ $ s u b j e c t ’ , message = ’

$message ’ , t imes t amp = ’ $ t imes t amp ’ , c a t i d = ’ $ c a t i d ’ ”)

; / / SSO

4. Vulnerable code about UPDATE POST TBL in edit.php of Mybloggie, there exists

no access control checks for it.

i f ($ e d i t d a t e) {

$ r e s u l t = $db−>s q l q u e r y (”UPDATE ” . POST TBL . ” SET

s u b j e c t = ’ $ s u b j e c t ’ , message = ’ $message ’ , t imes t amp = ’

$ t imes t amp ’ , c a t i d = ’ $ c a t i d ’ WHERE p o s t i d = ’ $ p o s t i d

’ ”) ; / / SSO

}

e l s e {

$ r e s u l t = $db−>s q l q u e r y (”UPDATE ” . POST TBL . ” SET

s u b j e c t = ’ $ s u b j e c t ’ , message = ’ $message ’ , c a t i d = ’

$ c a t i d ’ WHERE p o s t i d = ’ $ p o s t i d ’ ”) ; / / SSO

}

103

5. Vulnerable code about UPDATE COMMENT TBL in view.php of Mybloggie, there

exists no access control checks for it.

$ r e s u l t = $db−>s q l q u e r y (”UPDATE ” .COMMENT TBL. ” SET

c o m m e n t s u b j e c t = ’ $comment sub jec t ’ , comments = ’

$comment tex t ’ , p o s t e r = ’ $commentname ’ , e m a i l = ’

$commentemail ’ , home= ’ $commenthome ’ Where comment id

= ’ $comment id ’ ”) ; / / SSO

6. Vulnerable code about INSERT INTO COMMENT TBL in trackback.php, there ex-

ists no access control checks for it.

$ r e s u l t = $db−>s q l q u e r y (”INSERT INTO ” .COMMENT TBL. ”

SET p o s t i d = ’ $ t b i d ’ , c o m m e n t s u b j e c t = ’ $ t i t l e ’ ,

comments = ’ $ e x c e r p t ’ , com ts tamp = ’ $ t imes t amp ’ , p o s t e r

= ’ $blog name ’ , home= ’ $ u r l ’ , comment type = ’ t r a c k b a c k ’

”) ; / / SSO

7. Vulnerable code about UPDATE COMMENT TBL in view.php of Mybloggie, there

exists no access control checks for it.

$ r e s u l t = $db−>s q l q u e r y (”UPDATE ” .COMMENT TBL. ” SET

c o m m e n t s u b j e c t = ’ $comment sub jec t ’ , comments = ’

$comment tex t ’ , p o s t e r = ’ $commentname ’ , e m a i l = ’

$commentemail ’ , home= ’ $commenthome ’ Where comment id

= ’ $comment id ’ ”) ; / / SSO

104

8. Vulnerable code about UPDATE CAT TBL in editcart.php of Mybloggie, !isset($ SE-

SSION[’username’]) && !isset($ SESSION[’passwd’] is an invalid check because

function header() is used to send raw HTTP header and does not generate an ex-

ception or terminate the program execution, so it is considered as a missing check

vulnerability.

/ / Added s e c u r i t y

i f (! i s s e t ($ SESSION [’ username ’]) && ! i s s e t ($ SESSION [’

passwd ’])) {

header (” L o c a t i o n : . / l o g i n . php ”) ;

}

$ r e s u l t = $db−>s q l q u e r y (”UPDATE ” . CAT TBL . ” SET

c a t d e s c = ’ $ c a t d e s c ’ where c a t i d = ’ $ c a t i d ’ ”) ; / / SSO

9. Vulnerable code about UPDATE USER TBL in edituser.php of Mybloggie, !isset($

SESSION[’username’]) && !isset($ SESSION[’passwd’] is an invalid check because

function header() does not generate an exception or terminate the program execution,

so it is considered as a missing check vulnerability.

/ / Added s e c u r i t y

i f (! i s s e t ($ SESSION [’ username ’]) && ! i s s e t ($ SESSION [’

passwd ’])) {

header (” L o c a t i o n : . / l o g i n . php ”) ;

}

105

$ r e s u l t = $db−>s q l q u e r y (”UPDATE ” . USER TBL . ” SET u s e r = ’

$ u s e r ’ , password = ’ $password ’ , l e v e l = ’ $ l e v e l ’ where i d

= ’ $ i d ’ ”) ; / / SSO

10. Vulnerable code about DELETE FROM POST TBL in del.php of Mybloggie, !is-

set($ SESSION[’username’]) && !isset($ SESSION[’passwd’] is an invalid check

because function echo() is used to output string(s) and does not generate an exception

or terminate the program execution, so it is considered as a missing check vulnera-

bility.

/ / Added s e c u r i t y

i f (! i s s e t ($ SESSION [’ username ’]) && ! i s s e t ($ SESSION [’

passwd ’])) {

echo ”<meta h t t p−e q u i v =\” R e f r e s h \” c o n t e n t =\”2 ; u r l =” .

s e l f u r l () . ” / l o g i n . php \” />” ;

}

$ r e s u l t = $db−>s q l q u e r y (”DELETE FROM ” . POST TBL . ” WHERE

p o s t i d = ’ $ p o s t i d ’ ”) ; / / SSO

11. Vulnerable code about DELETE FROM CAT TBL in delcat.php of Mybloggie, !is-

set($ SESSION[’username’]) && !isset($ SESSION[’passwd’] is an invalid check

because function header() does not generate an exception or terminate the program

execution, so it is considered as a missing check vulnerability.

106

/ / Added s e c u r i t y

i f (! i s s e t ($ SESSION [’ username ’]) && ! i s s e t ($ SESSION [’

passwd ’])) {

header (” L o c a t i o n : . / l o g i n . php ”) ;

}

$ r e s u l t = $db−>s q l q u e r y (”DELETE FROM ” . CAT TBL . ” WHERE

c a t i d = $ c a t i d ”) ; / / SSO

12. Vulnerable code about DELETE FROM COMMENT TBL in delcomment.php of

Mybloggie, !isset($ SESSION[’username’]) && !isset($ SESSION[’passwd’] is an

invalid check because function header() does not generate an exception or terminate

the program execution, so it is considered as a missing check vulnerability.

i f (! i s s e t ($ SESSION [’ username ’]) && ! i s s e t ($ SESSION [’

passwd ’])) {

header (” L o c a t i o n : . / l o g i n . php ”) ;

}

$ r e s u l t = $db−>s q l q u e r y (”DELETE FROM ” .COMMENT TBL. ”

WHERE comment id=$comment id ”) ; / / SSO

13. Vulnerable code about DELETE FROM USER TBL in deluser.php of Mybloggie,

!isset($ SESSION[’username’]) && !isset($ SESSION[’passwd’] is an invalid check

because function header() does not generate an exception or terminate the program

execution, so it is considered as a missing check vulnerability.

107

/ / Added s e c u r i t y

i f (! i s s e t ($ SESSION [’ username ’]) && ! i s s e t ($ SESSION [’

passwd ’])) {

header (” L o c a t i o n : . / l o g i n . php ”) ;

}

$ r e s u l t = $db−>s q l q u e r y (”DELETE FROM ” . USER TBL . ” WHERE

i d = $ i d ”) ; / / SSO

14. Vulnerable code about DELETE FROM POST TBL in deluser.php of Mybloggie,

!isset($ SESSION[’username’]) && !isset($ SESSION[’passwd’] is an invalid check

because function header() does not generate an exception or terminate the program

execution, so it is considered as a missing check vulnerability.

/ / Added s e c u r i t y

i f (! i s s e t ($ SESSION [’ username ’]) && ! i s s e t ($ SESSION [’

passwd ’])) {

header (” L o c a t i o n : . / l o g i n . php ”) ;

}

$ r e s u l t = $db−>s q l q u e r y (”DELETE FROM ” . POST TBL . ” WHERE

u s e r i d = $ i d ”) ; / / SSO

Four missing check vulnerabilities in PhpStat 1.5

1. Vulnerable code about INSERT INTO stat user in refresh.php of PhpStat, there exists

no access control checks for it.

108

$dump= s t a r t (2) ; / / SSO , because i t c a l l s INSERT INTO

s t a t u s e r

2. Vulnerable code about UPDATE stat file in refresh.php of PhpStat, there exists no

access control checks for it.

$dump= s t a r t (2) ; / / SSO , because i t c a l l s UPDATE

s t a t f i l e

3. Vulnerable code about UPDATE stat user in refresh.php of PhpStat, there exists no

access control checks for it.

$dump= s t a r t (2) ; / / SSO , because i t c a l l s UPDATE s t a t u s e r

4. Vulnerable code about UPDATE stat user in global stat.php of PhpStat, there exists

no access control checks for it.

$ r e s = t o p 1 0 u s e r s () ; / / SSO , because i t c a l l s UPDATE

s t a t u s e r

109

APPENDIX B: SEVEN UNSOLVABLE KNOWN ACCESS CONTROL VULNERA-

BILITIES IN MOODLE 2.1.0 DUE TO LOGIC FLAWS

This appendix describes the seven known access control vulnerabilities in Moodle 2.1.0,

which result from logic flaws and are not solvable with ASIDE-PHP of this dissertation and

auto detection techniques in previous research works. Table 16 lists out these vulnerabilities

and their associated security sensitive operations. I describe them one by one in following

paragraphs.

Table 16: Seven unsolvable known access control vulnerabilities in Moodle 2.1.0 and
associated security sensitive operations.

No. Brief Description SSOs

1 Unauthorized addition of calendar event (CVE-2012-2367)
Insert: event

Update: event

2 Unauthorized access to group information (CVE-2012-3397) Select: groups

3 Unauthorized reading of messages (CVE-2012-2354) Select: message, message read

4 Unauthorized addition of quiz questions (CVE-2012-2355) Insert: quiz question instances

5 Unauthorized database modifications (CVE-2012-2358)
Insert: data records, data content

Update: data records

6 Unauthorized read of forums (CVE-2012-3391) Select: forum

7 Unauthorized information access (CVE-2012-5473) Select: user

1. Unauthorized addition of calendar event (CVE-2012-2367)

This vulnerability allows authenticated users to bypass moodle/calendar:manageownent-

ries capability requirement and add a calendar entry via a New Entry action [3]. Figure 23

shows the fix changes for the flaw, which occurs in the function calendar get allowed type().

The code in green with a plus marker on its left side represents code that is added to fix the

flaw, please note that all figures appears in this appendix follow this present style. In the fig-

ure, one line of code $allowed->user=has capability(’moodle/calendar:manageownentries’,

110

Figure 23: Fix changes for CVE-2012-2367 [12].

$coursecontext) is added to fix the flaw, which means the vulnerable code before the fix

does not have this line of code, and not having this line of the code is the flaw. Figure 24

shows the full vulnerable code of the function calendar get allowed type() before the fix.

Through analyzing where the function calendar get allowed type() is called, I identified

the call chain calendar get allowed type() <- calendar user can add event(), and calen-

dar user can add event() is an access control function, it determines whether user can add

events to calendar. So even if calendar user can add event() has been identified as the

access control check through interactive annotation or automatic inference techniques, be-

cause the flaw is within the definition of the access control function itself, in this case it is a

flaw within the definition of function calendar get allowed type() that is called within the

definition of access control function calendar user can add event(), the flaw is unique and

there exist nothing to compare with, and therefore there exist no signal or clue to trigger a

security flaw warning. And thus it is not solvable by ASIDE-PHP of this dissertation and

auto detection techniques in previous research works.

2. Unauthorized access to group information (CVE-2012-3397)

In this vulnerability, lib/modinfolib.php does not check a group-membership require-

ment when determining whether an activity is available or hidden [6]. Fix changes are

111

Figure 24: Code of get allowed type() before fix [12].

shown in Figure 25, the code in green with a plus marker on its left side represents code that

is added to fix the flaw, the code in red with a minus marker on its left side represents code

that is removed to fix the flaw, please note that all figures appears in this appendix follow

this present style. The line of code $this->showavailability = 0 in the function definition

of update user visible() in class cm info is missing before the fix, because $showavailabil-

ity = 1 represents activity is shown to students as greyed out with information about when

it will be available, while $showavailability = 0 means activity is hidden completely, the

flaw of not having $this->showavailability = 0 cause the activity is not completely hidden

from user. The flaw is a unique code instance, and there exist nothing to compare with, and

therefore there exist no signal or clue to trigger a security flaw warning.

3. Unauthorized reading of messages (CVE-2012-2354)

This vulnerability allows authenticated users to bypass the moodle/site:readallmessages

capability check to read arbitrary messages [1]. Figure 26 shows the fix changes. The

flaw exists at the access control check. Boolean expression $user1->id != $USER->id &&

112

Figure 25: Fix changes for CVE-2012-3397 [14].

Figure 26: Fix changes for CVE-2012-2354 [9].

(!empty($user2) && $user2->id != $USER->id) && !has capability(’moodle/site:readall-

messages’, $context) is an access control check, but it has a small flaw in the expression,

the part !empty($user2) && $user2->id != $USER->id is wrong. It is a very small unique

code flaw, and there exist nothing to compare with, and therefore there exist no signal or

clue to trigger a security flaw warning.

4. Unauthorized addition of quiz questions (CVE-2012-2355)

This vulnerability allows remote authenticated users to bypass question:useall capabil-

ity requirements and add arbitrary questions to a quiz [2]. In Figure 27, the line of code

113

Figure 27: Fix changes for CVE-2012-2355 [10].

require capability(’mod/quiz:manage’, $contexts->lowest()) is an access control check for

INSERT to table quiz question instances, but because there is no other occurrence INSERT

to table quiz question instances and thus no consistency analysis could be performed,

and therefore there is no clue to know one additional access control check $contexts-

>having cap(’moodle/question:useall’) is required, and it is an unsolvable case.

5. Unauthorized database modifications (CVE-2012-2358)

This vulnerability allows remote authenticated users to bypass an activity’s read-only

state and modify the database by leveraging the student role and editing database activity

entries that already exist [4]. As shown in Figure 28, to fix the flaw, it adds a declara-

tion of a new function data in readonly period, and used the function in multiple places,

one used in the declaration of data user can add entry(), data user can add entry() is an

access control related function. So the flaw lies in the access control related function

data user can add entry(), it ignores the checking for the read-only period state. It is a

unique code flaw, and there exist nothing to compare with, and therefore there exist no

signal or clue to trigger a security flaw warning.

6. Unauthorized read of forums (CVE-2012-3391)

114

Figure 28: Fix changes for CVE-2012-2358 [11].

This vulnerability allows remote authenticated users to bypass intended access restric-

tions by leveraging the student role and reading the RSS feed for a forum [5]. The fix

changes are shown in Figure 29, which looks complicated. So to put it simple, I used A, B,

C, D to represent Boolean expressions which might be access control related, and illustrate

the fix changes in Table 17. So the basic structure of the program before the fix is shown on

the left, the basic structure of the program after the fix is shown one the right. So it is a flaw

in the access control related expressions. It is a unique code flaw, and there exist nothing to

compare with, and therefore there exist no signal or clue to trigger a security flaw warning.

7. Unauthorized information access (CVE-2012-5473)

This vulnerability allows remote authenticated users to read activity entries of a different

group’s users via an advanced search [7]. As shown in Figure 30, multiple parts of the code

115

Figure 29: Fix changes for CVE-2012-3391 [13].

Table 17: Illustration of fix changes for CVE-2012-3391.

i f (A) {

} e l s e i f (B) {

} e l s e {

}

i f (C){

} e l s e i f (D){

} e l s e {
i f (A){

} e l s e i f (B){

} e l s e {

}
}

(1) Structure before the fix (2) Structure after the fix

get fixed, for example, for the first part fixed, it added the checking for whether a student

is part of the group and whether separate group is enabled, these checks are added for the

first time, so before the fix, there exists nothing else to compare with, and therefore there

exists no signal or clue to know that these checks should exist, so it is unique code flaws,

and thus it is not solvable.

116

Figure 30: Fix changes for CVE-2012-5473 [15].

