
IMPROVING DENSE REAL-TIME 3D SLAM USING SPARSE GEOMETRIC
CONSTRAINTS

by

John Papadakis

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2018

Approved by:

Dr. Andrew Willis

Dr. James Conrad

Dr. Thomas Weldon

Dr. Yogendra Kakad

ii

c©2018
John Papadakis

ALL RIGHTS RESERVED

iii

ABSTRACT

JOHN PAPADAKIS. Improving Dense Real-Time 3D SLAM using Sparse
Geometric Constraints. (Under the direction of DR. ANDREW WILLIS)

This thesis explores the extension of a state of the art dense RGBD SLAM system

to include detected geometries as elements in the estimated global map. The existing

approach leverages an algorithm for dense visual odometry, which is analyzed in

detail and reimplemented. It is demonstrated how the inclusion of these detected

geometries can improve the state estimate and reduce reconstruction error. These

geometric map elements contain invaluable semantic information about scene content

that more dense map representations lack, and serve to improve localization, reduce

dense reconstruction error, improve scene understanding.

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Dr. Andrew Willis for his unwaivering

support and guidance, and for the opportunities he has provided for me to work on

truly engaging research. As his student and advisee I have undergone tremendous

academic and professional development, and he has my eternal gratitude for his role

as professor, advisor, and friend. I would like to thank the members of my committee

Dr. James Conrad, Dr. Thomas Weldon, and Dr. Yogendra Kakad- I have bene-

�ted greatly from their instruction. I would also like to thank Jamie Gantert, Dr.

Kevin Brink, and others at the Air Force Research laboratory for their support and

mentorship.

v

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES x

CHAPTER 1: INTRODUCTION 1

1.1. Contribution 3

1.2. Outline 3

CHAPTER 2: BACKGROUND 4

2.1. Pinhole Camera Model 4

2.2. Camera Calibration 6

2.2.1. Intrinsic Parameterization 6

2.2.2. Extrinsic Parameterization 7

2.2.3. Calibration 7

2.3. RGBD Cameras 8

2.4. Rigid Body Transformations 9

2.4.1. Rotation in 3 Dimensions 9

2.4.2. Translation in 3 Dimensions 11

2.4.3. Representing Transformations 11

2.5. Least Squares Optimization 14

2.5.1. Nonlinear Least Squares 15

2.5.2. Gauss-Newton 15

2.5.3. Levenberg-Marquardt 16

2.6. Random Sample Consensus (RANSAC) 17

vi

2.7. Bayesian Classi�cation 18

2.7.1. Inference 19

2.7.2. Decision 20

2.8. Least Squares Plane Fitting 21

2.8.1. Implicit Plane Fitting to Point Cloud Data 21

2.8.2. Explicit Plane Fitting to Point Cloud Data 23

CHAPTER 3: DENSE VISUAL ODOMETRY 25

3.1. Direct Visual Odometry 25

3.2. Image Alignment 26

3.3. Formalisms 26

3.4. Inverse Compositional Approach 27

3.4.1. Minimization 29

3.4.2. Algorithm Outline 30

3.5. Error Functions 32

3.6. Minimization 33

3.7. Implementation 40

CHAPTER 4: STATE OF THE ART IN DENSE SLAM 43

4.1. Simultaneous Localization and Mapping 43

4.1.1. Graph SLAM 43

4.2. Visual SLAM Overview 46

4.2.1. Pose Graph (Keyframe) SLAM 46

4.3. Dense Visual SLAM 47

4.3.1. Related Work 47

vii

4.3.2. DVO SLAM 50

CHAPTER 5: IMPROVING DENSE SLAM USING DETECTED GE-
OMETRIES

55

5.1. Extending Dense SLAM Using Landmarks 56

5.1.1. Front-end Modi�cation 56

5.1.2. Back-end Modi�cation 57

5.2. Planar Surface Estimation 59

5.2.1. RANSAC Plane Fitting 59

5.2.2. Fast Least Squares Plane Fitting using Range Images 60

5.2.3. Plane Landmark Correspondence Implementation 63

5.3. Shape Grammars for Object Recognition 65

5.3.1. Framework 66

5.3.2. Recognition of the Colored Ball Semantic 67

5.3.3. Sphere Landmark Correspondence Implementation 72

CHAPTER 6: RESULTS 74

6.1. Dense SLAM with 3D Point Landmarks 74

6.2. Dense SLAM Using Multiple Geometries 75

6.3. Fast Planar Surface Fitting Benchmark 76

CHAPTER 7: CONCLUSION 79

REFERENCES 81

viii

LIST OF FIGURES

FIGURE 2.1: Pinhole Camera Model 5

FIGURE 2.2: Camera Calibration Pattern 8

FIGURE 2.3: Orbbec Astra RGBD Sensor 9

FIGURE 3.1: Warp Function 27

FIGURE 4.1: DVO SLAM Overview 51

FIGURE 4.2: DVO SLAM Local Graph Structure 52

FIGURE 4.3: DVO SLAM Local-Global Merge 53

FIGURE 4.4: DVO SLAM Keyframe Radius Search 53

FIGURE 4.5: DVO SLAM Visualization 54

FIGURE 5.1: DVO SLAM Reconstruction Example 55

FIGURE 5.2: Modi�ed DVO SLAM Local Graph Structure with Land-
mark Constraints

57

FIGURE 5.3: Modi�ed DVO SLAM Global Graph with Local Merge and
Landmark Correspondence

58

FIGURE 5.4: Relationship of tan θ 61

FIGURE 5.5: Generated Chair Grammar Instances 65

FIGURE 5.6: Recognition Framework Overview 67

FIGURE 5.7: PSML Program for the Colored Ball Semantic 67

FIGURE 5.8: Rendered Colored Ball Instances 68

FIGURE 5.9: The Hue-Chroma Plane 69

FIGURE 5.10: Colored Circle Detections 71

FIGURE 6.1: Comparison of DVO SLAM and Modi�ed Version Including
Colored Sphere Landmarks

75

ix

FIGURE 6.2: Comparison of DVO SLAM and Modi�ed Version Including
Both Colored Sphere and In�nite Plane Landmarks

77

x

LIST OF TABLES

TABLE 6.1: Approximate maximum spread of reconstructed landmark
points.

75

TABLE 6.2: Frame-rate comparison between the proposed explicit plane
�tting method and two methods available in the OpenCV library.

78

CHAPTER 1: INTRODUCTION

Endowing robotic agents with the ability to reliably navigate and understand com-

plex environments is a crucial prerequisite for performing advanced tasks and for

establishing more meaningful scene interaction. This problem is often described as

the simultaneous localization and mapping problem (SLAM), whereby a robotic agent

must, in real-time, construct a map of its surroundings and accurately keep track of

its position and orientation within this map.

Estimation of position and orientation, or �pose�, is on its own a challenging prob-

lem. Odometry refers to the use of sensor data to estimate change in pose over time.

Odometry measurements, sometimes from multiple sensors, are integrated to form an

estimate of position and orientation. The accuracy of an odometry only pose esti-

mate is clearly then limited by the accuracy of the odometry estimation. Without

consideration of outside information of an agent's pose, a pose estimate based purely

on odometry will be sure to accumulate drift- and an accurate estimate of pose is

essential to the success of any SLAM system.

Therefore, agents performing SLAM are equipped with sensors capable of detecting

scene features. Detected scene features can then be used to build a map of the

environment and act as landmarks to aid in localization. Visual SLAM refers to

the class of solutions that leverage vision sensors such as conventional cameras and,

more recently, systems capable of detecting 3D geometry such as stereo camera pairs,

LiDAR (Light Detection and Ranging) sensors, and RGBD (color RGB + Depth)

sensors. SLAM systems that leverage RGBD sensors are particularly popular as they

provide both surface color and surface geometry information at every pixel location.

Modern SLAM solutions that leverage these newly available sensors, e.g., RGBD

2

sensors, have an unprecedented amount of scene information available to them. This

has spurred development and has led to improved solutions with increased camera

tracking and scene reconstruction accuracy. Recent advancements in RGBD SLAM

adopt pixel-based or �direct� approaches for camera tracking that improve localization

results by utilizing all of the measured image data. While direct methods improve

localization accuracy, the global map is often represented as a very large collection

of unorganized primitives such as 3D points. Unfortunately, these solutions do not

capitalize on fundamental geometric constraints typical to real-world structures such

as surface continuity, surface topology (closedness), etc. Further, maps consisting

solely of dense point clouds provide no structural or semantic information about

the scene. Absence of this information limits the utility of the constructed map to

occupancy-type queries, e.g., �is there an obstruction here?�, and therefore limits the

use of these maps to coarse-level obstacle avoidance and path-planning for robotic

navigation, guidance, and control systems.

Utilization of higher order scene features at the surface and object level, speci�cally

those which have been identi�ed semantically, for SLAM is of particular interest.

Surface model approximations of dense point cloud data can be used to improve

map accuracy, compress the map representation, and provide semantic information

for map contents. For this reason, this thesis explores the use of 3D shapes and

shape primitives for SLAM, resulting in semantic geometric map contents. These

types of primitives are inherently more distinct when compared to raw data, and

should be able to be robustly detected. If used for mapping, these features exhibit

high compression by representing large areas of point cloud data, thereby reducing

storage and subsequent computational costs. More importantly, object level maps

contain invaluable semantic information about scene content that more dense map

representations lack.

3

1.1 Contribution

This thesis explores the extension of a state of the art dense RGBD SLAM im-

plementation to include detected objects and surfaces as geometric elements in the

estimated global map. These elements relay important semantic scene information

otherwise unavailable from the current dense map representation (an unorganized

collection of colored 3D points). In addition, these map elements act as landmarks

to aid in localization, improving both camera tracking and reconstruction accuracy.

Additionally, this thesis analyses the theory and implementation of the direct visual

odometry algorithm leveraged by the aforementioned dense SLAM approach. This

includes the development of a simpli�ed reference implementation more amenable to

understanding and extension than currently available open source implementations.

1.2 Outline

This thesis is outlined as follows: Chaper 2 presents background information and

concepts that will be applied in later chapters. Chapter 3 investigates the theory and

implementation of a direct visual odometry algorithm, and provides in depth analysis

and presents a reference implementation. Chapter 4 provides a background on graph

based SLAM, dense SLAM, and the details the speci�c dense SLAM implementation

to be extended. Chapter 5 details the modi�cations necessary to extend a state of

the art dense 3D SLAM implementation to include detected geometries as landmarks.

It also discusses the detection of of the speci�c geometries to be leveraged. Chapter

6 evaluates the e�cacy of including detected geometries to improve the SLAM esti-

mation. Chapter 7 summarizes the discussed approaches and results, and provides

outlook on possible future research.

CHAPTER 2: BACKGROUND

This chapter presents background information and concepts that will be applied in

later chapters. Topics include those necessary for image formation and reconstruction,

rigid body motion, solving least-squares problems, Bayesian classi�cation, and model

�tting.

2.1 Pinhole Camera Model

The pinhole camera model describes mathematically a lenseless camera with a

pinhole aperture and image plane as shown in �gure 2.1. This model assumes that only

light passing directly through the pinhole aperture intersects the image plane. This

model provides a projection mapping, ρ, between 3D world points p = [X Y Z]T ,

and 2D points on the image plane x = [x y]T :

ρ(p)→ x (2.1)

or equivalently:

ρ(X, Y, Z)→ (x, y) (2.2)

The pinhole camera model de�nes this perspective projection in terms of a set of

parameters intrinsic to the camera, including focal length f , in meters, principle point

or optical center (cx, cy), in pixels, and pixel size (sx, sy), in meters/pixel. Axis skew

and lens distortion can also be modeled, however, they are neglected in this case.

The simpli�cations fx = f
sx

and fy = f
sy

are often made to express the focal length in

units of pixels. The resulting 2D pixel coordinates after projection are given by:

5

Figure 2.1: Pinhole camera model showing the relationship between 3D world points
and their projection onto the image plane. Modi�ed from OpenCV API Reference:
Camera Calibration and 3D Reconstruction [1].

x = fx
X
Z

+ cx

y = fy
Y
Z

+ cy

(2.3)

In addition, if the distance from the image plane (Z) is known for a given pixel

value (as in a depth image), one can reconstruct the associated 3D point using the

inverse mapping:

ρ−1(x, y, Z)→ (X, Y, Z) (2.4)

or equivalently:

ρ−1(x, Z)→ p (2.5)

such that

X = Z
fx

(x− cx)

Y = Z
fy

(y − cy)

Z = Z

(2.6)

6

These methods for image formation and reconstruction are essential to the dense

visual odometry algorithm discussed in chapter 3, which is leveraged in the dense

SLAM algorithm discussed in chapters 4 and 5.

2.2 Camera Calibration

Camera calibration refers to the determination of the intrinsic and extrinsic pa-

rameters of a given vision system. Each individual vision system will have a unique

set of camera parameters that must be determined through calibration in order to

form an accurate system model. With this model, we have for a particular system a

mathematical understanding about the relationship between points in a 3D scene and

their projection onto the image plane, and how image data is represented in various

frames of reference.

2.2.1 Intrinsic Parameterization

A camera can be modeled by the pinhole camera model, discussed in section 2.1,

which describes the relationship between points in 3D space and their corresponding

2D image pixel locations in terms of a set of parameters intrinsic to the camera. These

intrinsic parameters are often expressed in matrix form as the so called K matrix:

K =

f
sx

0 cx

0 f
sy

cy

0 0 1

 =

fx 0 cx

0 fy cy

0 0 1

 (2.7)

Assuming the world origin coincides with the focal point of the camera, as shown in

�gure 2.1, the perspective projection of the 3D point (X, Y, Z) to the image point(x, y)

can be expressed using equation (2.8)

x

y

1

 =

u

v

w

 =

fx 0 cx

0 fy cy

0 0 1

X

Y

Z

 (2.8)

7

where x = u/w, and y = v/w.

2.2.2 Extrinsic Parameterization

Extrinsic camera parameters are a set of geometric parameters used to determine

accurately the �xed transformation between the camera frame and the world frame.

Unlike in section 2.2.1 the world origin is no longer located at the camera focal point,

as we have allowed the camera to translate and rotate in space. These extrinsic pa-

rameters are expressed as a rotation matrix R3×3 and translation vector t3×1. The

relationship between Pimage = [x y 1]T and Pworld = [X Y Z 1]T in homo-

geneous coordinates can then be expressed as:

Pimage = K

[
R | t

]
Pworld (2.9)

or more explicitly:

x

y

1

 =

u

v

w

 =

fx 0 cx

0 fy cy

0 0 1

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

X

Y

Z

1

(2.10)

where x = u/w, and y = v/w.

Note that if we allow the world frame to coincide with the focal point of the camera,

as it did in section 2.2.1, then R is identity and t = [0 0 0]T , and equation 2.10

simpli�es to that of equation (2.8).

2.2.3 Calibration

The projection matrix P = K[R|t] then has 11 free parameters which we wish

to determine through calibration. The �rst 5 of these parameters are the intrinsic

parameters f , cx, cy, sx, and sy. The remaining 6 are the translation components

tx, ty, tz, and the 3 angles of rotation speci�ed in R. By establishing a set of known

8

correspondences between world and image points these parameters can be estimated.

To aid in this endeavor, a calibration pattern, as shown in �gure 2.2, is often

used. The dimensions of the pattern are known accurately, and the pixel coordinates

the corners of the checkerboard can be extracted from images taken of the pattern.

Correspondence is computed between the physical coordinates of the pattern features

and those extracted from images, resulting in a set of measurements that can be used

to estimate the unknown parameters of the camera model, i.e. those found in the

matrix K. [2, 3]

Figure 2.2: A checkerboard pattern used for camera calibration. [1]

The parameters of the camera model must be known in order to properly project

3D points onto the image plane, and reconstruct 3D points from depth values (see

section 2.1).

2.3 RGBD Cameras

RGBD sensors are a popular low cost, high performance addition to robotic sen-

sor suites. These sensors combine a traditional color camera with an infrared depth

sensor to produce full HD color and range images at real-time frame rates (≥ 30

fps). Unlike traditional 2D cameras, RGBD sensors also provide depth measurements

that directly impart a sense of scene geometry, without the use of techniques such as

stereoscopic reconstruction. Utilization of RGBD sensors for SLAM has become par-

ticularly popular as they provide both surface color and surface geometry information

9

Figure 2.3: The Orbbec Astra RGBD sensor. Image courtesy of roscomponents.com.

at every pixel location.

A common class of RGBD sensors is those that leverage structured light approaches

for depth estimation. Structured light sensors are active sensors that project a known

infrared pattern out into the scene. These sensors are also equipped with infrared

cameras located at a known baseline from the projector, which detect the pattern.

Using the di�erence between the known pattern and the detected pattern, depth is

calculated using triangulation. A number of common RGBD sensors utilize structured

light technology including the Microsoft Kinect, the Asus Xtion, and the Orbbec

Astra. For the results generated in this thesis, the Orbbec Astra sensor, shown in

�gure 2.3, was used.

2.4 Rigid Body Transformations

The 3D Euclidean transformations discussed in this thesis are the proper rigid

transformations of the 3D special Euclidean group, SE(3), that preserve distance and

orientation between point pairs. This group of transformations compactly describes

the motion of rigid bodies in 3D. These transformations contain both rotational and

translational components, totaling of 6 degrees of freedom.

2.4.1 Rotation in 3 Dimensions

Rotational components of these transformations alter the orientation of the coordi-

nate frame, leaving its origin unchanged. Rotations of this type belong to the rotation

group SO(3), and can be represented using a variety of formalisms [4]. Perhaps the

10

most common is the 3× 3 orthogonal matrix, R:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.11)

Rotations corresponding to zero rotation are given by R =I.

Also used is the so called axis-angle vector or rotation vector, ω ∈ R3, whose

direction de�nes the axis of rotation and whose magnitude corresponds to the rotation

angle in radians. This is equivalently parameterized by the directional unit vector

ω̂, and accompanying rotation angle θ = ‖ω‖. This parameterization is therefore a

minimal representation of the rotation- it has three free parameters corresponding to

the three rotational degrees of freedom. The rotation matrix R corresponding to the

to the rotation vector ω is given by the Rodrigues formula [5]:

R = I + sin(‖ω‖) [ω̂]× + (1− cos(‖ω‖)) [ω̂]2× (2.12)

or equivalently,

R = I +
sin(‖ω‖)
‖ω‖

[ω]× +
(1− cos(‖ω‖))

‖ω‖
[ω]2× (2.13)

where the operator

[u]× =

0 −u3 u2

u3 0 −u1

−u2 u1 0

 (2.14)

gives the skew-symmetric cross product matrix for the vector u. This formula is a

closed form of the exponential map, which maps so(3)→ SO(3) such that,

11

R = e[ω]× =
∞∑
k=0

1

k!
[ω]k× (2.15)

where the operator e(·) is the matrix exponential. This maps skew symmetric matrices

corresponding to in�nitesimal rotations about an axis into the space of orthogonal

rotation matrices [5]. The inverse mapping termed the log map, maps SO(3)→ so(3)

by

‖ω‖ = arccos(trace(R)−1
2

)

ω̂ = 1
2 sin(‖ω‖)

[
r32 − r23, r13 − r31, r21 − r12

]T (2.16)

then ω = ‖ω‖ · ω̂.

2.4.2 Translation in 3 Dimensions

The translational component of these transformations is represented as a vector

t ∈ R3, where

t =

tX

tY

tZ

 (2.17)

and t's components specify translation along the axes. Translations represented in

this way are also minimal.

2.4.3 Representing Transformations

A proper rigid transformation is commonly represented using the homogeneous

4x4 transformation matrix, T, which is comprised of the block matrix R and the

translation vector t such that

T =

R t

0 1

 (2.18)

The inverse of T is then given by

12

T−1 =

RT −RT t

0 1

 (2.19)

Transformation matrices in this form can be easily chained via premultiplication.

For example, a point undergoing the transformation T2 ·T1 would be �rst transformed

by T1 followed by T2. A point p = [X Y Z]T represented using homogeneous

coordinates as undergoing transformation, τ , is then given by

p′
1

 = τ(T,p) = T ·

p
1

 =

r11 r12 r13 tX

r21 r22 r23 tY

r31 r32 r33 tZ

0 0 0 1

X

Y

Z

1

(2.20)

where p′ = [X ′ Y ′ Z ′]T is the transformed point.

Transformations of this type can also be compactly represented using exponential

coordinates [6]. The transformations of the Lie group SE(3) can be mapped from their

corresponding parameterization in the tangent space se(3) through the exponential

map. These parameters are represented using a 6x1 vector

ξ =

v
ω

 (2.21)

where v = [v1 v2 v3]T determines the amount of translation along the rotation

axis [7], and ω is the rotation parameterization discussed in section 2.4.1. These

parameters are called the �twist� parameters, as they correspond to the 4x4 matrix

known as a twist (a generator of the Euclidean group), given by

13

ξ̂ =

[ω]× v

0 0

 =

0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

(2.22)

The exponential map is then given by

Tξ = eξ̂ (2.23)

where eξ̂ is the matrix exponential of the twist and Tξ is the corresponding homoge-

neous transformation matrix in SE(3). This matrix exponential has the solution

Tξ = eξ̂R t

0 1

 =

e[ω]× Vv

0 1

 (2.24)

where

R = I +
sin(‖ω‖)
‖ω‖

[ω]× +
(1− cos(‖ω‖))

‖ω‖
[ω]2× (2.25)

V = I +
1− cos(‖ω‖)
‖ω‖2 [ω]× +

(‖ω‖ − sin(‖ω‖))
‖ω‖3 [ω]2× (2.26)

Note the exponential map for the rotational component, e[ω]× , is given by the Ro-

drigues formula.

The inverse mapping, termed the log map, can also be computed as

log(Tξ)→ ξ (2.27)

14

The result for the rotational component is given in equation (2.16), reproduced here

‖ω‖ = arccos(trace(R)−1
2

)

ω̂ = 1
2 sin(‖ω‖)

[
r32 − r23, r13 − r31, r21 − r12

]T (2.28)

then ω = ‖ω‖ · ω̂. To compute the translational component the matrix V has a

closed form inverse given by

V−1 = I − 1

2
[ω]× +

1

‖ω‖2

(
1− ‖ω‖

2

sin(‖ω‖)
1− cos(‖ω‖)

)
[ω]2× (2.29)

and

v = V−1 · t (2.30)

These representations for rigid body motion are used throughout this thesis to de-

scribe and solve for unknown camera motions and other transformations necessary for

SLAM. These formulations are essential for the visual odometry algorithm discussed

in chapter 3, and for graph based map-building methods discussed in chapter 4

2.5 Least Squares Optimization

Least squares problems are show up often in the areas of robotics and computer

vision. In this thesis they are used to solve for unknown camera motion (chapter 3),

and for graph SLAM optimization (chapters 4 and 5).

The least squares problem seeks the set of model parameters, θ = [θ1, θ2, ... θm]T ,

that minimizes the di�erence between observations and the values predicted by the

model. The observed di�erences between observations and predictions are termed

residuals, with the vector of residuals de�ned as r(θ) = [r1(θ), r2(θ), ... rn(θ)]T .

We then de�ne an error function or objective function,

f(θ) =
1

2

n∑
i=1

ri(θ)
2 =

1

2
rT r (2.31)

15

which consists of the sum of squared residual values. We then seek the values of the

parameters that minimizes the sum of squared residual values, this is the least squares

estimate for the parameters given by,

θe = arg min
θ

(f(θ)) (2.32)

which can be minimized by computing the gradient of f(θ) and setting it equal to

zero:

∂f(θ)

∂θ
=

n∑
i=1

ri
∂ri
∂θ

= 0 (2.33)

2.5.1 Nonlinear Least Squares

For a nonlinear system, the derivatives of the residuals in equation (2.33) do not

have a closed form solution, and we therefore move into the realm of nonlinear least

squares problems.

2.5.2 Gauss-Newton

Nonlinear least squares problems can often be iteratively by �rst guessing an initial

value for the parameters. Then, at each iteration, linearization around the current

parameter estimate is performed, followed by solving the resulting linear system and

updating the parameters. This process is repeated until convergence is achieved. This

is known as the Gauss-Newton (GN) method.

The linearized residual about the point θ0 is given by:

ri(θ)|θ=θ0 = ri(θ0) + Ji(θ0)(θ − θ0) (2.34)

where

Ji(θ0) =
∂ri
∂θ
|θ=θ0 (2.35)

16

This is performed at every iteration such that

ri(θk+1)|θk = ri(θk) + Ji(θk)∆θ (2.36)

applying this linearization to equation (2.33) yields

n∑
i=1

Ji(θk)
T (ri(θk) + Ji(θk)∆θ) = 0 (2.37)

n∑
i=1

Ji(θk)
TJi(θk)∆θ = −

n∑
i=1

Ji(θk)
T ri(θk)

and after simpli�cation

J(θk)
TJ(θk)∆θ = −J(θk)

T r(θk) (2.38)

where J(θk) is the n×m Jacobian matrix with ith row Ji(θk). The matrix is known

as the Gauss-Newton approximation for the Hessian, which is the matrix of second

order partial derivatives.

The parameter update is then given by

∆θ = −
(
J(θk)

TJ(θk)
)−1

J(θk)
T r(θk) (2.39)

and the parameters are iteratively re�ned:

θk+1 = θk + ∆θ (2.40)

2.5.3 Levenberg-Marquardt

The Levenberg-Marquardt (LM) method [8, 9], sometimes referred to as damped

least-squares, is quite similar to the Gauss-Newton method. In fact, LM interpolates

between the method of gradient-descent and Gauss-Newton using a varying damping

17

parameter λ. Instead of the using the Gauss-Newton approximation to the Hessian,

as in the previous section, Levenberg replaced this term is replaced by a �damped�

version:

J(θk)
TJ(θk)→ J(θk)

TJ(θk) + λI (2.41)

where the damping parameter is adjusted at every iteration. Large values of λ steer

the minimization towards gradient-descent. Conversely, for small values ofλ the min-

imization is closer to GN.

Marquardt later improved convergence by scaling the identity matrix according to

the diagonal terms of GN Hessian approximation as in equation (2.42).

λI→ λdiag
(
J(θk)

TJ(θk)
)

(2.42)

The parameter update of equation (2.39) becomes:

∆θ = −
(
J(θk)

TJ(θk) + λdiag
(
J(θk)

TJ(θk)
))−1

J(θk)
T r(θk) (2.43)

This method along with other methods for solving nonlinear least squares problems

are used often in the areas of computer vision and robotics.

2.6 Random Sample Consensus (RANSAC)

Often, we wish to �t some model to a set of observations, even when the set contains

outliers- observations which are distant from other observations. A common method

for model �tting in the presence of outliers is the Random Sample Consensus method,

or RANSAC [10]. This iterative method estimates the parameters of a model from

a set of observations which are assumed to contain a subset of observations known

as inliers. Inliers are observations that can be well explained by some set of model

parameters.

18

RANSAC generally proceeds as follows:

1. A random set of samples is selected from all observations, often the minimum

amount needed to �t the model in question.

2. A model is �t to the randomly selected samples using some method of parameter

estimation.

3. All other samples are then checked against the model using some model speci�c

error function and partitioned into two sets: inlers, which lie close to the model

(below some problem speci�c threshold value), and outliers which do not.

4. The model is considered reasonable if a su�cient proportion of samples have

been classi�ed as inliers, in this case the model may be re�ned by reestimating

it using the inlier set to see if the model �t improves.

5. The entire procedure is repeated until some number of iterations is exceeded or

the model is considered to be a good �t to the data.

RANSAC is then capable of robust estimation, estimation of accurate model param-

eters even in the case of outliers. However, RANSAC is unbounded in terms of the

number of iterations required to compute accurate model parameters. In addition,

there is no guarantee that the accuracy of the currently estimated model increases

with the number of iterations, only that the probability of �nding an accurate model

increases.

RANSAC is applied in this thesis to estimate the parameters of both planar and

spherical models from detected 3D point samples. See sections 5.2.1 and 5.3.2 for

more detail.

2.7 Bayesian Classi�cation

The general goal of classi�cation is to �nd the class that the observed data best �ts

in. Bayesian classi�ers probabilistically relate input data to a �nite set of class labels

19

using conditional probability models for each class. Each of the K classes is modeled

by a conditional distribution which yields the likelihood of the class, Ck, given the

observed data, x, in terms of how likely the data is to be observed, given the class

is known. These probabilities are then used to make a classi�cation decision for the

observation.

2.7.1 Inference

Conditional relationships can be written using Bayes' theorem for conditional prob-

ability as equation (2.44)

P (A|B) =
P (B|A)P (A)

P (B)
(2.44)

where A and B are events, with P (A) > 0. Here the conditional probability, P (A|B),

which describes the likelihood of the occurrence of A, given B has occurred, is related

to the inverse conditional probability, P (B|A), and the marginal probabilities: P (A)

and P (B), which describe the likelihood of independently observing events A and B.

In terms of the class labels and the observed data, this relationship is given by

equation (2.45).

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
(2.45)

The class conditional density, P (x|Ck), is called the likelihood term, which yields the

likelihood that the data is observed given we know the observation belongs to the

class Ck. This term is often found by selecting an appropriate statistical model for

the class, e.g. Gaussian, and employing Maximum Likelihood Estimation (MLE) to

estimate the class conditional model parameters given class data. For more complex

models, e.g. mixture models, compound distributions, etc., iterative algorithms such

as the Expectation Maximization (EM) algorithm (see [11], section 9.4) or RANSAC

(see section 2.6) can be used to estimate these parameters. Note a likelihood density

20

is not required to be a probability distribution, i.e.
∑

x P (x|Ck) is not required to

be 1.

The prior probability, P (Ck), gives the probability of the class before (prior to)

considering the observation. This density is used to express one's prior beliefs about

the likelihood of the class before any observations are made. For example, a simple

prior for the kth class can be generated by taking the proportion of the training data

belonging to the kth class.

The evidence term, P (x), is the same across classes and can be found strictly using

terms from the numerator of Bayes' theorem as shown in equation (2.46).

P (x) =
∑
k

P (x|Ck)P (Ck)

= P (x|C1)P (C1) + P (x|C2)P (C2) + ...+ P (x|CK)P (CK) (2.46)

The evidence term is often treated as a normalizer, since it normalizes the product

of the likelihood and prior across all possible classes, allowing them to be expressed

as a probability density.

Finally, the posterior probability, P (Ck|x), yields the probability that the class label

is Ck given the observed data. Directly estimating this distribution can be challenging,

but as shown, can be described in terms of known quantities using Bayesian inference.

Discriminative models seek to model this posterior directly, while generative models

model the class conditional densities and class priors, and are capable of generating

synthetic input data by sampling the resulting distribution.

2.7.2 Decision

Once the class posterior distributions have been estimated, we wish to estimate

the the class, Ĉk, that maximizes the posterior. This is known as the maximum a

posteriori (MAP) decision rule and is shown in equation (2.47).

21

Ĉk = argmax
k

P (Ck|x) = argmax
k

P (x|Ck)P (Ck) (2.47)

We can ignore the evidence term since it is but a normalization constant, and replace

the posterior with the product of the likelihood and the prior. Furthermore, we can

maximize what is known as the log likelihood, as in equation (2.48), which can greatly

simplify computation. The natural logarithm is a monotonically increasing function,

and thus does not change the location of the maximum.

Ĉk = argmax
k

ln (P (x|Ck)P (Ck))

= argmax
k

(lnP (x|Ck) + lnP (Ck)) (2.48)

In this thesis, we apply a Bayesian classi�er in order to classify color image pixels

as belonging to a set of color classes of interest. See section 5.3.2 for more detail.

2.8 Least Squares Plane Fitting

In this thesis, in order to �t planar models to sets of 3D points, we leverage a least

squares formulation to compute the coe�cients of the plane that minimizes the error

functions presented.

2.8.1 Implicit Plane Fitting to Point Cloud Data

This section discusses the typical approach for 3D plane �tting which estimated

the plane when expressed as an implicit polynomial. This method seeks to minimize

the square of the perpendicular distance between N measured (X, Y, Z) data points

and the estimated planar model, i.e.,

ε(a, b, c, d) = min
a,b,c,d

N∑
i=1

‖aXi + bYi + cZi + d‖2 (2.49)

22

We re-write this objective function as a quadratic matrix-vector product by de�ning

the vector α = [a b c d]t as the vector of planar coe�cients and the matrix M

as the matrix of planar monomials formed from the measured (X, Y, Z) surface data

having ith rowMi = [Xi Yi Zi 1]. Using this notation, the optimization function

becomes:

ε(α) = min
α
αtMtMα

Solving for the unknown plane equation coe�cients requires a constraint on the

coe�cient vector: ‖α‖2 = αtα = 1 to avoid the trivial solution α = 0. Equation

(2.50) incorporates this constraint as a Lagrange multiplier.

ε(α) = min
α

(
αtMtMα− λ

(
αtIα− 1

))
(2.50)

Taking the derivative of the error function then provides

dε(α)

dα
= min

α

((
MtM− λI

)
α
)

(2.51)

Then from [?, ?, ?] the minimizer is known to be α̂, the eigenvector associated with

the smallest eigenvalue of the matrix MtM (also known as the scatter matrix). In

general, MtM is a symmetric matrix and, for the monomials Mi = [Xi Yi Zi 1],

the elements of this matrix are

MtM =
N∑
i=1

X2
i XiYi XiZi Xi

XiYi Y 2
i YiZi Yi

XiZi YiZi Z2
i Zi

Xi Yi Zi 1

(2.52)

Fitting implicit planar surfaces to point cloud data has become the de-facto stan-

dard for point cloud processing algorithms and is now part of many standard point

cloud and image processing libraries, e.g., OpenCV and PCL (Point Cloud Library)

23

[12, 13]. It's popularity is due to it's relatively low computational cost and Euclidean

invariance.

2.8.2 Explicit Plane Fitting to Point Cloud Data

The explicit formulation seeks to minimize the square of the distance between the

measured data points and the estimated planar model with respect to the plane at

Z = 0 or the XY−plane as shown by the objective function in equation (2.53).

ε(a, b, c) = min
a,b,c

N∑
i=1

(aXi + bYi + c− Zi)2 (2.53)

Note that, in contrast to equation (2.49), this planar model has explicit form

f(X, Y) = Z. Minimization of this error seeks to estimate the Z-o�set, c, and slope

of the plane with respect to the x-axis, a, and y-axis, b.

To optimize this function, we re-write the objective function as a quadratic matrix-

vector product by de�ning the vector α = [a b c]t as the vector of planar coef-

�cients, the vector b = [Z0 Z1 . . . ZN]t which denotes the target depth values

and the matrix M as the matrix of planar monomials formed from the 3D (X, Y, Z)

surface data having ith row Mi = [Xi Yi 1]. Using this notation, the optimization

function becomes:

ε(α) = min
α

(
αtMtMα− 2αtMtb + btb

)
Taking the derivative of the error function and setting it to zero provides:

dε(α)

dα
= MtMα−Mtb = 0 (2.54)

A solution to this system of equations is obtained via α̂ = (MtM)
−1

Mtb. Again,

MtM is a symmetric matrix and, for the monomialsMi = [Xi Yi 1], the elements

of the matrix-vector product are

24

MtM =
N∑
i=1

X2
i XiYi Xi

XiYi Y 2
i Yi

Xi Yi 1

 ,Mtb =
N∑
i=1

Zi

Xi

Yi

1

 (2.55)

When surface measurements are normally distributed, explicit �tting methods per-

form similarly to implicit methods. However, there is bias associated with the explicit

�tting objective function. Speci�cally, errors for explicit �ts are are measured along

the Z axis. This has the e�ect that, in contrast to the implicit �tting approach,

the estimated coe�cients are not Euclidean invariant. For this reason explicit �tting

methods are less popular for point cloud data.

CHAPTER 3: DENSE VISUAL ODOMETRY

This chapter investigates the theory and implementation of a direct visual odometry

algorithm leveraged by the SLAM approach discussed in later chapters. This chapter

provides in depth analysis and presents a reference implementation for this odometry

approach.

3.1 Direct Visual Odometry

Methods of visual odometry that utilize all incoming visual data are referred to as

direct methods. This is in contrast to sparse or feature-based odometry approaches,

where incoming data is processed to extract image features or key points, which

are then matched between images. However, during this feature extraction process,

sparse approaches leave much of the remaining image information to be discarded.

The thought is by making use of all available information in the image, a more

accurate estimate of camera motion can be attained.

Recently, a number of direct visual odometry methods based on the minimization

of reprojection error have been shown to provide high accuracy camera tracking and

the ability to run in real-time. Comport et al [14], detailed a method based on stereo

images which minimizes intensity error. Steinbrücker et al. [15], minimize intensity

error over RGBD image pairs and show that their method is more accurate than a

state of the art ICP approach for small displacements. Tykkälä et al. [16], minimize

both intensity and depth error over RGBD image pairs and show that this improves

the estimation compared to minimizing intensity error alone. Kerl et al. [17, 18], also

minimize both intensity and depth error for RGBD images, and improve robustness

by incorporating motion priors and more sophisticated residual weighting. Kerl et

26

al. also provide an optimized C++ implementation which they call Dense Visual

Odometry (DVO). These methods are all variations and extensions of Lucas-Kanade

image alignment [19], using alignment results between images for odometry.

3.2 Image Alignment

Fundamentally, the dense formulation of the motion estimation is an image align-

ment problem. That is, we seek the transformation that best explains di�erences

between two images of the same scene taken at di�erent points in time. Given two

images and the camera motion between them, one can take the information (intensity,

depth, or both) in one image, and through a series of projections and transformation,

map these values into the viewpoint of the other image. In this case the di�erence

between expected and observed values of these images should be zero if the motion

of the camera is known exactly and sensor noise and other outside in�uences can be

ignored. In reality this is not the case, however, the error metric described is a suit-

able metric for an optimization formulation that can be used to estimate this camera

motion.

3.3 Formalisms

More formally, given an image with intensity and depth information (I1, Z1) and

a second image taken at a later point in time (I2, Z2) we seek to estimate the set

of transformation parameters ξe, that best aligns the images after a warp function

w(T,x) is applied. The notation here follows loosely the notation of Kerl et al. in

[17]. Here, ξe is the 6x1 vector of twist parameters corresponding to the rigid body

transformation being estimated (see section 2.4 for more detail). The warp function,

w(T,x), computes the warped pixel location in second image, x′, of the image pixel,

x, from the �rst image given a transformation τ :

x′ = w(τξ,x) = ρ(τξ(ρ
−1(x, Z1(x)))) (3.1)

27

Figure 3.1: The warp function that map pixels between images through: (1) recon-
struction (inverse projection with known depth), (2) transformation of the recon-
structed point, and (3) projection projection of the transformed point into the other
image. Figure modi�ed from [20].

where the projection, ρ, and the transformation τ are discussed in Sections 2.1 and

2.4.3 respectively. Here, τξ(p) is de�ned as

τξ(p) = τ(Tξ,p) (3.2)

where Tξ is the 4x4 homogeneous transformation matrix corresponding to the twist

parameters ξ. As shown in �gure 3.1, the warp function maps pixel x to pixel x′

through reconstruction of the 3D point (x → p), transformation (p → p′), and pro-

jection (p′ → x′).

3.4 Inverse Compositional Approach

Baker and Matthews in [21], discuss four major variations of the original Lucas-

Kanade algorithm for iterative image alignment. The goal of Lucas-Kanade is to

align a template image T (x) to an input image I(x) by least squares minimization as

discussed heretofore. In terms of the intensity and depth images already de�ned, the

template image corresponds to the second image and the input image corresponds to

�rst image. Formally,

28

TI(x) = I2(x) (3.3)

TZ(x) = Z2(x) (3.4)

II(x) = I1(x) (3.5)

IZ(x) = Z ′1(x) (3.6)

They prove equivalence between all methods discussed but note that there are im-

portant considerations in regards to computational e�ciency.

The approach they �nd to be most e�cient is termed the inverse compositional

approach. This is the approach most similar to the methods used by Kerl et al., and

others. It is a compositional method as it estimates an incremental transformation

that is then composed with the current estimate at every iteration, ξ ← ξ ◦ ∆ξ,

unlike the more traditional additive approach where the increment is added to the

estimate, ξ ← ξ + ∆ξ. This leads to the linearizion being performed about ∆ξ = 0

(the identity transformation), which simpli�es the Jacobian evaluation, allowing it to

be precomputed.

This approach is deemed an inverse approach as the roles of template image and

input image in the traditional Lucas-Kanade formulation are reversed. Simply put,

the estimated transformation that would move to align the template image to the

input image at each iteration is computed, but instead of applying this transformation

on the template image, we compute the inverse and transform the input image in its

stead. This leads to a number of advantages compared to other methods. First

the image gradients of the template image do not change, and therefore only need

to be computed once, instead of at every iteration. This means the gradient vector

contributions for each pixel can also be precomputed and therefore the Gauss-Newton

approximation to the Hessian.

29

3.4.1 Minimization

Using this formulation, the error function can be written as

f(ξ) =
1

2

∑
x

(T (w(τξ, w(τ∆ξ,x)))− I(x))2 (3.7)

=
1

2

∑
x

r(x)2

Note that the warp function de�ned in equation (3.1) is in a sense the opposite from

the one used by Baker and Matthews. In [21], the warp function maps pixel values

in the template image to pixel values in the input image, while in this case the warp

function maps pixel values in the input image to pixel values in the template image.

Note also that the error term above is nonlinear, and we therefore �nd ourselves in

the midst of a nonlinear least squares problem. As discussed in section 2.5.1, such

problems can often be solved by the method of Gauss-Newton. Taking the derivative

and equating to zero yields

∂f(ξ)

∂ξ
=
∑
x

r(x)
∂r(x)

∂ξ
= 0 (3.8)

after linearization about ∆ξ = 0, this becomes

∑
x

∂ro(x)

∂ξ
(ro(x) +

∂ro(x)

∂ξ
∆ξ) = 0 (3.9)

∑
x

Jx(0)T (ro(x) + Jx(0)∆ξ)) = 0 (3.10)

where

ro(x) = T (w(τξ,x))− I(x) (3.11)

30

Jx(0) =
∂ro(x)

∂ξ
=

∂

∂ξ
T (w(τξ,x))− 0 = ∇T (x)T

∂w

∂ξ
|ξ=0 = ∇T (x)TJw(x, 0) (3.12)

Here Jw(0) = ∂w
∂ξ
|ξ=0 is derivative of the warp function evaluated at the identity. The

warp is evaluated here as the template image never moves. Then, equation (3.10)

after simpli�cation is given by

∑
x

Jx(0)TJx(0)∆ξ = −
∑
x

Jx(0)T ro(x) (3.13)

where the Gauss-Newton approximation to the Hessian is given by

H =
∑
x

Jx(0)TJx(0) =
∑
x

[
∇T (x)TJw(x, 0)

]T [∇T (x)TJw(x, 0)
]

(3.14)

Finally, the parameter update is then given by

∆ξ = −H−1
∑
x

Jx(0)T ro(x) (3.15)

= −H−1
∑
x

[
∇T (x)TJw(x, 0)

]T
(T (w(τξ,x))− I(x)) (3.16)

Once solved for, the transformation parameters are then updated via composition,

ξ ← ξ ◦ (∆ξ)−1.

3.4.2 Algorithm Outline

The inverse compositional approach is outlined below. This solves the nonlinear

least squares problem as discussed in section 2.5.1.

• Precomputation Stage

� Compute the image gradients of the template image, ∇TI(x) = ∇I2 for

intensity, or ∇TZ(x) = ∇Z2 for depth

31

� Evaluate the Jacobian mapping the image (x, y) gradients to the space of

the parameters at the identity, Jw(x)

� Compute the gradient vectors for each residual J(x) = ∇T (x)TJw(x, 0)

� Compute the Gauss-Newton Hessian approximation, H =
∑

x J(x)TJ(x)

• Iteration

� Compute the residuals rI(x) = TI(w(τξ,x))−II(x) for intensity, or rZ(x) =

TZ(w(τξ,x))− I ′Z(x) for depth

� Compute the sum of the residual weighted gradient vectors,
∑

x J(x)T r(x)

� Compute the parameter update, ∆ξ = −H−1
∑

x J(x)T r(x)

� Update the parameters through composition with inverse transformation

of the update, ξ ← ξ ◦ (∆ξ)−1

The parameter update step is performed by computing the homogeneous transforma-

tion matrices of ξ and ∆ξ via the exponential map, and the update is applied via

premultiplication with the current parameters as shown in equation (3.17)

ξ̂ ← log((e∆̂ξ)−1 · eξ̂) (3.17)

where ξ̂ is the twist matrix with corresponding parameters ξ, and log(·) is the log

map as discussed in section 2.4.3.

Note, in practice not all of the techniques for computational savings discussed in

section 3.4 are applied since this would require interpolation over these precomputed

gradient vectors. We �nd this interpolation leads to a degradation in the conver-

gence and accuracy of the estimation. Therefore, computational savings that one

might a�ord from some precomputation strategies are o�set by degraded convergence

characteristics.

32

3.5 Error Functions

A variety of error functions can now be formulated to minimize errors in intensity,

depth, or both. To simplify notation, let

RI,i = I2(w(τξ, w(τ∆ξ,xi)))− I1(xi) (3.18)

RZ,i = Z2(w(τξ, w(τ∆ξ,xi)))− Z ′1(xi) (3.19)

be the ith residual in intensity and depth respectively, and the vectors RI and RZ

represent the N × 1 vectors of intensity and depth residuals. To minimize intensity

error alone,

ξI = arg min
ξ

N∑
i=1

R2
I,i = arg min

ξ
(RT

I RI) (3.20)

similarly, to minimize depth error alone,

ξZ = arg min
ξ

N∑
i=1

R2
Z,i = arg min

ξ
(RT

ZRZ) (3.21)

The simultaneous minimization of intensity and depth errors can be accomplished

in a variety of ways. The most simple would be a minimization over the weighted

linear combination of the residuals such as,

ξI,Z = arg min
ξ

N∑
i=1

R2
Z,i + λ2R2

Z,i = arg min
ξ

(RT
I RI + λ2RT

ZRZ) (3.22)

Tykkälä et al. in [16], discuss various methods for choosing an appropriate value

for the weight λ. The choice of this parameter has a direct e�ect on the minimization

since it steers the reduction of the error towards depth or intensity depending on its

value. This value must strike a balance between errors in depth, which can small or

on the order of a few meters, and errors in intensity which can be on the order of

33

0-255 and have a less clear geometric interpretation.

Of course, other more sophisticated cost functions can be used for the minimization.

For example, Kerl et al. in [17], dynamically weight residuals by a scaling matrix

based on the covariance of the intensity and depth residuals. Gutiérrez-Gómez et

al. in [22], parameterize the depth residuals using an inverse depth metric. These

authors also weight all residuals based on how well the errors �t a given distribution,

such as the Tukey, Huber, or Student's t-distribution. This is performed in an e�ort

to remove outlier residuals and improve the robustness of the estimator. Babu et

al. in [20] extend DVO by using a known noise model for depth estimates to weight

depth residuals by their uncertainty, resulting in more accurate odometry.

3.6 Minimization

Suppose we wish to minimize over the linear combination of intensity and depth

residuals, as in equation (3.22):

ξI,Z = arg min
ξ

1

2

N∑
i=1

(R2
I,i + λ2R2

Z,i) = arg min
ξ

(
1

2
(RT

I RI + λ2RT
ZRZ))

We note the error function for this problem is given the linear combination of error

functions

f(ξ) =
1

2

N∑
i=1

R2
I,i +

1

2

N∑
i=1

(λRZ,i)
2 (3.23)

we can then linearize and solve these individually as in section 3.4.1. The solution

has the form

N∑
i=1

(
JTI,iJI,i + JTZ,iJZ,i

)
∆ξ = −

N∑
i=1

(
JTI,irI,i + λJTZ,irZ,i

)
(3.24)

where the linearized residuals in intensity and depth respectively for a given pixel, x,

are be de�ned as

34

rlin,I = rI + JI∆ξ (3.25)

rlin,Z = rZ + JZ∆ξ (3.26)

and

rI = I2(w(τξ,x))− I1(x) (3.27)

rZ = Z2(w(τξ,x))− Z ′1(x) (3.28)

where Z ′1(x) = [τξ(ρ
−1(x, Z1(x)))]Z , and the operator [·]Z extracts the third com-

ponent (Z) from the point p. The intensity error is then the di�erence between I2

evaluated at the warped pixel location, and I1 evaluated at the pixel x. The depth

error is then the di�erence between Z2 evaluated at the warped pixel location, and

the Z value of the point reconstructed from Z1 at pixel location x after being trans-

formed by the transformation corresponding to the values of ξ. The image, Z ′1 is

considered constant at each iteration and therefore does not depend on the values of

the transformation.

In order to solve for the parameter update, ∆ξ, as in equation (2.39), we must

compute the Jacobian of the residuals, J(θk), whose rows correspond to the gradient

of the ith residual with respect to the transformation parameters, ξ. That is, we must

provide a mapping from the space of the residuals into the space of the parameters,

ξ. However, we note that we have two types of residual, in both intensity and depth,

which impose their constraints on the minimization in di�erent ways. Thus, we can

expect that the gradient vectors for these residuals will di�er. The gradient vector

35

for a given intensity residual is then

JI,i =
∂rI,i
∂ξ

=
∂

∂ξ
(I2(w(τξ,x))− I1(x)) (3.29)

=
∂

∂ξ
I2(w(τξ,x))− 0

=

[
∂I2

∂ρ

]
1×2

[
∂ρ

∂τ

∂τ

∂T

∂T

∂ξ

]
2×6

= JI2JρJτJT = JI2Jw

and the gradient vector for a given depth residual is

JZ,i =
∂rZ,i
∂ξ

=
∂

∂ξ
(Z2(w(τξ,x))− Z ′1(x)) (3.30)

=
∂

∂ξ
Z2(w(τξ,x))− 0

=

[
∂Z2

∂x
∂Z2

∂y
∂Z2

∂Z

] ∂ρ
∂τ

∂τ
∂T

∂T
∂ξ[

∂τ
∂T

∂T
∂ξ

]
Z

3×6

=

[
∂Z2

∂ρ
∂Z2

∂Z

]
1×3

JρJτJT
[JτJT]Z

3×6

=

[
JZ2

∂Z2

∂Z

]
1×3

 Jw

[JτJT]Z

3×6

(3.31)

where [JτJT]Z extracts the 3rd row of the product of the Jacobians, JτJT . The

derivative ∂Z2

∂Z
is found by expressing Z2(x) = Z2(x, y) implicitly as

zo − Z2(x, y) = 0 (3.32)

and taking the derivative with respect to Z

∂

∂Z
zo −

∂

∂Z
Z2(x, y) = 0− 1 (3.33)

∂

∂Z
Z2(x, y) =− 1 (3.34)

36

Equation (3.30) can then be written as

JZ,i =

[
JZ2 −1

]
1×3

 Jw

[JτJT]Z

3×6

= JZ2Jw − [JτJT]Z (3.35)

The Jacobians JI2 and JZ2 are of size 1× 2 and are the (x, y) image gradients in the

second intensity image, I2, and the second depth image, Z2, respectively. Formally,

JI2 =
∂I2

∂ρ
|x=ρ(τ(T(0),pi))=xi

=

[
∂I2
∂x

∂I2
∂y

]
(3.36)

and

JZ2 =
∂Z2

∂ρ
|x=ρ(τ(T(0),pi))=xi

=

[
∂Z2

∂x
∂Z2

∂y

]
(3.37)

The product Jw = JρJτJT is the Jacobian of the warp function, which is the product

of the Jacobians of the projection, ρ, the transformation τ , and the exponential map

which maps the homogeneous transformation into the exponential coordinates of the

parameters. This product maps values in the space of the (x, y) image gradients to

the space of the parameters ξ. Jρ can be derived by taking the projection mapping

as a 2-vector and di�erentiating with respect to the point coordinates (X, Y, Z),

Jρ =
∂ρ

∂τ
|p=τ(T(0),pi)=pi

= ∇p

fxXZ + cx

fy
Y
Z

+ cy

 =

fxZ 0 −fx XZ2

0 fy
Z
−fy YZ2

 (3.38)

as the result of transformation at the identity, τ(T(0),pi), is no motion.

The product JτJT is a 3×6 matrix corresponding to the Jacobian of a point under

transformation, mapped to the space of the transformation parameters, ξ, through the

exponential map. Jτ can then be found by taking the gradient of the transformation

mapping, p′ = τ(T,p) = Rp + t, with respect to the 12 parameters of the homoge-

neous transformation, [r11, r21, r31, r12, r22, r32, r13, r23, r33, tX , tY , tZ]T ,

37

Jτ =
∂τ(T,p)

∂T
|T=T(0),p=pi

= ∇Tp
′ = ∇T

r11X + r12Y + r13Z + tX

r21X + r22Y + r23Z + tY

r31X + r32Y + r33Z + tZ

=

X 0 0 Y 0 0 Z 0 0 1 0 0

0 X 0 0 Y 0 0 Z 0 0 1 0

0 0 X 0 0 Y 0 0 Z 0 0 1

 (3.39)

JT is then found by taking the gradient of the 12 transformation parameter with

respect to the twist coordinates. This is performed taking the 12 stacked elements of

T and taking the gradient with respect to the components of ξ at the identity (ξ = 0).

This is given by

JT =
∂T

∂ξ
|ξ=0 = ∇ξT =

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

(3.40)

To compute the derivatives of the rotation matrix entries with respect to the rotation

vector, Gallego and Yezzi in [5] show that they are given by the skew-symmetric

38

generators of the rotation group. They provide a formula for these derivatives in

terms of the rotation vector components. When written symbolically and evaluated

at the identity rotation, indeed the generators of rotation group are observed. The

transpose of these 3 × 3 skew-symmetric generators are found stacked in the upper

9× 3 block of JT.

The product, JτJT, is then given by

JτJT =

1 0 0 0 Z −Y

0 1 0 −Z 0 X

0 0 1 Y −X 0

 (3.41)

and the product, Jw = JρJτJT, is then given by

Jw = JρJτJT =

fx 1
Z

0 −fx XZ2 −fxX·YZ2 fx(1 + X2

Z2) −fx YZ
0 fy

1
Z
−fy YZ2 −fy(1 + Y 2

Z2) fy
X·Y
Z2 fy

X
Z

 (3.42)

Finally, the gradient vectors for a given intensity and depth are respectively

JI,i = JI2Jw = JI2JρJτJT

=

[
∂I2
∂x

∂I2
∂y

]fx 1
Z

0 −fx XZ2 −fxX·YZ2 fx(1 + X2

Z2) −fx YZ
0 fy

1
Z
−fy YZ2 −fy(1 + Y 2

Z2) fy
X·Y
Z2 fy

X
Z

 (3.43)

39

JZ,i =

[
∂Z2

∂x
∂Z2

∂y
−1

] Jw

[JτJT]Z

3×6

=

[
∂Z2

∂x
∂Z2

∂y
−1

]
fx

1
Z

0 −fx XZ2 −fxX·YZ2 fx(1 + X2

Z2) −fx YZ
0 fy

1
Z
−fy YZ2 −fy(1 + Y 2

Z2) fy
X·Y
Z2 fy

X
Z

0 0 1 Y −X 0

= JZ2Jw − [JτJT]Z

=

[
∂Z2

∂x
∂Z2

∂y

]fx 1
Z

0 −fx XZ2 −fxX·YZ2 fx(1 + X2

Z2) −fx YZ
0 fy

1
Z
−fy YZ2 −fy(1 + Y 2

Z2) fy
X·Y
Z2 fy

X
Z

−
[
0 0 1 Y −X 0

]

Note the gradient vector for a depth residual given in equation (3.30) is of similar

form to that of the intensity residual, but subtracts away the 3rd row or the Z

component of JτJT. This characterizes a change in the transformation parameters

for a motion in the Z direction. This occurs because the nature of the values in depth

images, which impose this additional geometric constraint on the minimization. For

example, consider moving a camera along its optical axis while taking images. The

change in the values of the depth image for this motion will be quite di�erent from

the change in the values of the corresponding intensity image. If moving towards, say,

a large planar surface with little texture, the change in the intensity image will be

almost zero, while the values of the depth image will change according to the camera

motion.

40

We can now solve for the Gauss-Newton parameter update

n∑
i=1

(JTI,iJI,i + JTZ,iJZ,i)∆ξ = −
n∑
i=1

(JTI,irI,i + λJTZ,irZ,i) (3.44)

or equivalently over the pixels, x,

∑
x

(JI(x)TJI(x) + JZ(x)TJZ(x))∆ξ = −
∑
x

(JI(x)T rZ(x) + λJZ(x)T rZ(x)) (3.45)

If we let J represent the stacked matrix of intensity and depth gradients

J =

JI
JZ

 (3.46)

and rI , rZ as the vectors of intensity and depth residuals, then we may write in matrix

form

JTJ∆ξ = −JT

rI
rZ

 (3.47)

and the parameter update is given by

∆ξ = −(JTJ)−1JT

 rI

λrZ

 (3.48)

3.7 Implementation

A reference implementation for this odometry approach was developed which min-

imizes a linear combination of intensity and depth error in the spirit of the inverse

compositional approach as discussed so far. The algorithm is outlined in Algorithm

3.1. This reference implementation was written in C++ and achieves a framerate of

41

~25 frames per second. In an e�ort to increase e�ciency, lines 14-26 in Algorithm 3.1

are performed in parallel. We also adopt a coarse-to-�ne approach for the estimation,

where the motion is estimated starting with downsampled versions of the input images

and the estimate is successively re�ned at each level, i.e. with increasing resolution.

This approach not only increases the robustness of the estimation to larger camera

displacements, it also aids in convergence as the initial estimate for the motion at a

given resolution has already been estimated from the previous level.

Note there are several implementation di�erences in this version when compared

to the algorithm outline described in section 3.4.1. First, note that the gradient

vectors and Hessian matrix are computed at every iteration in this implementation-

they are not precomputed. As previously noted, we �nd that precomputation of

these entities later requires them to be interpolated, and error introduced at this

step leads to degradation in the convergence and accuracy of the estimation. Also

note that the parameter update step is performed by computing the homogeneous

transformation matrices of ξ and ∆ξ via the exponential map, and the update is

applied via premultiplication with the current parameters as shown in equation (3.49)

ξ̂ ← log((e∆̂ξ)−1 · eξ̂) (3.49)

where ξ̂ is the twist matrix with corresponding parameters ξ, and log(·) is the log

map as discussed in section 2.4.3. As written in Baker and Matthews in [21], this

update could be interpreted as a postmultiplication.

Due to its accuracy and speed, this odometry approach seems to be an appropriate

candidate for use as part of a SLAM system. Incorporation of this approach into

a full SLAM system can provide accurate low drift camera pose tracking. This is

crucial for the successful detection, tracking, and integration of objects and object

subcomponents as part of a more sophisticated recognition system.

42

Algorithm 3.1 Odometry Estimation from RGBD Image Pair

Require: (I1, Z1) and (I2, Z2) are valid RGBD images
1: function estimateOdometry(I1, Z1, I2, Z2, ξo)
2: ∇I2 ← gradient(I2) . (x, y) image gradient of ∇I2

3: ∇Z2 ← gradient(Z2) . (x, y) image gradient of ∇Z2

4: C1 ← reconstruct(Z1) . compute pointcloud of Z1

5: ξ ← ξo
6: ∆ξ ← 0

7: e ← 0
8: elast ← ∞
9: k ← 0

10: while elast − e > ε and k ≤ kmax do
11: n ← 0
12: r ← [] . vector of residual values
13: J ← [] . matrix of gradient vectors
14: for p in C1 do

15: x ← pixel(p) . get pixel corresponding to p
16: p′ ← transform(p, ξ)
17: pim ← project(p′)
18: if pim in image bounds then
19: i ← interpolate(I2, pim)
20: z ← interpolate(Z2, pim)
21: i∇ ← interpolate(∇I2, pim)
22: z∇ ← interpolate(∇Z2, pim)
23: rI ← i− I1(x) . intensity residual
24: rZ ← z − p′z . depth residual
25: JI ← intensityJacobian(p, i∇) . intensity gradient vector
26: JZ ← depthJacobian(p, z∇) . depth gradient vector
27: r.append(rI , λ · rZ)
28: J.append(JI , JZ)
29: n ← n+ 1
30: end if

31: end for

32: e ← rT r

33: if e < elast and n ≥ 6 then

34: ξ ← ξ ◦ (∆ξ)−1 . update ξ if error decreased
35: ∆ξ ← (JTJ)−1JT r . solve for increment
36: else break

37: end if

38: k ← k + 1
39: end while

40: return ξ−1

41: end function

CHAPTER 4: STATE OF THE ART IN DENSE SLAM

This chapter provides a background on graph SLAM, dense SLAM, and details the

speci�c dense SLAM implementation (DVO SLAM) to be extended.

4.1 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mo-

bile robotics. The SLAM problem involves the simultaneous construction of a map

of the environment as well as localization within this map. An agent, e.g. robot,

camera, etc., capable of motion generates measurements of its own movement as well

as observations of map features. These measurements are used to estimate both the

agent pose as well as the pose of detected map features (often called landmarks).

Landmarks are used to better estimate the agent pose, which leads to more accurate

landmark estimates, and so on. Over time, a successful SLAM system can construct

an accurate environmental map and estimate the pose of the agent as it moves through

the environment.

4.1.1 Graph SLAM

Graph SLAM approaches model the SLAM problem as a sparse graph, and seek to

estimate the full trajectory of the agent, i.e. the sequence of poses x1:T , along with

a map, m, of the environment. This is also known as the full SLAM problem, which

estimates all previous states of the agent trajectory. This is in contrast to �ltering

based approaches, which seek to solve the incremental or on-line SLAM problem,

whereby previous state estimates are marginalized out.

As the agent moves through the unknown scene it may generate estimates of its

movement from odometry estimates or using a motion model. It may also observa-

44

tions of features or landmarks in the environment. The full SLAM problem is then

formulated as the estimation of the posterior probability of the trajectory, x1:T , and

the environmental map, m, given a sequence of motion estimates, u1:T , landmark

measurements, z1:T , and the initial pose xo as in equation (4.1).

p(x1:T ,m|u1:T , z1:T , xo) (4.1)

Modeling the full SLAM problem in a graphical way leads to an optimization prob-

lem over a sum of nonlinear quadratic constraints in the graph. These constraints

are built up over time as the agent explores the environment in the form of both

motion and measurement constraints. In this formulation, agent and landmark poses

correspond to graph vertices, while the edges represent spatial constraints (transfor-

mations) between these vertices as a Gaussian distribution.

Motion estimates form a constraint directly between agent poses, while landmark

measurements form constraints between agent poses through the mutual observation

of a landmark. Individual measurements therefore link poses to the landmarks in

the graph, and during the optimization these measurements are then mapped to

constraints between poses that observed the same landmark at di�erent points in

time.

Once the graph is constructed, we seek the con�guration of the graph vertices that

best satis�es the set of constraints. That is, we seek a Gaussian approximation of

the posterior distribution of Equation (4.1). The optimal trajectory, x?, is estimated

by minimizing over the joint log-likelihood of all constraints as described by equation

(4.2). [23]

45

x? = argmin
x

(
xTo Ωoxo +

∑
t

[xt − g(ut, xt−1)]TR−1
t [xt − g(ut, xt−1)]

+
∑
t

[zt − h(xt,mi)]
TQ−1

t [zt − h(xt,mi)]

)
(4.2)

The leftmost term, xTo Ωoxo, represents our prior knowledge of the initial pose.

Often, xo, is set to zero, anchoring the beginning of the trajectory to the global

coordinate system origin.

The middle term describes a sum over the motion constraints, where g(ut, xt−1) is

a function that computes the pose resulting from applying the odometry estimate ob-

tained at time t, ut, to the pose xt−1. The residual vector, xt− g(ut, xt−1), is then the

di�erence between the expected pose, xt, and the pose observed by applying the mo-

tion estimate. The matrix R−1
t is the information matrix or inverse covariance matrix

associated with the motion constraint at time t. This matrix encodes the precision

or certainty of the measurement, and serves to weight the constraint appropriately in

the optimization.

The rightmost term describes a sum over landmark constraints. The function

h(xt,mi) computes a global pose estimate of a given landmark, mi, using a local

measurement of the landmark and the pose of the agent, xt, when the landmark was

observed. The residual zt − h(xt,mi), is then the di�erence between the expected

landmark pose in the global coordinate system, and the estimated global landmark

pose resulting from the local landmark measurement. As before, the matrix Q−1
t is

the information matrix or inverse covariance matrix associated with the landmark

constraint at time t.

46

4.1.1.1 Minimization

Minimization of this error function is a nonlinear least squares problem, and can

certainly be solved using one of the methods described in section 2.5.1. It can also be

solved e�ciently by exploiting the sparse structure of the graph SLAM formulation

[24], thereby allowing the use of sparse methods such as sparse Cholesky decomposi-

tion or the method of conjugate gradient. Many graph optimization libraries, such as

the g2o library [25], leverage these sparse methods in order to quickly optimize large

graphs.

4.2 Visual SLAM Overview

Visual SLAM refers to the class of solutions that leverage vision sensors such as

conventional cameras and, more recently, systems capable of detecting 3D geometry

such as stereo camera pairs, LiDAR (Light Distance and Ranging) sensors, and RGBD

sensors. SLAM systems that leverage RGBD sensors are particularly popular as they

provide both surface color and surface geometry information at every pixel location.

4.2.1 Pose Graph (Keyframe) SLAM

Visual graph SLAM solutions typically optimize over the poses of the vision sensor

using the visual data associated with each frame. Therefore, each camera pose is

associated with a frame of sensor data. As typical in graph SLAM, poses correspond

to graph vertices. Measurements of motion between poses are directly estimated

using visual odometry. These motion constraints are represented in the graph as

edges which describe the transformation and associated uncertainty as a Gaussian

distribution.

While optimizing over a complete set of poses in the graph leads to a more �ne-

grained trajectory estimate, this also signi�cantly increases computational cost. Often

the trajectory is sparsi�ed by selecting a subset of the camera poses over which to

optimize. These poses and their associated image data are called keyframes. Many

47

keyframe-based pose graph SLAM approaches represent the map in terms of the

data associated with the keyframes and their associated optimized poses. Once the

optimized trajectory has been solved for, the keyframe data is projected into the

global coordinate system forming the map.

Therefore, this class of visual SLAM solutions often represent the map in terms

of the available image data directly (direct methods) or in terms of extracted image

features i.e. keypoints (feature-based methods). Often the map data corresponds

to the data used for odometry estimation, thus methods employing direct odome-

try typically build dense point cloud maps, while methods employing feature-based

(keypoint) odometry typically result in sparse maps of these 3D keypoints.

4.3 Dense Visual SLAM

Visual SLAM approaches whose map representations consist of collections of many

unorganized primitives, such as 3D points, are referred to as dense approaches. Dense

visual SLAM methods often employ direct methods to estimate camera motion i.e.

they use color and depth/point cloud information directly, without extracting image

features. This subclass of visual SLAM methods has recently grown in popularity,

and have produced solutions with marked improvements in camera tracking and map

reconstruction accuracy.

4.3.1 Related Work

Much recent work in real-time visual SLAM involve direct methods where input

data is used directly with minimal processing and maps are dense. One of the �rst

of such methods, KinectFusion, proposed by Newcombe et al. [26], maintains a

map in the form of a dense global implict surface model using a truncated signed

distance function (TSDF), and uses a point-to-plane iterative closest point (ICP) [27]

minimization between incoming depth data and this TSDF surface model to perform

accurate camera tracking. Like many methods that employ dense maps, this method

48

struggles when the map becomes large due to increased memory requirements.

Kintinuous, proposed by Whelan et al. [28], improves upon KinectFusion by allow-

ing the mapping volume of the TSDF to move along with the camera. This drastically

reduces memory requirements and permits mapping of much larger environments

when compared to KinectFusion. In addition, this approach includes methods for

loop closure detection through bag-of-words place recognition and improved visual

odometry.

DVO SLAM, proposed by Kerl et al. [17, 18], bene�ts from low drift odometry via

minimization of both geometric and photometric reprojection error between RGBD

image pairs. The odometry is made robust by the incorporation of motion priors

and the weighting of errors based on how well they �t a dynamically estimated t-

distribution. This reduces the in�uence of residuals which have large photometric or

large geometric error, as they are likely to be outliers. The map in this approach

is modeled by a pose graph, where every vertex is a camera pose with associated

keyframe (intensity + depth), and edges represent the relative transformation between

keyframe poses. New keyframes are selected based on an entropy metric, and a similar

metric is used to identify loop closures. The map in this case consists of the points

associated with each keyframe/pose, which are projected into the global map based

on the optimized camera trajectory.

While these approaches perform well for building accurate maps in near real-time,

the resulting maps lack semantic description. Maps consisting purely of low-level

primitives such as points or non-parametric surfaces do little to further understanding

about what types of objects have been mapped or how an agent may interact with

them. In practice, many of these low-level primitives are in fact measurements of the

same surfaces and are therefore redundant if the nature of the underlying surfaces is

known. In such a case where a higher level representation of these primitives is known,

they may be replaced with this representation, avoiding computation associated with

49

processing many low-level primitives.

SLAM++, proposed by Salas-Moreno et al. [29], is an attempt at real-time object-

level SLAM. SLAM++ uses a database of object instances (de�ned o�ine) as poten-

tial landmarks to be detected from sensor depth data. This method uses a graph based

approach to the SLAM problem, where graph vertices correspond to both camera and

object poses and graph edges are relative transformations between these poses. Ob-

jects are detected and localized using a GPU accelerated version of the recognition

method proposed by Drost et al. [30]. This method uses a Hough Transform like

voting scheme operating in a parameter space. Votes are accumulated based on the

correspondence of Point-Pair Features computed from the data and from potential

object models. Detected objects with pose are then placed in the map as geomet-

ric landmarks for camera tracking. Sensed point clouds are aligned to the expected

views of map object models via a point-to-plane ICP algorithm [27]. Predicted views

of map objects aid in the recognition task by �masking o�� areas in the data that

they explain, reducing the search area for new objects.

However, this approach to geometric object detection requires object surface mod-

els to be a priori known in great detail, and has no �exibility in terms of object

parameters. Fixed databases such as this su�er from a lack of generality, i.e., one

must observe �the chair� from the database rather than �a chair.� Authors have pro-

posed introducing constraints from more general geometric surfaces often found in

the scene, such as planar surfaces.

Salas-Moreno et al. also proposed a real-time dense planar SLAM approach [31]

that leverages the predominantly planar structure of indoor scenes to e�ciently map

large regions of the scene that satisfy planar constraints. The map in this approach

contains �surfels�, small entities describing locally planar regions without connectivity.

Throughout the estimation procedure surfels considered planar are incrementally la-

beled as belonging to one of a set of detected planes. This results in a set of bounded

50

planar regions that explain large parts of the scene. Tracking is accomplished via

frame-model ICP alignment.

Yang et al. proposed a monocular SLAM algorithm that leverages geometric cues

from planar regions detected by a convolutional neural network and subsequent poly-

line �tting to the region boundary. Yang et al. extend a popular dense monocular

SLAM algorithm, LSD SLAM, proposed by Engel et al. [32, 33] by incorporating

detected planar regions as landmarks and using them to improve depth estimation,

leading to improvements in both camera tracking and dense reconstruction accuracy.

The estimated planar regions also provide invaluable semantic information about the

scene.

4.3.2 DVO SLAM

We have selected DVO SLAM, proposed by Kerl et al., as a dense visual SLAM

platform for extension. This section discusses the operation of the DVO SLAM algo-

rithm in depth, and provides speci�c insight for portions of the algorithm that will

be modi�ed and extended in the next chapter.

4.3.2.1 Overview

This system uses the direct odometry approach similar to the one discussed in chap-

ter 3, which minimizes both intensity and depth reprojection error between RGBD

image pairs, resulting in estimates of camera movement and associated uncertainty.

The SLAM optimization is implemented using a keyframe-based pose graph frame-

work where graph vertices are camera poses, and where a subset of these camera

poses contain associated RGBD images, called keyframes.

Keyframes form the root of spatially local maps whereby the tracking front-end

estimates the transformation between consecutive RGBD frames as well as to the

keyframe. This imposes odometry constraints on the camera trajectory that limits

drift. When odometry estimation between the current frame and the keyframe de-

51

Figure 4.1: A high-level overview of the DVO SLAM algorithm showing RGBD image
data in white and processes in blue. Note the separation of responsibilites between
the front-end and the back-end.

grades, a new keyframe is laid o� and tracking continues based o� of the new keyframe.

Constraints between nearby keyframes in the global graph are also considered to allow

for loop closures and to improve the trajectory estimate.

The map in this approach is simply the data associated with each keyframe. When

the optimal trajectory has been solved for, the data associated with each keyframe/-

pose is then projected into the global coordinate system, forming a dense colored

point cloud.

4.3.2.2 Front-end

The DVO SLAM front-end operates in a self-contained local mapping structure

rooted at a keyframe. The local graph structure is incrementally constructed over

time as the camera moves and new RGBD image frames are processed. When a new

RGBD image frame is obtained, odometry with associated uncertainty is estimated

between the previously processed frame as well as the keyframe, corresponding to

odometry edge constraints in the graph structure as in �gure 4.2. As discussed in

sections 4.1.1 and 4.2, these edges encode the relative transformation as a Gaussian

distribution.

When the odometry estimation between the current frame and the keyframe de-

grades, the current local map is packaged up and pushed to a queue to be processed

52

K

f1 f2

fn

...

Keyframe/Frame (pose)

Odometry Edge
(transformation)

Figure 4.2: DVO SLAM local graph structure showing odometry constraints between
consecutive frames/poses and the keyframe.

by the back-end. The current frame is promoted to a new keyframe which forms

the root of a new local map, tracking then continues in this manner. Kerl et al. in

[17] discuss various metrics used for determining when to select a new keyframe, in-

cluding a maximum translational and rotational distance from the current keyframe,

and a novel entropy ratio metric. The front-end does not directly interact with the

global graph structure on the back-end, instead the queue of local maps, �lled by the

front-end, is processed by the back-end as quickly as possible.

4.3.2.3 Back-end

The DVO SLAM back-end operates in a separate thread than the front-end. The

back-end manages the global graph, processes local maps from the front-end, and

handles optimization over the keyframe graph. Incoming local maps are popped from

the stack, and a local optimization is performed over all vertices in the local graph.

The local graph is then merged into the global graph structure, where it �hooks up�

to the most recent odometry vertex in the global graph as show in �gure 4.3.

At this point a keyframe constraint search begins, as shown in �gure 4.4. A radius

search rooted at the newly inserted keyframe identi�es nearby candidate keyframes

which may provide additional odometric constraints. Odometry estimation is then

performed between the root keyframe and the candidate keyframes, and valid con-

straints are added to the global graph. In this way, DVO SLAM can detect so-called

loop closures, whereby the SLAM system detects that the agent has returned to a

53

K4

f1 f2

fn

...

K3

K2

K1

Local Graph

Figure 4.3: DVO SLAM graph structure showing the local graph in relation to the
global keyframe graph.

K2

K3

K4

K5

K1

K6

Radius Search

Loop Closure
Constraint

Figure 4.4: DVO SLAM identi�es candidate keyframes for loop closure constraints.
When a new keyframe is added to the global graph, a radius identi�es existing nearby
keyframes as candidates to build constraints from. Dense odometry estimation is then
performed between the keyframe and candidate keyframes.

previously visited area.

The back-end then performs a global optimization over the keyframe subgraph,

consisting of the keyframe vertices and their associated edges, and excluding non-

keyframe vertices/edges. DVO SLAM employs Powell's dogleg method [34, 35] to

solve the global optimization. After optimization, the optimized set of keyframes

provides the most likely camera trajectory given all constraints. Figure 4.5 shows a

visualization of the DVO SLAM algorithm.

54

Figure 4.5: Visualization of the camera trajectory and the dense point cloud map of
DVO SLAM.

CHAPTER 5: IMPROVING DENSE SLAM USING DETECTED GEOMETRIES

While dense mapping approaches perform well in terms of camera tracking and re-

construction accuracy, leveraging direct tracking approaches and incorporating sparse

yet semantic geometric map elements could provide increased accuracy and superior

scene understanding while reducing overall map complexity. Incorporating detected

geometric primitives provides additional constraints for camera trajectory estimation,

leading to increased tracking accuracy and subsequently decreased dense reconstruc-

tion error. In addition, including geometric primitives in the map provides invaluable

semantic information about the scene- otherwise unavailable from a purely dense map.

This chapter begins by introducing the modi�cations needed to extend the DVO

SLAM algorithm to incorporate landmark constraints in the optimization. It later

describes the methods used to detect the aforementioned geometries, and the details

relating to their inclusion in the SLAM implementation.

Figure 5.1: Reconstructed point cloud of the fr1/desk dataset using DVO SLAM with
default settings [17, 36]. Some errors in the reconstruction are highlighted in red with
the green lines showing the correctly reconstructed surface. We seek to reduce this
mapping error and enhance map semantics by considering detected object poses in
the SLAM optimization.

56

5.1 Extending Dense SLAM Using Landmarks

While the DVO SLAM algorithm leverages keyframe odometry constraints to limit

drift and detect loop closures, it does not explicitly include what most robotics re-

searchers would consider landmark constraints in the SLAM estimation. Inclusion

of the pose estimates of detected objects into the optimization allows for additional

constraints that serve to increase the accuracy of the trajectory estimate, increase

loop closure detection range, and reduce dense reconstruction error. In addition, we

bene�t from the semantic information associated with known objects in the map. We

extend DVO SLAM to include multiple types of geometries as landmarks in the SLAM

optimization. For a more detailed description of the operation of the unmodi�ed DVO

SLAM algorithm, see section 4.3.2.

5.1.1 Front-end Modi�cation

Additional functionality must be added to the DVO SLAM front-end in order to

handle incoming landmark measurements and include these landmarks in the local

map structure. In addition, correspondence must be determined between incoming

landmark measurements and those already in the local map.

After odometry is estimated for each frame of incoming RGBD data, a detector

for the landmark of interest operates on the frame, and extracts measurements of

the landmark in the coordinate frame of the camera. It must then be determined

whether or not this particular landmark has been viewed previously, a task known as

correspondence estimation. If a correspondence can be established with an existing

landmark in the local map, the observation edge is associated with the corresponding

landmark, otherwise we consider the observation to be a measurement of a never

before seen landmark.

The local graph structure will now contain a landmark vertex and an observation

edge connecting this vertex and the frame/camera pose which made the observation

57

K

f1 f2

fn

...

m
Odometry Estimate

Landmark Observation

Frame/Landmark (pose)

Figure 5.2: DVO SLAM local graph structure showing odometry constraints between
frames/poses as well as landmark observations of a map feature labeled m.

(see �gure 5.2). Landmark observations form constraints between poses that mutually

observe a given landmark, which force the relative camera poses into agreement over

the landmark pose. This process continues with each incoming frame, and over time

the local graph is constructed consisting of both odometry and landmark constraints.

5.1.2 Back-end Modi�cation

As discussed in section 4.3.2.3, the DVO SLAM back-end processes the queue of

local maps created by the front-end. The back-end must merge the incoming local

graph structure into the global graph. A few modi�cations must be made in order to

handle the addition of landmark vertices and their associated graph edges.

The g2o library which handles the graph structures requires that graph elements

have unique integer identi�ers. To this end, a manager for graph element identi�ers

was implemented. The user speci�es speci�c labels for graph element types and the

manager is used to generate and modify graph element identi�ers which streamlines

the process and allows for new graph elements to be more easily used in the algorithm.

When the back-end thread begins the process of merging a local map into the global

graph structure, a correspondence check must occur to see if local measurements

should be associated with an existing global landmark. If the correspondence criteria

is met, then a merge procedure shown in �gure 5.3 maps the landmark observations

58

K3
K2

K1

m

K

f1

f2

fn ...

ml

Local Graph

Local-Global Landmark
Correspondence

Odometry Estimate

Landmark Observation

Frame/Landmark (pose)

Figure 5.3: The local-to-global graph merge procedure for landmark vertices. A
correspondence has been established between the local landmark vertex ml, and the
global vertex m. The merge procedure maps the observations associated with ml onto
m, and ml is subsequently removed from the graph.

(edges) from the local landmark vertex to the corresponding global landmark vertex.

This process allows for landmark based loop closures to be detected even when there

are no nearby keyframes to form odometric loop closure constraints.

The global optimization occurs just as before, but also considers the landmark

observation edges connected to keyframes. If a landmark has been observed from

multiple keyframe camera poses, landmark constraints connect the poses that mu-

tually detected the landmark. During the optimization, the landmark vertices are

marginalized out, and these observation constraints are mapped to constraints be-

tween the poses that observed the landmark. These constraints adjust the camera

trajectory to ensure that the camera poses that observed landmarks better agree on

the landmark position.

The information matrices of the observations control the relative in�uence of the

landmark constraints over the existing camera odometry constraints in the overall op-

timization. Large values for an observation's information correspond to high certainty

in the measurement value, and therefore a large weight in the overall optimization.

Conversely, small values for an observation's information correspond to low certainty,

59

and the measurement will have little in�uence over the optimized trajectory. In our

implementation, we set this information matrix to a constant value, however, ideally

the value should be consistent with the certainty associated with the detection.

5.2 Planar Surface Estimation

One particular geometric constraint of interest is planar surfaces. Planar surfaces

are ubiquitous in indoor scenes and therefore serve to explain large quantities of dense

data. Extracted planar models can also serve as valuable geometric primitives to be

used to detect more complex objects and surfaces. Individual in�nite plane measure-

ments partially constrain the relative pose estimate of the observer; all motions save

for rotation and translation in the plane can be constrained by a plane measurement.

5.2.1 RANSAC Plane Fitting

The Random Sample Consensus (RANSAC) method discussed in section 2.6 can

be used to �t a planar model to a set of 3D points that include outliers. In order to

extract planar geometries, we apply RANSAC plane �tting to the reconstructed 3D

points of incoming depth frames produced by the RGBD camera. We then leverage

these planar surface measurements as landmarks to improve the performance of dense

SLAM.

Large scale planar surfaces can be estimated for each frame of depth data using

RANSAC. A RANSAC based planar model segmentation can be applied to the 3D

point cloud associated with the depth image frame. The RANSAC plane segmentation

proceeds as follows:

1. The RANSAC algorithm is used to �t a planar model to the point data

2. If the proportion of inlers to the original number of points is below a threshold

value, stop

3. The inliers of the �tted plane are removed from the point data

60

4. While the number of points exceeds some percentage of the original: Go to step

1

Due to the high probability of randomly selecting points belonging to large scale

planar surfaces (as they make up a large percentage of the total points), and the

RANSAC method's inherent robustness towards outliers, this simple approach is ca-

pable of extracting large planar surfaces such as walls and �oors from the scene.

5.2.2 Fast Least Squares Plane Fitting using Range Images

The least squares plane �tting formulations discussed in section 2.8 can of course

be used for �tting. However, we can exploit the structure of the depth image and

the known calibration parameters in order to perform the �tting task more e�ciently.

The following formulations are discussed in [37].

We start by investigating the reconstruction equations described in section 2.6and

grouping the parameters into two sets: (1) the RGBD camera calibration parameters

{fx, fy, cxcy, δx, δy} and (2) the depth measurement Z. Fig. 5.4 shows the geometry of

the RGBD depth measurement using these parameters. Here, we show the angle, θx,

that denotes the angle between the optical axis and line passing through the RGBD

image pixel (x, y) when viewed from the top-down. A similar angle, θy, is obtained

using the same geometric setup from a side-view. Hence, we make the substitutions

shown in equations (5.1) for the terms of the reconstruction equations resulting in

the new reconstruction equations (5.2):

tan θx = (x+ δx − cx)/fx

tan θy = (y + δy − cy)/fy

Z = Z

(5.1)

61

ẑ θ
x

x
im
+ δ

x

c
x

f
x

X

x̂

Z

θ
x

tanθx=
X
Z

=
xim+δ x
f x

Figure 5.4: Note the relationship formed by the tangent of the angle θx. A similar
relationship exists in the y direction.

X = Z tan θx

Y = Z tan θy

Z = Z

(5.2)

Back-substitution into the plane equation gives aZ tan θx + bZ tan θy + cZ + d = 0.

We now multiply this equation by 1/Z to arrive at the equation (5.3):

a tan θx + b tan θy + c+
d

Z
= 0 (5.3)

Notice the coe�cients a, b, c are functions of only the camera calibration parameters

which determine, for each image pixel, the values of tan θx and tan θy. The coe�cient

d is only a linear function of the measured depth (inverse depth).

5.2.2.1 Implicit Plane Fitting to RGBD Range Data

For implicit plane �tting using the re-organized equation (5.3), the new monomial

vector becomes Mi = [tan θxi tan θyi 1 1
Zi

] and the scatter matrix has elements:

MtM =
N∑
i=1

tan θxi
2

tan θxi tan θyi tan θ2
yi

tan θxi tan θyi 1

tan θxi
Zi

tan θyi
Zi

1
Zi

1
Z2
i

(5.4)

62

where the symmetric elements of the upper-triangular matrix have been omit-

ted to preserve space. It is important to note that only 4 elements of this matrix,

[tan θxi
Zi

tan θyi
Zi

1
Zi

1
Z2
i

], depend on the measured depth data and, as such, this ma-

trix requires less (~50% less) operations to compute. The upper left 3x3 matrix of

MtM does not depend upon the measured sensor data. As such, once the calibration

parameters of the camera are known, i.e., (fx, fy), (cx, cx), (δx, δy), many of the ele-

ments of MtM are determined and may be pre-computed before any data is measured

with the exception of the 4 elements in the bottom row.

5.2.2.2 Explicit Plane Fitting to RGBD Range Data

For explicit plane �tting using the re-organized equation (5.3), the revised error

function is shown below:

ε(a, b, c, d) = min
a,b,c

N∑
i=1

(
a tan θxi + b tan θyi + c− 1

Z1

)2

(5.5)

Let α = [a b c]t denote the vector of explicit plane coe�cients, b = 1/[Z0 Z1 . . . ZN]t

denote the target depth values and M denote the matrix of planar monomials formed

from the 3D (X, Y, Z) surface data having ith row Mi = [tan θxi tan θyi 1].

Then equation (5.6) shows the scatter matrix, MtM, needed to estimated the ex-

plicit plane coe�cients where the symmetric elements of the upper-triangular matrix

have been omitted to preserve space.

MtM =
N∑
i=1

tan θxi

2

tan θxi tan θyi tan θ2
yi

tan θxi tan θyi 1

 (5.6)

It is important to note that none of the elements of the scatter matrix depend on

the measured depth data and, as such, this matrix requires a constant number of

operations to compute for each measured image, i.e., it can be pre-computed given the

63

camera parameters. Hence, explicit plane �tting in using this formulation requires

only computation of the vector b = 1/[Z0 Z1 . . . ZN] for each range image and

the best-�t plane is given by a single matrix multiply: α̂ = (MtM)
−1

Mtb. Where

the value of Mtb is given below:

Mtb =
N∑
i=1

1

Zi

tan θxi

tan θyi

1

5.2.2.3 Computational Savings via Integral Images

Integral images, �rst introduced in [38] and popularized in the vision community by

the work [39], computes the cumulative distribution of values within an image. This

technique is often applied for the purpose of e�ciently computing sums over arbitrary

rectangular regions of an image. This is often the case for normal estimation in range

images. Here, integral images are computed for the (X, Y, Z) values or perhaps for all

values of the scatter matrix of equation (2.52). Computation of an integral image for

a scalar value, e.g., intensity, requires 4 operations per pixel, i.e., for an image of N

pixels it has computational cost of t = 4N operations. More generally, computation

of an integral image for an arbitrary function of the image pixel data f(I(x, y)) having

computational cost C has computational cost to t = N(C + 4).

5.2.2.4 Application

These �tting formulations allow fast least squares surface �tting to rectangular

regions of depth images. We can exploit these techniques to quickly detect planar

surfaces and use them as landmarks to improve dense SLAM.

5.2.3 Plane Landmark Correspondence Implementation

To include planes in the SLAM implementation correspondence must be able to

be established between incoming plane measurements and previously identi�ed plane

64

landmarks. Two metrics were considered in order to evaluate the closeness of two

in�nite planes. The �rst computes the closest 3D point to the origin that lies on

the plane. This point is unique for a plane up to the sign of the normal. In our

implementation, all planar surface �ts result in constrained normals which face the

image plane. In this case the parameterization is unique. Assuming the plane equation

is in Hessian normal form with normal n̂ and origin distance d, this point can be

computed using equation (5.7).

pplane = −d · n̂ (5.7)

For two planes the Euclidean distance between these computed points is taken as the

plane distance metric. In this case we apply directly the radius search technique used

for 3D point landmarks in order identify correspondences between planes.

The second metric we call a plane �dissimilarity� metric between two planes αi and

αj. It involves the plane normals, n̂i and n̂j, the signed origin distance values, d1 and

d2, and a weighting parameter, λ, and is given in equation (5.8).

ε(αi, αj) = 1− (n̂i · n̂j) + λ |di − dj| (5.8)

This metric allows for more control because of the weighting parameter λ which

weights the relative in�uence of the error in the normals and the error in the d values.

However, it is not immediately clear what value λ should take on, and if this value

should change depending on the magnitude of the d values.

At a global graph level during a local map merge, we determine plane correspon-

dence using the same distance metric and radius search procedure used for local

correspondence to search for existing nearby global plane landmarks to which the

local plane may correspond.

65

Figure 5.5: Instances of a chair generated from a chair shape grammar. All are valid
instances of the grammar with di�erent object parameters.

5.3 Shape Grammars for Object Recognition

Shape grammars seek to embed an object semantic as a model consisting of a spe-

ci�c collection of primitive shapes having a highly constrained relative geometry. An

object's grammar is speci�ed using a shape program- written using a custom shape

programming language referred to as PSML (Procedural Shape Modeling Language).

The goal of PSML is to provide a formal language where humans can concisely specify

a 3D object shape semantic. This formalization encodes the object semantic unam-

biguously as a transformation from natural language to 3D shape. For example, a

PSML shape program for the chair semantic represents instances of chair as a ar-

rangement of fundamental chair components, e.g., seat, backrest, legs, each of which

is constrained in their absolute and relative sizes, numbers, and relative positions (see

�gure 5.5). By varying the parameters of the shape, a so called shape space is formed

consisting of possible shape instances that satisfy the grammar.

This section demonstrates a prototypical system that solves the inverse problem,

i.e., transforming 3D shapes into natural language. This is accomplished by associ-

ating sensor measurement patterns to shape primitives and speci�c arrangements of

shape primitives to PSML programs from which the shape arrangements could orig-

inate. Vocabularies can be constructed as collections of PSML shape programs that

can have hierarchical relationships, e.g., chair →legs, seat, backrest.

While existing approaches using grammatical/procedural models and L-systems

are a source of inspiration [40, 41, 42], the proposed approach represents a signi�cant

departure from these models. The approach promises to facilitate creation of detec-

66

tion systems that extract generic hierarchies of semantic structures from 3D data.

Prior work has focused on highly-speci�c problems including the spatial organization

of generic block-like objects [43, 44], building facades [45, 46, 47], architectural draw-

ings [48, 49], and buildings [50, 51, 52, 53] from imagery. We seek to leverage this

recognition framework to recognize object geometries for the purpose of including

them as landmarks in the SLAM estimation process.

5.3.1 Framework

Construction of an inverse system (transforming 3D shapes into natural language)

requires PSML shape programs and speci�cation of the shape sensors. Using PSML

and sensor models, instances of measured objects can be virtually simulated to create

ground truth measurement data for di�erent object instances. This data can be used

as input to supervised learning systems to generate pixel-level, part-level, and object-

level classi�ers to detect the whole shape in terms of its pixels and sub-components.

For this work, we use an RGBD camera to sense spherical �ball� objects in conven-

tional color camera images and depth images. The overall problem speci�cation and

estimation framework is outlined in the following �ve steps:

1. Write a PSML grammar to describe the object(s) to be recognized,

2. Specify the sensing modalities that will measure the object(s),

3. Construct a recognizer for each sensing modality,

4. Apply the designed recognizer to detect and describe instances of the modeled

objects within the sensor data,

5. Use recognition results to solve application domain problems.

�gure 5.6 describes an overview of this framework and its application towards the

detection of colored spherical objects for a SLAM front-end. This thesis implements

this framework using a PSML program to describe a �ball� semantic (see �gure 5.7) as

67

Figure 5.6: Overview of the framework used to semantically model and detect ob-
ject instances. Detected object instances can be leveraged for a variety of purposes
including SLAM.

package p r im i t i v e s ;

public class Sphere extends ShapeGrammar {
public Sphere () {}
public Sphere (f ina l Shape myShape) {}
public Shape main (f ina l Shape myShape) {

r u l e s {
Axiom : : I (" sphere " , new double [] { 0 . 5 }) { genSphere } ;
genSphere : : appearance (" d i f f u s e " , new double [] { 0 . 6 9 2 , 0 .269 , 0 .272})

appearance (" s h i n i n e s s " , 0)
appearance (" specu l a r " , new double [] { 0 . 1 5 , 0 . 15 , 0 . 15})
appearance (" transparency " , 0 . 0) { j3d . te rmina l } ;

}
return myShape ;

}

public stat ic void main (St r ing [] args) {
Sphere s = new Sphere () ; // invoke the Java constructor
Shape sv = s . main (new Shape (" root ")) ; // invoke the Java −> PSML i n i t i a l symbol
s . setShape (sv) ; // set the "Sphere" object shape to that returned by the shape grammar
s . showShapes (" sphere ") ; // v i sua l i z e the constructed object

}
}

Figure 5.7: A PSML shape program describing the geometry and appearance of a
colored ball instance.

a sphere geometry having �ve di�erent colors that will be sensed with an RGBD sen-

sor. Color and depth recognition models are applied to detect and classify instances

of the �ball� semantic. Detection results are used as 3D point object landmarks in a

dense SLAM system as geometric constraints to improve map accuracy.

5.3.2 Recognition of the Colored Ball Semantic

PSML shape programs allow users to formally de�ne a relationship between se-

mantic words and the 3D objects that qualify as valid instances for these words. In

this thesis, we use a trivial PSML program to describe a �ball� semantic and use it

to generate 3D models for colored spherical shapes we expect to observe in the scene.

The PSML �ball� semantic models real-world colored 3D spherical markers of inter-

68

Figure 5.8: 3D �ball� instances generated from the sphere shape program of �gure
5.7.

est, which will be used as landmarks in a 3D RGBD-SLAM algorithm. Speci�cally,

we seek to recognize foam balls having a radius of approximately 3 cm, a re�ectance

well approximated by a di�use or �Lambertian� surface and �ve distinct appearances

referred to by their apparent colors: {�red�, �green�, �blue�, �orange�, �yellow�}. �gure

5.7 shows the PSML �ball� program used to model the geometry and appearance of

the target foam balls as instances of colored spheres. There are both geometric and

appearance properties for the �ball� program. The geometric properties are the sphere

position and radius. The appearance properties are the sphere re�ectance properties

and the �ve distinct surface colors.

Current software supports sensing via conventional color/grayscale camera imagery

and geometric imagery, e.g., LIDAR, stereo 3D reconstruction and RGBD sensing.

Here, we can create instances of each 3D object and simulate sensed RGB and geo-

metric measurements by changing the virtual lighting conditions and the relative pose

of generated instances of the virtual PSML objects and the sensor. This data then

acts as ground truth labeled data that can be fed into supervised machine learning

systems or generative models for the geometric shape and appearance. In this thesis

we choose to implement a generative recognition approach for the PSML spheres and

divide the recognition problem into two parts: (1) a maximum likelihood classi�cation

model to capture sphere appearance and (2) a 3D RANSAC spherical surface model

�t to capture sphere geometry.

69

Figure 5.9: The hue-chroma plane formed by the projection of the RGB space onto
the intensity axis. This polar space is used for pixel color classi�cation. Images
courtesy J. Rus, Creative Commons, Licensed under CC BY-SA 3.0, Modi�ed.

5.3.2.1 Appearance-Based Detection

For this prototypical object, appearance models describe a set spherical 3D objects

having di�use surface albedos and distinct color appearances. To detect such objects

e�ciently in RGBD data, we �rst begin with detection of the distinctive color ap-

pearances of the object classes. Each pixel in the color image is classi�ed as belonging

to one of �ve color classes, or a background class.

This is accomplished quickly by parameterizing each color value as a 3-vector in the

RGB colorspace, and projecting it onto the hue-chroma plane; the plane perpendicular

to the grayscale or neutral axis. This gives rise to a 2D polar space as shown in �gure

5.9, where angle represents the hue of the color, and radius the chroma of the color.

The chroma is a measure of how colorful a color is relative to the brightness of a

similarly illuminated white [54]. Here, colors whose chroma are below a threshold

value are not considered further, and classi�ed as background as all of our color

classes have large chroma values.

Otherwise, a Bayesian classi�er (see section 2.7 for detail) can be formulated to

classify pixel values that exceed the minimum chroma threshold. Let θ denote the

angle of the measured RGB pixel around the intensity axis, i.e., the RGB vector

[1, 1, 1]t. For each color class, we generate instances of the object illuminated from

70

various sources and compute the value of θ for each object pixel within each image.

This generates a collection of simulated color samples for each class. Let Θc =

{θ1, θ2, . . . , θN} denote the set of measurements for the cth class and θc the mean of

this set. We take the scaled cosine of the angle between the candidate color vector

and a given color class vector as a measure of the likelihood that the candidate color is

observed given a color class. This results in a raised cosine distribution for each color

class with each class having unique mean and equal variance. Let θq be the angle of

the query color, q, in the hue-chroma plane. The likelihood that the measurement q,

is observed given the color class c, is given by equation (5.9) for −π ≤ θc − θq ≤ π.

p(q|C = c) =
1

2π
(cos(θc − θq) + 1) (5.9)

Assuming all color classes are equally likely to be observed implies a uniform prior

for each color class. The class label with maximum likelihood in this case is given by

equation (5.10).

c∗ = argmax
c∈C

p(q|c) (5.10)

Pixels belonging to each color class are then analyzed for connectivity using con-

nected component labeling [55]. The bounding boxes of extracted regions as well as

region area statistics are used to quickly determine whether the region resembles the

circular appearance one would expect to observe if indeed a projection of a spherical

object of interest was captured in the color image. Due to the circular nature of

the spherical object's manifestation in the color image, we need only consider regions

whose bounding boxes are su�ciently square and could be well inscribed by a circu-

larly shaped region of pixels. The ratio of the bounding box's shortest side to the

box's longest side provides a measure of the bounding box squareness and is used to

re�ne candidate regions.

71

Figure 5.10: Output from the object appearance detector showing colored circle de-
tections in the RGB image.

A candidate circle is then �t to the nearly square bounding box. The centroid

position is simply taken as the midpoint of the bounding box, and the radius is

computed by taking half of the value of the average side length. Two area ratios are

then computed to ensure that the arrangement of the region pixels is well modeled

by the candidate circle. We compute the ratio of the number of pixels that lie within

the candidate circle to the expected area of the candidate circle. This ensures region

pixels adequately �ll the candidate circle. We also compute the ratio of the number of

pixels that lie within the candidate circle to the total region area. This ensures that

a large enough percentage of total region pixels lie within the candidate circle. At

this point the candidate circle is considered a valid circle detection within the color

image.

5.3.2.2 Geometry-Based Detection

The set of pixel measurements that generate valid circle detections within the

color image provide corresponding samples in the depth image from which we can

reconstruct 3D points. Using the reconstruction equations described in equation

(2.6), measured 3D (X, Y, Z) positions of sensed surfaces can be directly computed

from the intrinsic parameters of the camera and the measured depth image values.

These 3D surface locations should be explained well by a spherical model if indeed

72

they are samples from a spherical surface. We therefore �t a spherical model to

patches of 3D points presumed to be spherical in nature, and evaluate the model �t.

If the data is well explained by the model instance, the estimated spherical model

parameters should be reasonably accurate.

As discussed in section 2.6, a common method for model �tting in the presence

of outliers is the Random Sample Consensus method, or RANSAC. This iterative

method estimates the parameters of a mathematical model from a set of observations

which are assumed to contain a large subset of observations known as inliers. We �t

a spherical model to the 3D points using RANSAC to estimate the unknown sphere

parameters: the center and radius. We use a simple ratio of inliers to the total

number of observations to determine model con�dence. Spherical models that exceed

a threshold value are considered valid spherical detections and the estimated model

parameters provide the sphere center and radius.

5.3.3 Sphere Landmark Correspondence Implementation

Measurements of sphere landmarks are taken as the center position of the detected

sphere for the SLAM implementation, i.e. the sphere radius and color are discarded.

To determine correspondence at the local map level, a 3D radius search similar to the

one used for keyframes, is used to locate nearby candidate correspondences between

the incoming point measurement all 3D points in the local map. The incoming point

is transformed such that it exists in the coordinate frame of the local map and the

radius search begins. The closest candidate point within the radius threshold is taken

as the corresponding landmark if such a point exists. Otherwise we the incoming

point measurement results in the inclusion of a new 3D point vertex in the local map.

At a global graph level during a local map merge, landmark correspondence is

determined using the same radius search procedure used in the local map. Rooted at

the incoming point estimate, we search for existing nearby global point estimates to

which the incoming point may correspond. If the correspondence criteria is met, i.e.

73

there exists a global point estimate within the search radius, then the merge procedure

associates observations of the local landmark with the corresponding global landmark.

CHAPTER 6: RESULTS

In this chapter we compare the performance of the dense SLAM algorithm and the

modi�ed dense SLAM algorithm that includes geometric landmark constraints.

6.1 Dense SLAM with 3D Point Landmarks

A simple scene including various color classes of spherical markers was used to

evaluate the result of the inclusion of landmark constraints into the DVO SLAM algo-

rithm. The spherical landmarks themselves were modeled using PSML which applies

the Phong shading model [56] to rendered object instances. To provide appearance

information for each color class, spheres were modeled using a di�use re�ectance value

taken as the mean color value of the sphere as it appeared in a color image under

�uorescent lighting as a starting point. The rendered model was then compared visu-

ally to the actual sphere marker, and both the di�use and specular re�ectance values

adjusted until the rendered image agreed with the physical sphere appearance. The

detected center coordinates of the colored spherical objects are included in the SLAM

algorithm as 3D point landmark constraints.

An image sequence consisting of 500 RGBD images taken over ~17 seconds was

produced as the camera was moved counterclockwise about the marker arrangement.

This image sequence was then processed by the DVO SLAM algorithm with default

settings and our own modi�ed version that incorporated 3D point landmark con-

straints. As shown in Figure 6.1, the inclusion of additional landmark constraints im-

proves mapping accuracy. In the vicinity of the spherical landmarks, mapping error is

reduced signi�cantly. For each spherical landmark present in the reconstructed point

clouds, the maximum spread of the associated points was measured and compared

75

(a) (b) (c)

Figure 6.1: A color image of the scene (a), resulting point cloud using DVO SLAM
without landmark constraints (b), and resulting point cloud with landmark con-
straints included (c). The reconstructed scene is viewed from the same camera view-
point in both images. The red spheres in (c) are the optimized estimates of the
detected spherical landmarks. Note the increased mapping accuracy especially in the
colored regions that surround the spherical landmarks when landmark constraints are
added to the graph optimization.

between SLAM implementations. Values in Table 6.1 demonstrate signi�cant reduc-

tion in reconstruction error in regions surrounding the spherical landmarks. Other

large scale planar surfaces in the scene such as the white poster board and cardboard

box also see increased mapping accuracy with the inclusion of the spherical landmark

constraints.

Table 6.1: Approximate maximum spread of reconstructed landmark points.

Landmark
Color

DVO SLAM DVO SLAM
with

Landmark
Constraints

Point Spread
Reduction

Connectivity
(Keyframe
Edges)

Red 0.352 m 0.159 m 54.8% 198
Green 0.154 m 0.079 m 48.7% 5
Blue 0.400 m 0.243 m 39.3% 122

Orange 0.351 m 0.183 m 47.8% 30
Yellow 0.370 m 0.152 m 58.9% 58

6.2 Dense SLAM Using Multiple Geometries

Another simple scene including spherical markers and large scale planar surfaces

was used to evaluate the result of the addition of both point and plane landmark con-

76

straints into the DVO SLAM algorithm. Large scale planar surfaces were estimated

for each frame of depth data using the approach discussed in section 5.2.1. This ap-

praoch applies a RANSAC based planar model segmentation to the 3D point cloud

associated with the depth image frame. This simple approach is capable of quickly

extracting large planar surfaces such as walls and �oors from the scene, which are

leveraged as plane measurements for SLAM. The colored sphere detector described in

section 5.3.2 was also used to provide 3D point measurements corresponding to the

center positions of detected colored balls.

The scene features a corner of the UNCC Visionlab and includes colored sphere

markers, a door, and a chalkboard with added texture. Figure 6.2 shows a few views

of the reconstructed point cloud as well as the camera trajectory. The estimated

poses of the object landmarks seem to correspond well with the dense reconstruction

of the lab room corner, demonstrating that the overall SLAM estimation seems to be

working as designed with multiple geometric landmarks.

In addition, the accuracy of the dense reconstruction appears to have improved with

the inclusion of these landmarks. Notice the reduction in reconstruction error of the

wall near the door in sub�gures (e) and (f). The chalkboard text reconstruction also

seems to be improved, along with the points associated with the spherical markers.

Sub�gures (g) and (h) demonstrate a signi�cant change in the overall geometric error

of the room corner when the landmark constants are included in the optimization.

While still not perfect, the planarity of the walls seems to have improved signi�cantly

due to the planar surface constraints.

6.3 Fast Planar Surface Fitting Benchmark

The explicit least squares planar surface �tting technique described in section 5.2.2

was implemented in C++ and compared against two plane �tting techniques avail-

able in the popular OpenCV library. The implementation was compared against the

OpenCV implementations of the Fast Approximate Least Squares (FALS) and Spher-

77

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.2: Demonstration of DVO SLAM with incorporated 3D point and planar
surface constraints. Figures (a) and (d) show color images of the scene, �gures (b), (e),
and (g) show the reconstruction using unmodi�ed DVO SLAM. Figures (c), (f), and
(h) show the reconstruction with landmark constraints included. The square markers
show sections of the estimated in�nite plane landmarks while the red colored sphere
markers show the estimated positions of detected colored balls. Notice the reduction
in reconstruction error when landmark constraints are included in the optimization.

78

Table 6.2: Frame-rate comparison between the proposed explicit plane �tting method
and two methods available in the OpenCV library.

Method Frame-rate (fps)

FALS 7
SRI 1.3

Proposed 20

ical Range Image (SRI) methods described in [57]. The benchmark was performed

on using an Intel i5-6200U @ 2.3 GHz , on 640x480 depth images provided by the

Orbbec Astra RGBD sensor. As shown in table 6.2, the proposed �tting approach

results in a signi�cant frame-rate improvement compared to these methods.

CHAPTER 7: CONCLUSION

This thesis has explored the extension of a state of the art dense RGBD SLAM

implementation to include detected objects and surfaces as geometric elements in

the estimated global map. The e�cacy of employing these elements as landmarks

to aid in localization and mapping has been demonstrated, showing improvements in

dense reconstruction accuracy. Inclusion of these elements provides landmarks from

which localization may be improved, and provides opportunity for landmark-based

loop closures. Also, these shape and surface elements relay important semantic scene

information otherwise unavailable from the current dense map representation (an

unorganized collection of colored 3D points).

Additionally, this thesis has investigated the theory and implementation of the

direct visual odometry algorithm leveraged by the dense SLAM approach. This in-

cludes the development of a simpli�ed reference implementation more amenable to

understanding and extension than currently available open source implementations.

Finally, this thesis presents an e�cient method for least squares planar surface �tting

for depth data. Benchmark results show this method is faster than two methods

available in the OpenCV library, and should prove useful for fast planar surface esti-

mation.

Future research will explore application of the SLAM platform and geometric map

elements to extract and track geometric primitives. These primitives can then be

used to infer the structure of more complex objects and geometries. Speci�cally,

the estimated in�nite plane surfaces currently used can be bounded, which should

provide additional constraints for localization and a more precise representation of

local planar scene structure. Additional geometries such as edges and corners can be

80

included in the as map elements, which along with estimated bounded planar regions

can used to aid in the identi�cation of higher-order shapes.

81

REFERENCES

[1] Itseez, The OpenCV Reference Manual, 3.1.0 ed.

[2] R. Tsai, �A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using o�-the-shelf tv cameras and lenses,� IEEE Journal on
Robotics and Automation, vol. 3, pp. 323�344, August 1987.

[3] Z. Zhang, �A �exible new technique for camera calibration,� IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1330�1334, Nov 2000.

[4] J. Diebel, �Representing attitude: Euler angles, unit quaternions, and rotation
vectors,� 2006.

[5] G. Gallego and A. Yezzi, �A compact formula for the derivative of a 3-d rotation in
exponential coordinates,� Journal of Mathematical Imaging and Vision, vol. 51,
pp. 378�384, Mar 2015.

[6] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction to
Robotic Manipulation. Boca Raton, FL, USA: CRC Press, Inc., 1st ed., 1994.

[7] C. Bregler and J. Malik, �Tracking people with twists and exponential maps,� in
Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (Cat. No.98CB36231), pp. 8�15, Jun 1998.

[8] K. Levenberg, �A method for the solution of certain non-linear problems in least
squares,� Quarterly of Applied Math, vol. 2, pp. 164�168, 1944.

[9] D. Marquardt, �An algorithm for least-squares estimation of nonlinear param-
eters,� Journal of the Society for Industrial and Applied Mathematics, vol. 11,
1963.

[10] M. A. Fischler and R. C. Bolles, �Random sample consensus: A paradigm for
model �tting with applications to image analysis and automated cartography,�
Commun. ACM, vol. 24, pp. 381�395, June 1981.

[11] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[12] G. Bradski, �The opencv library,� Dr. Dobb's Journal of Software Tools, 2000.

[13] R. B. Rusu and S. Cousins, �3D is here: Point Cloud Library (PCL),� in IEEE In-
ternational Conference on Robotics and Automation (ICRA), (Shanghai, China),
May 9-13 2011.

[14] A. Comport, E. Malis, and P. Rives, �Real-time quadrifocal visual odometry,�
Int. J. Rob. Res., vol. 29, pp. 245�266, Feb. 2010.

82

[15] F. Steinbrücker, J. Sturm, and D. Cremers, �Real-time visual odometry from
dense rgb-d images,� in 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pp. 719�722, Nov 2011.

[16] T. Tykkälä, C. Audras, and A. I. Comport, �Direct iterative closest point for
real-time visual odometry,� in 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pp. 2050�2056, Nov 2011.

[17] C. Kerl, J. Sturm, and D. Cremers, �Dense visual slam for rgb-d cameras,� in
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2100�2106, Nov 2013.

[18] C. Kerl, J. Sturm, and D. Cremers, �Robust odometry estimation for rgb-d
cameras,� in 2013 IEEE International Conference on Robotics and Automation,
pp. 3748�3754, May 2013.

[19] B. D. Lucas and T. Kanade, �An iterative image registration technique with
an application to stereo vision,� in Proceedings of the 7th International Joint
Conference on Arti�cial Intelligence - Volume 2, IJCAI'81, (San Francisco, CA,
USA), pp. 674�679, Morgan Kaufmann Publishers Inc., 1981.

[20] B. W. Babu, S. Kim, Z. Yan, and L. Ren, �σ-dvo: Sensor noise model meets
dense visual odometry,� in 2016 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 18�26, Sept 2016.

[21] S. Baker and I. Matthews, �Lucas-kanade 20 years on: A unifying framework,�
Int. J. Comput. Vision, vol. 56, pp. 221�255, Feb. 2004.

[22] D. Gutiérrez-Gómez, W. Mayol-Cuevas, and J. J. Guerrero, �Inverse depth for
accurate photometric and geometric error minimisation in rgb-d dense visual
odometry,� in 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 83�89, May 2015.

[23] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005.

[24] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, �A tutorial on graph-
based slam,� IEEE Intelligent Transportation Systems Magazine, vol. 2, pp. 31�
43, winter 2010.

[25] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, �G2o: A
general framework for graph optimization,� in 2011 IEEE International Confer-
ence on Robotics and Automation, pp. 3607�3613, May 2011.

[26] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, �Kinectfusion: Real-time
dense surface mapping and tracking,� in 2011 10th IEEE International Sympo-
sium on Mixed and Augmented Reality, pp. 127�136, Oct 2011.

83

[27] S. Rusinkiewicz and M. Levoy, �E�cient variants of the icp algorithm,� in Pro-
ceedings Third International Conference on 3-D Digital Imaging and Modeling,
pp. 145�152, 2001.

[28] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald,
�Kintinuous: Spatially extended kinectfusion,� in RSS Workshop on RGB-D:
Advanced Reasoning with Depth Cameras, (Sydney, Australia), Jul 2012.

[29] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J.
Davison, �Slam++: Simultaneous localisation and mapping at the level of ob-
jects,� in 2013 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1352�1359, June 2013.

[30] B. Drost, M. Ulrich, N. Navab, and S. Ilic, �Model globally, match locally: Ef-
�cient and robust 3d object recognition,� in 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pp. 998�1005, June 2010.

[31] R. F. Salas-Moreno, B. Glocken, P. H. J. Kelly, and A. J. Davison, �Dense planar
slam,� in 2014 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 157�164, Sept 2014.

[32] J. Engel, T. Schöps, and D. Cremers, �Lsd-slam: Large-scale direct monocular
slam,� in Computer Vision � ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, eds.), (Cham), pp. 834�849, Springer International Publishing,
2014.

[33] J. Engel, J. Stückler, and D. Cremers, �Large-scale direct slam with stereo cam-
eras,� in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1935�1942, Sept 2015.

[34] M. J. D. Powell, �An e�cient method for �nding the minimum of a function of
several variables without calculating derivatives,� The Computer Journal, vol. 7,
no. 2, p. 155, 1964.

[35] M. L. A. Lourakis and A. A. Argyros, �Is levenberg-marquardt the most ef-
�cient optimization algorithm for implementing bundle adjustment?,� in Tenth
IEEE International Conference on Computer Vision (ICCV'05) Volume 1, vol. 2,
pp. 1526�1531 Vol. 2, Oct 2005.

[36] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, �A benchmark
for the evaluation of rgb-d slam systems,� in 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 573�580, Oct 2012.

[37] J. Papadakis and A. R. Willis, �Real-time surface �tting to rgbd sensor data,�
in SoutheastCon 2017, pp. 1�7, March 2017.

[38] J. P. Lewis, �Fast template matching,� in Vision interface, vol. 95, pp. 15�19,
1995.

84

[39] P. Viola and M. Jones, �Rapid object detection using a boosted cascade of simple
features,� in Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I�511�I�518
vol.1, 2001.

[40] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, �Instant architecture,� ACM
Transactions on Graphics, vol. 22, no. 3, pp. 669�677, 2003.

[41] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, �Procedural mod-
eling of buildings,� ACM Transactions on Graphics, vol. 25, pp. 614�623, July
2006.

[42] K. Dylla, P. Müller, A. Ulmer, S. Haegler, and B. Fischer, �Rome reborn 2.0: A
framework for virtual city reconstruction using procedural modeling techniques,�
in Proceedings of Computer Applications and Quantitative Methods in Archaeol-
ogy, 2009.

[43] A. Gupta, A. A. Efros, and M. Hebert, �Blocks world revisited: Image under-
standing using qualitative geometry and mechanics,� in European Conference on
Computer Vision(ECCV), 2010.

[44] H. Kim and A. Hilton, �Block world reconstruction from spherical stereo image
pairs,� Computer Vision and Image Understanding, vol. 139, pp. 104�121, Oct.
2015.

[45] O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios, �Segmentation of build-
ing facades using procedural shape prior,� in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1�8, 2010.

[46] P. Muller, G. Zeng, P. Wonka, and L. V. Gool, �Image-based procedural modeling
of facades,� ACM Transactions on Graphics, vol. 26, no. 3, pp. 1�9, 2007.

[47] M. Mathias, A. Martinovic, J. Weissenberg, and L. V. Gool, �Procedural 3d build-
ing reconstruction using shape grammars and detectors,� in 3DIMPVT 2011,
May 2011.

[48] P. Dosch, K. Tombre, C. Ah-Soon, and G. Masini, �A complete system for the
analysis of architectural drawings,� International Journal on Document Analysis
and Recognition, vol. 3, pp. 102�116, 2000.

[49] F. Bao, D.-M. Yan, N. J. Mitra, and P. Wonka, �Generating and exploring good
building layouts,� ACM Trans. Graph., vol. 32, pp. 122:1�122:10, July 2013.

[50] X. Yin, P. Wonka, and A. Razdan, �Generating 3d building models from ar-
chitectural drawings: A survey,� Computer Graphics and Applications, vol. 29,
no. 1, pp. 20�30, 2009.

85

[51] M. Mathias, A. Martinovic, J. Weissenberg, and L. V. Gool, �Procedural 3D
building reconstruction using shape grammars and detectors,� in 3D Imaging,
Modeling, Processing, Visualization and Transmission (3DIMPVT), 2011 In-
ternational Conference on, (Washington, DC), pp. 304�311, IEEE Computer
Society, 2011.

[52] J. Weissenberg, Inverse Procedural Modelling and Applications. PhD thesis, ETH
Zurich, 2014.

[53] B. Hohmann, U. Krispel, S. Havemann, and D. Fellner, �City�t: High-quality
urban reconstructions by �tting shape grammers to images and derived textured
point clouds,� in ISPRS International Workshop, pp. 1�8, 2009.

[54] M. D. Fairchild, Color Appearance Models. Wiley, 3rd ed., 2013.

[55] J. Hopcroft and R. Tarjan, �Algorithm 447: E�cient algorithms for graph ma-
nipulation,� Commun. ACM, vol. 16, pp. 372�378, June 1973.

[56] B. T. Phong, �Illumination for computer generated pictures,� Commun. ACM,
vol. 18, pp. 311�317, June 1975.

[57] H. Badino, D. Huber, Y. Park, and T. Kanade, �Fast and accurate computation
of surface normals from range images,� in 2011 IEEE International Conference
on Robotics and Automation, pp. 3084�3091, May 2011.

	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	1.1 Contribution
	1.2 Outline

	2 BACKGROUND
	2.1 Pinhole Camera Model
	2.2 Camera Calibration
	2.3 RGBD Cameras
	2.4 Rigid Body Transformations
	2.5 Least Squares Optimization
	2.6 Random Sample Consensus (RANSAC)
	2.7 Bayesian Classification
	2.8 Least Squares Plane Fitting

	3 DENSE VISUAL ODOMETRY
	3.1 Direct Visual Odometry
	3.2 Image Alignment
	3.3 Formalisms
	3.4 Inverse Compositional Approach
	3.5 Error Functions
	3.6 Minimization
	3.7 Implementation

	4 STATE OF THE ART IN DENSE SLAM
	4.1 Simultaneous Localization and Mapping
	4.2 Visual SLAM Overview
	4.3 Dense Visual SLAM

	5 IMPROVING DENSE SLAM USING DETECTED GEOMETRIES
	5.1 Extending Dense SLAM Using Landmarks
	5.2 Planar Surface Estimation
	5.3 Shape Grammars for Object Recognition

	6 RESULTS
	6.1 Dense SLAM with 3D Point Landmarks
	6.2 Dense SLAM Using Multiple Geometries
	6.3 Fast Planar Surface Fitting Benchmark

	7 CONCLUSION
	REFERENCES

