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ABSTRACT 

 

 

ELIZABETH ANN SCHLEGEL.  Monitoring fall detection using a single video camera.  

(Under the direction of DR. NIGEL ZHENG) 

 

 

 Falls among the elderly are concerning, especially if they go unnoticed for an 

extended period of time. Due to fear of falling, many people end up in assisted living 

facilities or nursing homes which are costly and the lack of independence greatly affects 

quality of life. Finding ways to allow the elderly to safely stay in their own homes longer 

not only reduces cost of living and increases well-being, but also alleviates the families’ 

burden of worrying about their loved ones. Due to their low cost, cameras are a convenient 

option for monitoring. This study made use of this and developed an algorithm to be used 

with a single video camera in order to determine when someone has fallen or is about to 

fall, so an alarm could be set off to alert a caretaker for help. 

 The developed algorithm was tested for a variety of scenarios including falling 

down stairs, partially occluding the subject, low light levels, and placing the camera at a 

variety of angles. The acceleration values obtained were also compared with an Inertial 

Measurement Unit. The algorithm successfully tracked the person and detected falls in 

each scenario. The comparison with the IMU sensor points toward further potential for 

clinical applications in fall risk assessment.  
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CHAPTER 1: INTRODUCTION 

 

 

Falls among the elderly are concerning, especially if they go unnoticed for an 

extended period of time. According to the CDC, 1800 die from falls every year [1]. Many 

of the elderly end up in either nursing homes or assisted living facilities due to family safety 

concerns of the person living alone which is costly and not typically preferred as 

independence is a primary factor in evaluating quality of life. As seen in the graph below 

from the U.S. Census Bureau, people in the United States are living longer and the 

projected trend of the number of elderly adults is steadily rising. 

 
Figure 1: Current and projected elderly population in the United States [2] 
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      Table 1: Average monthly cost of living [3] 

Nursing Homes     

(semi-private) 

Nursing Homes 

(private) 

Assisted Living 

(private) 

$5,430 $6,150 $2,714 

 

This aging population attributes to the concerns of caring for these individuals 

with the increasing need for nursing homes and assisted living facilities. Table 1 shows 

that it is indeed costly to live in one of these facilities. 

  Because quality of life dramatically decreases with increasing financial burden 

and considering the rising number of people who are needing these services, finding ways 

for these people to remain independent and able to live on their own not only eases a little 

of the families’ and societies’ burden, but most importantly independence increases the 

quality of life for these individuals. 

 Risk levels for fall are often evaluated using mobility tests, such as timed up and 

go (TUG) and motion capture camera systems [4,5]. For fall detection and monitoring, 

there currently are a variety of methods, most notably LifeAlert. LifeAlert is a product that 

helps those who have fallen and cannot stand back up notify others for help. It is a button 

hung on a lanyard around the neck that when pushed, calls emergency services for help. 

This is a simple and effective product that many people rely on; however, it has its 

drawbacks. The person must always be wearing the device and most importantly, if and 

when the person does fall, they have to remain conscious and aware enough to both 

remember and be capable of pressing the button. Accelerometers are also occasionally 

used, but these also need to be worn and relying on acceleration alone often yields false 

positives in that the acceleration reaches a certain threshold value that indicates that a fall 

has occurred when in fact no fall has [6].  
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For tracking human motion for both risk assessment and monitoring, video cameras 

are now becoming more popular due to their low cost with depth cameras being frequently 

used. Depth cameras use a technique known as range imaging to create two dimensional 

images that depict the distances to specific points in a scene from one reference point. This 

resulting two dimensional image is called the range image and when it is calibrated, the 

pixel distances are scaled to the actual physical distances [7]. Because the depth cameras 

allow for analysis in three dimensions and options such as the Microsoft Kinect are 

relatively inexpensive, they are attractive options.  However, some people already have 

other non-depth cameras in place, such as security cameras, and being able to use these 

already established cameras is beneficial.    

Because an effective algorithm is both functional and computationally inexpensive, 

this research creates a new algorithm using and modifying previously established 

segmentation and edge detection techniques. It successfully tracks a person as they move 

throughout a scene and performs accurate fall detection. This variety of image processing 

techniques that were employed are described in Chapter 2. 

  



 

CHAPTER 2: IMAGE PROCESSING 

 

 

  Image analysis is performed using a variety of algorithms and methods. Some 

techniques are more effective than others and usually depend on the particular application. 

These algorithms can be classified many ways into various logical groups which can then 

be combined and grouped further into application sub groups. The two major logical groups 

being employed in this work are segmentation and edge detection which combine to create 

various methods for object tracking. 

2.1 Segmentation 

Segmentation is the process of dividing an image based on shapes and pixel 

intensity values. If the algorithm uses both shape and intensity values to classify and 

segment, then it is known as Contextual Segmentation whereas if only intensity values are 

used, it is known as Non-Contextual Segmentation.  

 A frequently used example of contextual segmentation is Delaunay Triangulation. 

This algorithm is better recognized in the field of finite elements, but has related uses in 

the field of image classification as well. It is a triangulation of a set of points such that no 

point inside the circumcircle of any triangle lies within the set of points. It attempts to 

maximize the interior angles of the triangles i.e. it is the nerve of the cells in a Voronoi 

diagram. Remi and Bernard discuss in their paper a generic tracking algorithm based on 

Delaunay Triangulation that effectively tracks objects without needing a specific model to  
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be initially defined, making it adaptable to work with other applications [8].  

   Used extensively throughout this research, thresholding is a prime example of non-

contextual segmentation and is the basis for background removal. Accurate and efficient 

extracting of moving objects for detection and tracking relies on efficient background 

elimination and noise removal. Segregating the background from the foreground is 

accomplished by setting a threshold for the differences between two frames, typically of 

the same setting and at different times. By overlaying the frames and performing a pixel 

by pixel subtraction, pixels of the target frame whose difference in intensities from the 

reference frame fall below a certain difference threshold are considered to be the same in 

both frames and therefore to be part of the background while the target frame pixel is set 

to zero. Any set of pixels whose difference is above the threshold is considered to be part 

of the moving foreground and the corresponding pixels in the target frame are either 

unchanged or set to one, depending on the desired application. This subtraction and 

comparing of pixels is known as frame differencing, and while there are various algorithms 

for background removal, they all use this as a basis [9].  

 In the vast majority of cases, the background will not remain entirely unchanged. 

For instance, furniture gets moved, items initially not in the frame come in and are left, etc. 

To account for these changes, the reference frame should continuously be updated after a 

given amount of time so that excess noise can be minimized. This updating of the 

background frame is known as adaptive background subtraction. This method has been 

shown to be more effective and efficient at locating the foreground and minimizing 

background noise [10].  
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 Even using modified differencing methods like adaptive background subtraction, 

some noise usually still exists and therefore a filter needs to be applied to obtain the desired 

isolated image. Three commonly used filters include Gaussian, mean, and the one used in 

this research, the Wiener filter. 

 The Gaussian filter is a low pass filter that modifies the input signal by convoluting 

it using the Gaussian function. This method is also known as the Weierstrass Transform 

after Karl Weierstrass. The Gaussian distribution is a standard bell curve which plays an 

important role in its application to filtering as it defines a probability distribution for noise. 

When applying the function to images, instead of being only one dimensional, it needs to 

be two dimensional; this is just the product of two one dimensional Gaussian functions, 

one in each direction. Drawbacks of using the Gaussian filter are that because it works by 

smoothing an image, it is not effective at removing what is known as salt and pepper noise, 

the random black and white specs that appear can appear in images, nor does it typically 

maintain the brightness of the original image [11].  

 The mean filter is much more effective at reducing this salt and pepper noise as it 

slides over each pixel and replaces its value with the mean of the surrounding pixels. This 

surrounding area is determined from an initial value preset by the user. Depending on the 

application, the typical noise amount present, and the desired effectiveness, different size 

windows are chosen. Similar to the mean filter is the median filter which replaces each 

pixel value with the surrounding area’s median value rather than its mean. An attractive 

advantage of using a median filter, rather than a mean filter, is that it is better at preserving 

the details of the original image [11]. 
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 Chosen for this research, the Wiener filter, named for Norbert Wiener, is a linear 

filter that minimizes the mean square error of the desired response and the actual output of 

the filter. The minimum of the mean square error occurs when the correlation between the 

signal and the error is zero. Mathematically, this is when the two signals are said to be 

orthogonal, meaning the dot product of the two is equal to zero. The Wiener filter is 

frequently used in deconvolution which leads to many applications in image processing, 

especially for adaptive background suppression [12]. 

2.2 Edge Detection 

Locating the boundaries of desired objects is another fundamental aspect of image 

processing. Helping to further segment images in order to locate and match objects, edge 

detection works by determining the gradient. This involves locating the discontinuities in 

intensity values throughout the image.  There are many effective methods for doing this 

but just two of the most common methods, Sobel and Canny, will be discussed here. 

 Frequently used in many mathematical applications, the fundamental definition of 

the gradient is the derivative of one function in one direction to the function in multiple 

directions. In image analysis, the gradient is used to locate the change in brightness levels, 

indicating edges.  To fully define the edge, the gradient is computed in both the horizontal 

and vertical directions. Edge detection algorithms, including the Sobel and Canny methods 

described below, incorporate finding the magnitude of this gradient.  

 As mentioned, the Sobel method, named for Irwin Sobel, determines an 

approximate gradient of the image intensity function. It is based on convolving the image 

with a small and separable filter in both the horizontal and vertical directions. The 

simplicity of this algorithm makes it attractive for being computationally inexpensive. 
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However, while it is proven to be effective, for some applications it can be too crude of an 

approximation [13]. 

 More effective than the Sobel operator, the Canny edge detection algorithm uses a 

multi-step algorithm to increase its robustness. The key steps within this method are first 

applying a Gaussian blur, next computing the intensity gradients, and finally tracing along 

the found edges and suppressing the non-maximum ones.  The Gaussian blur is the 

convolving of an image using a Gaussian function which serves to reduce the image detail 

and noise. Next, the magnitude and directional derivative of the gradient is calculated to 

locate the edges. Once the edge has been located and the gradient directions known, the 

edge direction is related to a direction that can be traced in an image.  Because pixels are 

arranged in a grid, when describing the directions of one pixel to surrounding pixels, there 

are only four directions that can be used. Zero degrees horizontally, ninety degrees 

vertically, forty-five degrees positively diagonal, and 135 degrees negatively diagonal. 

Therefore, the algorithm traces along the edge and rounds each edge direction to the closest 

applicable direction. To yield a more distinct edge, non-maximum suppression is applied. 

Again, the algorithm traces along the detected edge and it suppresses any point that it 

considers to be weak. To avoid image streaking, hysteresis is used. Hysteresis uses a high 

and a low threshold so any pixel that is higher than the high threshold is considered an edge 

pixel, and any pixel next to an already confirmed edge that has a value greater than the low 

threshold also remains as an edge [13]. 

2.3 Object Location and Tracking 

Dividing and organizing an image in the desired way and detecting and isolating 

the edges of desired objects are the key components in recognizing and then tracking the 
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objects. There are countless algorithms already in use for detecting and tracking objects, 

including people. Which application and outcome is targeted determines which one or 

which combination of multiple is used.  

 Many algorithms have a basis using a Bayesian approach. Bayes theorem is a 

statistical theorem that relates current probability to prior probability. Particle filters are 

density estimator algorithms that use Bayesian recursion to estimate the probability of 

hidden parameters based on observable data. These filters are known to be effective and 

are frequently used in object tracking [14].  

 An often explored algorithm used both by itself and in conjunction with other 

approaches is the Iterative Closest Point Algorithm (ICP). This algorithm relates 

corresponding sets of points and attempts to minimize the difference between them by 

iteratively translating and rotating points until a solution converges.  Aligning the point 

sets allows for efficient feature recognition used in object recognition and motion tracking. 

Although this algorithm is efficient in both two and three dimensional applications, often 

times it is unable to effectively function when applied to rapidly moving human body 

motion. Various modifications have been applied to solve this problem including fitting 

the ICP algorithm with a modified particle filter algorithm discussed previously [15].  

Template matching is another common method used to identify objects and object 

positions in a noisy environment. A template, either binary, color, or greyscale, translates 

over the target image, and at each place, a comparison is made to determine whether the 

template matches the object. Template matching can be an effective and efficient method 

when it is known that a specific object exists in the frame, and an estimate of the pattern is 
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known. Medical image processing, facial and body part recognition, and traffic feature 

detection are just a few common applications.  

 Cross correlation, also known as the sliding dot product, measures the similarity 

between two inputs. In image processing, the inputs are usually a target image and a 

template that is to be matched to this image. Geometrically, the dot product can be defined 

as the product of the Euclidean norm of the two vectors and the cosine of the angle between 

them. Within template matching, this means that in order to have a maximum similarity 

between the template and the target image, the cosine of the angle needs to be at a minimum 

to therefore maximize the dot product. Cross correlation is called a sliding dot product as 

the dot product is continuously calculated as the template translates across the target image 

in discrete steps until an acceptable correlation value is calculated. This value is typically 

normalized, as normalized cross correlation values allow for better comparison. As this can 

be a tedious process, especially if no known approximation of where the target object is 

located exists, modifications are typically made for a more efficient algorithm. Creating 

pre-calculated sum tables and approximating the template function aids in more efficient 

calculations [16]. 

 Chamfer matching is, at the moment, the most efficient method of shape matching. 

This algorithm reduces the number of edges to match and instead uses the minimum 

number of defined and unvarying edges to yield quick and accurate matches. This is 

especially useful when analyzing low level images. Some have improved the basic form of 

this algorithm by incorporating edge orientation which creates a smoother loss function 

[17]. This method can be further simplified while still maintaining an acceptable level of 

accuracy by incorporating a theory based on centroidal Voronoi tessellations to use fewer 
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pixels. Reducing the number of points used is accomplished in two ways. One of these is 

by adjusting the point densities of both the target image and the template. The other is 

optimizing the measured distances between points so that removing the points keeps the 

distance map the same [18]. 

To further increase the efficiency of template matching, a hierarchy of templates 

can be created. Considering how computationally expensive it is to compare a single 

template over an entire image using discrete steps, even if using the Fast Normalized Cross 

Correlation method described above, improvements are always sought to improve its 

effectiveness. Rather than searching through every template one by one, and possibly 

missing matches due to slight scaling and resolution differences, a hierarchy allows the 

templates to be grouped so that an initial general template grouped is first determined and 

then sorted like so through the lower levels of that group. Because objects in a scene can 

be depicted at different scales and resolutions, having a pyramid of templates to sort 

through significantly reduces computational time [19].  



 

 

 

 

 

 

 

CHAPTER 3: ALGORITHM 

 

 

This chapter details the steps of the proposed algorithm with the flowchart below 

outlining the major functions.  

          

                            Figure 2: Algorithm outline 

3.1 Background Removal 

Segmenting the background from the moving foreground is used for object 

detection and localization of moving objects. This is accomplished using a frame 

differencing method and applying a filter to eliminate noise. Because this application 

involves a possibly changing background environment, an adaptive background 

subtraction method is used.  As a person moves throughout a room, typically chairs, lamps, 

and other furniture get shifted and move through the frame. Items like books and phones 

are brought in to the frame and rearranged. Initially the reference frame for frame 

Background Subtraction

Edge Detection

Head Location

Acceleration

Head Height
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comparison and subsequent background and foreground segmentation is an initial frame of 

the room/setting with no person present. If this initial frame remains the reference frame, 

every time an object is shifted, it remains recognized as the foreground. As more and more 

gets shifted, the frame becomes cluttered with noise and the person will no longer be 

localized for analysis. Figure 3 below shows an example of this. 

         

Figure 3: Adaptive background subtraction  

In Figure 3 above, the middle picture shows the background subtraction using the 

initial frame as the reference frame while the far right picture shows the background 

subtraction using the adaptive method. Updating the reference frame allows for this 

smoother image with less noise. In this application, the reference frame is updated every 

two seconds.  

 Although using adaptive background subtraction eliminates the noise due to pieces 

of the environment shifting, other random noise due to lower image quality and variations 

in the environment illumination still exists. As discussed previously, many various filters 

exist for removing noise and they each are attractive for different applications. For this 
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tracking application, the Wiener filter is found to be the most effective in eliminating noise 

and is therefore used. Dependent on both the desired final quality and the size of the noise 

particles, the window size for the filter varies. 

The window size chosen here is 16 pixels by 12 pixels. Figure 4 below shows the result of 

using this filter. Eliminating this noise allows for a clean picture with an isolated subject 

that can be more easily located and tracked.  

 

 

 

 

 

Figure 4: Effect of using the Wiener Filter. The original is on the left  

3.2 Edge Detection 

Isolating the subject from the background environment is a key step leading up to 

locating and tracking them, however an intermediary step still needs to be taken.  In order 

for the algorithm to consistently locate the subject precisely and accurately, the outline of 

the subject should be well defined. Shown in Figure 5, an edge detection algorithm is 

applied to detect and define this outline. 
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Figure 5: Defining a distinct edge. 

The magnitude of the image gradient using the Sobel method defined the edges in 

Figure 5. The middle picture depicts the initial step of removing the background while the 

last picture on the right shows the image after applying the edge detection function. 

3.3 Tracking 

Once the person has been isolated with a defined edge, the next part of the algorithm 

locates the person and continues to track them as they move in and out of the frame. 

Because the person is isolated from the background and is considered to be walking 

upright, the algorithm searches through the rows from top to bottom until it finds a pixel 

value equal to one. This is the highest point of the person and is considered the head. Once 

a point is located, limits are set for future locating and accurate tracking. To help eliminate 

false identifiers because of noise, future search limits are established as possible places 

where the head could be located in the next frame. These limits are set to be thirty pixels 

to the left and to the right of the current head location. Each time a new valid point is 

located, the limits are shifted for the next search. If a valid point is not found within a 

certain amount of tries, the algorithm resets the limits to their initial values to include the 



16 

 

entire frame. This works for not only the person leaving and reentering the frame, but also 

if any noise remains after the filter and the algorithm locates it first instead of the person. 

Because the noise is not static, the algorithm does not mistakenly track it. It instead hits the 

limit of attempts at trying to find a valid point and resets itself. 

 With consistent accurate tracking of the person’s head, the acceleration of the 

movement is continuously calculated and monitored. The first indication that the person 

may have fallen occurs when this acceleration reaches a certain threshold. This threshold 

is set low enough to detect potential falls but sometimes gets triggered when the person 

first begins to walk into the frame because of sudden changes due to the person moving 

from being partly in the frame to finally being there entirely. Because the acceleration tends 

to spike as the person first walks into the frame, a weighted moving average was used to 

help reduce false instances.  

3.4 Fall Detection 

Because acceleration can yield false positives, it is only used as an initial indication. 

If the acceleration threshold is reached, the algorithm then runs through a series of steps 

checking the relative height changes of the head to confirm that a fall has indeed taken 

place. The frames for determining the height change are chosen to give the person a chance 

to stand back up and also to take into account that some falls include slower stumbles of 

somebody attempting to right themselves before actually falling. If the reference frames 

are chosen in too quick a succession, the algorithm may determine that the person is still 

standing and are therefore fine when in reality they may be just about to finally fall. With 

this, even if the person does fall, sometimes they are uninjured and able to stand. Again, if 

the subsequent reference frames are not spaced far enough apart, the algorithm may detect 
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a fall and send an alarm when indeed the person needs no alarm sent. The first reference 

frame is the frame where the acceleration value initially reaches the threshold while the 

second reference frame is the frame two seconds after this event. Next, a series of checks 

are repeated keeping the initial reference frame and updating the second reference frame 

over the course of a few seconds to more accurately confirm a fall. A scaling factor is used 

to account for relative pixel height differences in different areas of the frame.  

Because the background updates every couple of seconds, if a person falls, there is 

a risk that they will disappear into the background and be unseen by the program. To 

account for this, once the acceleration threshold is reached, the background stops updating 

and the reference frame becomes the frame where the acceleration value initially reached 

the threshold.  

3.5 TUG Comparison 

TUG (Timed Up and Go) testing is used in fall prevention research as a means to 

assess the risk of falling in an aging population.  The subjects were fitted with motion 

capture markers and accelerometers, and a variety of walking tests were performed and 

recorded. Using the recordings, the acceleration values were calculated using the fall 

detection algorithm and compared with the values obtained from the accelerometers.   

Because the background does not change during the TUG tests, as nothing is 

brought in and nothing is moved, adaptive background subtraction is not needed. 

Therefore, in order to create a more distinct and continuous edge, an initial frame with the 

subject not present is used as the reference frame for background subtraction throughout 

the process instead of updating it every few frames which causes a slight shadow to follow 

behind. In fall detection, this shadow does not affect the acceleration trends and height 



18 

 

calculations however it would affect precise acceleration calculations desired in TUG 

testing.



 

 

 

 

 

 

 

CHAPTER 4: RESULTS 

 

 

4.1 Fall Detection Results 

 This algorithm has been found to successfully track a person as they move in and 

out of the frame and accurately perform fall detection. Different scenarios were tested using 

previously recorded videos of people falling. Falling at various camera angles, distances 

from the camera, and in varying levels of light were all tested, and falls were successfully 

detected with minimal false positives. The algorithm also successfully detected falls down 

flights of stairs. Figure 6 below depicts one example of the algorithm successfully tracking 

a fall. The red X in the following figures depict the algorithm’s location of the head.  

 

Figure 6: Successfully detecting a fall 
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The first concept to note concerns confirming a positive fall detection. Because the 

program employs adaptive background subtraction, the subject should disappear into the 

background once they fall due to their little or no movement. To counteract this, once the 

acceleration reaches the threshold, the background stops updating to allow the person to 

remain visible. This allows the algorithm to continue stepping through its height change 

checks to accurately perform a fall confirmation or rejection.  

Figure 6 also demonstrates the algorithm’s ability to overcome the difficulty of 

portraying a three dimensional scene in two dimensions and successfully analyzing this. 

The last image in the sequence shows the person on the ground. The human eye views the 

top view of the scene and sees that the person has fallen backwards. However, this is not 

obvious when the background is removed and only the outline of the person remains. This 

illustrates the importance of checking the person’s relative change in head position rather 

than checking the height of their head from the ground. Using the latter method, the 

algorithm would locate the ground at the person’s feet and check the height from the top 

of their head. In this instance of the person falling directly backwards, this may yield the 

false impression that the person is standing. Because the algorithm employs determining 

the change in the person’s head position from them standing just before the fall to the 

position afterwards, it successfully recognizes and confirms the fall. 

The subject recovering after an initial fall and lower video quality and light levels 

are other challenges that the algorithm successfully overcame. Figures 7 and 8 show the 

successful tracking despite these issues.  
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Figure 7: Demonstrating successful tracking and recognizing recovery after a fall 

The figure above shows the algorithm accurately tracking the subject as they 

initially fall down the stairs and then stand. Stairs are a high risk environment for falling 

so accurate tracking and monitoring for staircase scenarios is vital. Figure 7 depicts low 

quality images and while the subject is not fully visible, the algorithm sees and locates 

enough of the person’s head and body to accurately detect them fall and then also recover 

back to a standing position. 

Figure 8 demonstrates another practical application. Nursing homes are frequently 

understaffed and there are known issues and even lawsuits pertaining to injuries sustained 

by people who fell and were not found for days [20].   

 

Figure 8: Elderly fall in a nursing home 
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Figure 8 depicts a shadow of the person that remains throughout the person falling. 

Typically, this shadow does not remain as the reference frame for background subtraction 

updates. However, it was intentionally left in for this scenario to imitate the situation where 

a person falls into something as they fall. Many scenarios will involve the person falling 

into furniture or other objects. As discussed earlier, to allow the person to remain in the 

foreground when they fall, the background stops updating once the acceleration reaches 

the threshold. This means that as they fall, if they bump into something after the 

background ceases to update, a shadow of that object will remain. The result of Figure 8 

shows that due to the robustness of the tracking method, the algorithm successfully tracks 

the head as it falls to the floor despite the large amount of noise present.  

For quantitative results, the following set of graphs, Figures 9-13, depicts the 

acceleration values calculated in the algorithm versus manually calculated values for 

walking, sitting down, and falling. For the walking and stand-to-sit scenarios, values were 

calculated for the person being near to the camera and farther away from it. For the stand-

to-sit, the subject sat down from the standing position, stood up, and repeated this a second 

time. 
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Figure 9: Calculated acceleration values for normal walking pace (near camera)  

 

 
Figure 10: Calculated acceleration values for normal walking pace (far from camera)  
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Figure 11: Calculated acceleration values for stand-to-sit (near camera)  

 
Figure 12: Calculated acceleration values for stand-to-sit (far from camera)  
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Figure 13: Calculated accelerations values during a fall  

 

The acceleration values during the falling scenario are not converted to m/s2 and 

instead left in pixels/s2. During monitoring, this reduces computation time since the scaling 

factor would need to be adjusted continuously as the person moves throughout the frame. 

The relative change in the trend determines a fall indication so the exact values are not 

significant. Because the person is relatively stationary during the sitting scenarios and 

remaining the same distance from the camera at all times during the walking scenarios, 

these values were converted so that they could be compared to accelerometer values later. 

These accelerometer comparisons are shown in the next section. 

The acceleration trends above for walking at a normal pace, sitting, and falling all 

match closely for both the values calculated in the algorithm and calculated manually with 

slight differences occurring due to manually choosing points a few pixels off from the 

points located in the detection function. This is especially true for the values associated 

with falling due to the nature of falling and how quickly the acceleration changes. 
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However, for purposes of fall detection, the trends and the relative changes in acceleration 

from one frame to the next are what is important. For both the algorithm and manually 

calculated values, the peak acceleration during the falling both reach above the set 

threshold of 1500 pixels/sec to accurately indicate the fall.   

4.2 TUG Results 

The results for comparing the acceleration values from the IMU sensors and from 

the detection algorithm are shown in Figures 11-14 below. The compared actions are 

walking and sitting, both at two set distances from the camera view.   

   
Figure 11: Calculated acceleration values for normal walking pace (near camera) 

    
Figure 12: Calculated acceleration values for normal walking pace (far from camera) 
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Figure 13: Calculated acceleration values for sitting (near camera) 

    
Figure 14: Calculated acceleration values for sitting (far from camera)  

 

Like the fall detection results earlier, the values from the IMU sensors and 

calculated in the algorithm have matching trends but the exact values differ. The following 

reasons explain this. Most notably, the IMU sensors measure acceleration 128 times every 

second while the frame rate for the camera is only 30 
𝑓𝑟𝑎𝑚𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
. This alone will yield less 

accurate results. Also, the IMU sensors measure acceleration in three planes while the 

camera view is two dimensional and therefore so are the acceleration values.  Furthermore, 

due to the sensitivity of the IMU sensors, they are susceptible to noise, even after passing 

the data through a low pass filter. 



 

 

 

 

CHAPTER 5: DISCUSSION 

 

 

5.1 Fall Detection 

 The developed fall detection algorithm was determined to successfully detect falls. 

It was tested in multiple scenarios including difficult environments such as stairs and partial 

occlusions. Also, because of the built in checks, it was successfully able to distinguish 

between an almost fall, a fall with recovery, and a fall with no recovery. This aids in 

eliminating false positives, as an alarm will only be triggered if a person falls and is unable 

to stand back up.  

One limitation in the accurate detecting of falls is dealing with low level lighting. 

Lower level lighting leads to increased noise that is more difficult to filter. Natural light 

from a window with no artificial light source was deemed sufficient as long as the person’s 

head does not remain in a shadow. If in a shadow, the algorithm was still successful in 

tracking the person’s head, but not as consistently. However, because the algorithm 

depends on weighted trends, the low level lighting only affects the detection results to a 

limited extent.  

To quantify results for fall detection accuracy, acceleration values calculated by the 

algorithm were compared with those calculated manually. It was found that the trends 

matched well while the actual values were similar. This comes from the way the algorithm 

locates the top of the head and the way the human eye does. The method used for fall 

detection locates all of the points on the uppermost part of the head and then uses the 
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average of these positions. Doing it manually, the top point of the head is located visually 

which leads to the minor discrepancies. However, because the values were similar and the 

trends matched, the results of the fall detection algorithm were considered accurate and 

successful.  

5.2 TUG comparison 

This algorithm was also compared to IMU accelerometer data for possible clinical 

use. It was found that acceleration value trends for both the accelerometer and from the fall 

detection algorithm were similar. However, no significant differences were found between 

the values obtained with the person close in view to the camera and with the person farther 

away in view to the camera. 

 The assumptions used and the approximations made lead to these inaccuracies. One 

approximation was that when converting the pixel distance to physical distance, each pixel 

was approximated to correspond to equal physical distances despite pixel distortions as the 

person moved throughout the frame. The pixels closer to the edges of the frame will 

correspond to a slightly larger distance. The person’s input height also affects the 

conversion approximation. To calculate the pixels per inch or pixels per meter, the person’s 

actual height is compared to their height in pixels. Because a person’s height is typically 

rounded to the nearest whole number and people do not always stand erect like they would 

if they were being directly measured at the doctor’s office, the input height may not be 

exact. This leads to discrepancies, and while these discrepancies may seem slight, they are 

significant enough to affect accurate measurement conversion and subsequent acceleration 

calculations.  
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Another key assumption made is that the point on the head used in calculations is 

the exact same point in subsequent frames. Due to the nature of the algorithm, this is not 

always true. With motion capture systems, marker sets are placed on the body and remain 

relatively stationary throughout the process. IMU sensors are also placed on the body and 

remain relatively stationary. The fall detection algorithm, however, locates the middle 

point of the top of the head in each frame. While not significantly different, this point may 

not be the exact one from frame to frame. Although the distance between two located points 

may not be large, the continuous small differences when used in calculations contribute to 

less accurate values.  

Noise and the lower framerate of the camera also contribute to less accurate 

calculations. Despite using a filter, some noise occasionally remains. While this does not 

affect the fall detection accuracy, as there are checks in place to overcome this such as 

including a weighted average, it can affect the acceleration values obtained for comparison 

with the IMU sensor. As for the framerate, the IMU sensors used record values 128 times 

every second while the framerate of the camera is only 30 frames every second, leading to 

significantly larger spaced and therefore fewer data points. This higher framerate of the 

IMU sensors makes them much more susceptible to minor changes in acceleration. 

Another factor attributing to the higher sensitivity of the sensors is that they record 

values in all three dimensions. Because one of the objectives of this research was to develop 

an algorithm to be used with any video camera, a depth camera was not used. This means 

that the acceleration values could only be calculated in two dimensions using the algorithm. 

Modifying the algorithm to be used with a depth camera, and therefore including the third 

dimension would positively affect the value comparisons. While the significance of this 
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effect is not likely to be high, further studies would need to be performed to gain a proper 

conclusion.  

Because of the exact acceleration values obtained using the algorithm were not 

consistently close to those obtained with the IMU sensors, the algorithm would not be a 

suitable replacement for the sensors. Modifications to the algorithm, including adapting it 

for use with a depth camera, could increase its efficacy. 

5.3 Practical Applications 

Although it was found that the algorithm is not suitable to replace accelerometers 

if accurate acceleration values are desired, it is useful and reliable for determining the 

changing trends. Many times when performing motion analysis, key frames are found to 

determine when desired events occurred such as when a subject begins walking or when 

they sit down. Because these key frames are determined by specific changes in data, a 

general trend is all that is needed for an accurate event detection. This is why the algorithm 

is effective for fall detection despite not accurately calculating the person’s actual 

acceleration. It identifies and makes use of the deviations in the changing acceleration data. 

The algorithm is also applicable for the initial intended purpose as a monitoring 

system. Many people have security cameras in place at their home in case of potential 

burglaries. There is even an app already developed that alerts the homeowner if someone 

is detected in the house and allows them to see a live video stream on their phone no matter 

where they are. In the guise of this application, the algorithm developed in this study could 

be applied. If and when the algorithm detects and confirms a potential fall, an alert could 

be sent to a caretaker’s phone and they could then check the live video to see if everything 

is alright. In addition to home monitoring, the same concept could be applied to workplace 
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monitoring. Workers often work alone in potentially hazardous conditions, and having a 

system like this in place could save lives. Even more than homes, most workplaces have 

security cameras already in place; so making use of these already in place systems would 

be convenient.  

This algorithm is not limited to just monitoring. This algorithm has definite 

applications in clinical settings despite its limitations. Although it is not desirable for use 

in lieu of physical accelerometers, for studies with prerecorded video where accelerometers 

were not used, this algorithm could be applied as a general assessment. Also, though not 

implemented in this research, a template matching function was also developed that could 

easily be incorporated for aiding in event detection and also for posture detection.  

5.4 Further improvements 

Limiting this study is the lack of available scenarios to test. Acceleration values 

were able to be validated and prerecorded videos of various falling scenarios were found 

and tested, but it was not possible to test every scenario that may happen in all of the 

potential applications. Future work lies in finding ways to test more possible events and 

developing a phone application for people to download and use.  

 Further improvement is also needed in making the application more viable for 

clinical use. This includes quantifying the error in the acceleration calculations. IMU 

sensors themselves have known inaccuracies. In order to quantify and determine how 

suitable this detection algorithm is for acceleration calculations, it should be compared with 

values obtained from a motion capture system since these systems have less error.  

Continuing with the clinical applications, because the acceleration trends are 

comparable between the IMU data and the algorithm calculations, future work comparing 
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the two methods for fall risk assessment is warranted. Risk assessment is already 

determined using the IMU and motion capture systems. It would be beneficial to determine 

how effective the detection algorithm could be when modified and applied to determine 

fall risk.



 

CHAPTER 6: SUMMARY AND CONCLUSION 

 

 

6.1 Brief summary 

This research proposed a new algorithm to effectively detect falls using nothing 

more than a single video camera with no need for it to be a depth camera. This was 

accomplished by creating a series of functions that segmented the process into logical steps. 

First, the background is subtracted from the image leaving only the moving foreground. 

Next, an image gradient is calculated to distinctly define the edge of the person to make 

the locating and tracking portion more effective. The head is then located, its location 

validated, and then it is tracked as the person moves in and out of the frame. As the person 

is tracked throughout the frame, the acceleration of the person’s head is continuously 

calculated and monitored. An initial indication that the person has fallen comes when this 

acceleration value reaches a certain threshold. If and when this threshold is reached, the 

algorithm goes into a function to calculate the relative change in head height. This height 

change goes through a series of checks to make a confirmation that the person has indeed 

fallen. This series of checks is also used to determine if the person has been able to stand 

up even if they did initially fall.  

6.2 Conclusions 

This algorithm is robust and it runs efficiently with little computational expense. It 

overcomes certain challenges such as dealing with partial occlusions and stairs, and can be 

used with any camera, either greyscale or color, that may already be in place. However, 
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there are also some limitations. First, it is not designed to allow for multiple people to be 

in the frame. This is not an issue for the initial purpose that was considered, monitoring 

people who are alone and have a high risk of falling. Low light levels may affect accuracy 

and efficiency, but natural light has been deemed sufficient as long as the person does not 

spend extended periods of time in shadows. Also, although the algorithm is successful in 

dealing with partial occlusions, if the person falls behind something and is entirely missing 

from the frame, the algorithm will be unable to recognize this and will instead assume that 

they simply left the frame of their own accord.  

The algorithm has also shown an indication as a viable aid in clinical fall risk 

assessments. Because of this potential for fall risk assessment and its effectiveness in fall 

detection, the algorithm displays a potentially positive impact on the quality of life for 

many individuals. It can help to reduce their cost of living and significantly increase their 

self-confidence and well-being. 
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APPENDIX: MATLAB CODE 
 

% Beth Schlegel 
% 2014-10-13 
% Todo Pasa         

             
%%%%%%%%%%%%%%%%%%%  
%%% Main script %%%  
%%%%%%%%%%%%%%%%%%%  
 

clear 
clc 

  
%% Todo Pasa Part One 

  
% Initializing Counters and Thresholds 
fs=5;            % Spacing between captured frames (ie k=1:5:length) 
p=0;             % Counter for X and Y points used in Acceleration 
a=55;           % Beginning Frame Number 
b=55;           % Ending Frame Number 
j=1;        % Counter used for updating background reference frame   
f=1;             % Initial f to pass into BSAcFunction 
AccCounter=0 % Counter for displaying head distances when  
               % AccThreshold is reached 

                    
AccThreshold=1500;         % 11-19 Changed from 2100 to 1500 
HeadDistanceThreshold=45;  % Initial start 

  
%%% Inputs set by user/calibrated 
ActualHeight=65  % Height of user. Right now it is me and I am  
                   % 65 inches tall. Inputted by user 
MOTRH=250;       % Pixel height of user while standing in the 
                   % middle of the room. Calibrated initially  
framerate=30;    % Frames per second 
%%% 

  
xh=-.5;   % Initial xh point having a value that xh will never  
            % actually return. Used to tell the program if it's 
            % the first frame or not 
SkipCounter1=0; 
ST=0;             % Skip Threshold          
AccPos=2;         % Initializing it to 2 because the first 2 entries  
                    % will be manually entered as 0 
Acceleration(1)=0;% Setting the first 2 entries to 0 to fill in spots  
                    % for the table 
Acceleration(2)=0;% 
AccFrame=1; 
Wait=0;     % Wait gets set to one if AccThreshold is reached.  
              % This is passed into the BSAcFunction so that it  
              % will stop updating the background. If the  
              % background continued to update, a person lying  
              % still on the ground after falling would disappear  
              % into the background making determinations  
              % impossible 
Seconds=2;  % Initially check head distance 2 seconds later 
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hd=0;       % Head distance place holder 
psf=0;      % Possible standing frame place holder 
Fallen=0;   % Initializing fallen variable 

  
%% Todo Pasa Part Two 
tic 
% Importing the video 
[Length,height,width,mov]=VideoImporting('OoeyGooey.avi'); % 1 % 
toc 
%% Todo Pasa Part Three 

  
% Looping through the frames 
for k=a:fs:b      
     j=j+1;           % Counter for background reference frame 
     p=p+1;           % Counter for saving x and y positions 
    % Background Subtraction   
    FrameInput=k;% Unless otherwise specified, the current frame  
                   % is used as the input frame 
    SC=0; % Currently not determining if a person is standing and  
            % what their standing height is 

     
[Target,fg,f,bg]=BSAcFunction(Length,height,width,mov,k,j,f,Wait,... 
        AccCounter,AccFrame,FrameInput,SC);              %%%% 2 %%% 
    Target=im2double(Target); 

  
    % Finding Head Using Location Function and Gradient Magnitude 
    [GM,GD]=imgradient(Target); 
    GradientTarget=im2bw(GM); 
    figure(1) 
    imshow(mov(k).cdata) 
    hold on; 
[xh,yh,skip,SkipCounter]=LocationFunctionH(GradientTarget,... 
    xh,height,width);                             %%%% 3 %%% 

  
    % Continues on to the next iteration if too many invalid  
      % points are found so that it doesn't get stuck and freeze 
    if skip==1 
       SkipCounter1=SkipCounter1+SkipCounter; 
       continue 
    end 

  
    % Saving frame and head location values to be later  
      % displayed in a table 
    frame(p)=k; 
    XPosition(p)=xh; 
    YPosition(p)=yh; 

     
    %% Todo Pasa Part Four 
    % Acceleration 

   
    % Assigning x and y positions to determine acceleration 
    if p>2  
       AccPos=AccPos+1;  
       XM3=XPosition(p); 
       XM2=XPosition(p-1); 
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       XM1=XPosition(p-2); 

        
       YM3=YPosition(p); 
       YM2=YPosition(p-1); 
       YM1=YPosition(p-2); 

        
[Acc]=AccelerationFunction(XM1,XM2,XM3,YM1,YM2,YM3,framerate,fs);%4%  
       Acceleration(AccPos)=Acc; 

  
        % If the acceleration is greater than the threshold 
        if Acc>AccThreshold 
            AccCounter=AccCounter+1;  
            AccFrame=k-fs;   

          
             Wait=1;% Set Wait=1 so that background stops updating 
              if Wait==1 
                 Seconds=2;  % Resetting seconds back to its  
                               % initial value every time it  
                               % reenters the loop  
    % Checking to see if person exists in frame attempting to  
      % get a standing height from. If acceleration threshold  
      % is reached from person walking into frame, there will  
      % be no head height to use k-.5*framerate beforehand.  
      % If this is the case, just use the head height of the  
      % person if they were standing in the middle of the  
      % room 

                     
                 FrameInput=AccFrame;%Checking to see if there is a  
                                       % person standing here 
                 SC=1;     % Checking to see if person is standing 
                 % Background Subtraction 
   [Target,fg,f,bg]=BSAcFunction(Length,height,width,mov,... 
       k,j,f,Wait,AccCounter,AccFrame,FrameInput,SC); %2.2% 
                 Target=im2double(Target); 

  
                 % Finding the edge 
                 [GM,GD]=imgradient(Target); 
                 GradientTarget=im2bw(GM); 

                  
                 % Finding the head and feet 
                 xh=-.5; 
[xh,yh,skip,SkipCounter]=LocationFunctionH(GradientTarget,... 
     xh,height,width);                          %%%% 3.2 %%% 

                
                 if skip==1          % If no person was found 
                    HeadDistanceStanding=MOTRH;%MOTRH-Middle Of  
                                                % The Room Height.  
                                                % Height of them  
                                                % in middle of room.   
                    SC=0; 
                 else 
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                   %%%%%%% STANDING HEIGHT %%%%%%%  

                      
                    FrameInput=AccFrame;% Possible standing frame  
                                         % half a second before  
                                         % acceleration  
                                         % reached threshold 

                     
                    % Take FrameInput, find head and base, call it  
                      % HeadDistanceStanding 
                    % Background Subtraction  
     [Target,fg,f,bg]=BSAcFunction(Length,height,width,... 
         mov,k,j,f,Wait,AccCounter,AccFrame,FrameInput,SC);%2.3% 
                    Target=im2double(Target); 

  
                    % Finding the edge 
                    [GM,GD]=imgradient(Target); 
                    GradientTarget=im2bw(GM); 

                  
                    % Finding the head and feet 
 [xh,yh,skip,SkipCounter]=LocationFunctionH(GradientTarget,... 
     xh,height,width);                             %%% 3.3 %%% 

                     
      %%%%% Feb 13, only need head height.  
                    StandingHead=yh; 

                     
                    %%%%% relative change in head height 
                    [yf]=BaseLocationFunction(Target,height);%5% 

                  
                    % Finding HeadDistanceStanding 
                    [HeadDistance]=HeadDistanceFunction(yh,yf);%6 % 
                    HeadDistanceStanding=HeadDistance;  

                  
                    SC=0;% Once Standing height is determined,  
                           % no longer using standing stuff, so  
                           % SC goes back to 0 
                 end 

                  
                 %%%%%%% INITIAL FALLEN HEIGHT %%%%%%% 

                  
                 % Determing height after potential fall 
                 FrameInput=k+Seconds*framerate;%Inputting frames  
                                                 %multiple seconds  
                                                 %later to compare  

                
     [Target,fg,f,bg]=BSAcFunction(Length,height,width,mov,... 
          k,j,f,Wait,AccCounter,AccFrame,FrameInput,SC); %2.4 % 
                 Target=im2double(Target);  

              
                 [GM,GD]=imgradient(Target); 
                 GradientTarget=im2bw(GM); 

                  
                 xh=-.5; % Resetting xh=-.5 resets the LLimit and  
                           % RLimit since it is checking multiple  
                           % seconds later 
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 [xh,yh,skip,SkipCounter]=LocationFunctionH(GradientTarget,... 
       xh,height,width);                             %%% 3.4 %%% 
                 FallenHead=yh; 
                 if skip==1 
                    Wait=0; 
                    continue 
                 end 

                  
   %[yf]=BaseLocationFunction(GradientTarget,height); %5.2% 

                  
 [HeadDistance]=HeadDistanceFunction(StandingHead,FallenHead);%6.2% 
                 HeadDistanceFallen=HeadDistance; 

                  
                 % Converting to the scaled distance 
[HeadDistanceConverted]=PixelConversion(HeadDistanceStanding,... %7% 
        HeadDistanceFallen,ActualHeight); 
                 HDTable(AccCounter)=HeadDistanceConverted; 

                  
                 if HeadDistanceConverted > HeadDistanceThreshold-1 
                    Wait=0; 
                    continue 
                 else 

                      
                     figure(2) 
                     imshow(GradientTarget) 

                      
                    %%%%%%% SECOND HEIGHT CHECK %%%%%%%  

                      
                    Seconds=Seconds+3; % If initial head distance  
                                         % implies fallen, then  
                                         % check again 3 seconds  
                                         % later 
             FrameInput=k+Seconds*framerate; % Inputting frames  
                                               % multiple seconds  
                                               % later to compare 

                     
                    

[Target,fg,f,bg]=BSAcFunction(Length,height,width,... 
                    

mov,k,j,f,Wait,AccCounter,AccFrame,FrameInput,SC);%2.5% 
                    Target=im2double(Target);  

                     
                    [GM,GD]=imgradient(Target); 
                    GradientTarget=im2bw(GM); 

                     
               xh=-.5;% Again, resetting the LLimit and the RLimit 
                         %%% 3.5 %%% 
[xh,yh,skip,SkipCounter]=LocationFunctionH(GradientTarget,... 
    xh,height,width);               
                    FallenHead=yh; 

                     
                    if skip==1 
                       Wait=0; 
                       continue 
                    end 
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  %[yf]=BaseLocationFunction(Target,height);      %5.3% 

                     
  [HeadDistance]=HeadDistanceFunction(StandingHead,FallenHead);%6.3% 
                    HeadDistanceFallen=HeadDistance; 

                     
  [HeadDistanceConverted]=PixelConversion(HeadDistanceStanding,... 
             HeadDistanceFallen,ActualHeight);             %7.2% 
                    HDTable(AccCounter)=HeadDistanceConverted; 

                     
                    if HeadDistanceConverted < HeadDistanceThreshold 

                        
                        figure(3) 
                        imshow(GradientTarget) 

                         
                       %%%%%%% THIRD HEIGHT CHECK %%%%%%%  

                         
                  Seconds=Seconds+3;%If the height is still under  
                                     % the threshold after 5  
                                     % seconds, then check one more  
                                     % time after 3 more seconds 
                 FrameInput=k+Seconds*framerate; %Inputting frames  
                                                  % multiple seconds  
                                                  % later to compare 

                        
    [Target,fg,f,bg]=BSAcFunction(Length,height,width,mov,... 
           k,j,f,Wait,AccCounter,AccFrame,FrameInput,SC); %2.6% 
                       Target=im2double(Target);  

            
                       [GM,GD]=imgradient(Target); 
                       GradientTarget=im2bw(GM); 

                        
                       xh=-.5; 
                       %3.6% 
[xh,yh,skip,SkipCounter]=LocationFunctionH(GradientTarget,... 
    xh,height,width); 
                       FallenHead=yh; 

                        
                       if skip==1 
                          Wait=0; 
                          continue 
                       end 

                        
           %[yf]=BaseLocationFunction(Target,height); 

                        
 [HeadDistance]=HeadDistanceFunction(StandingHead,FallenHead); %6.4% 
                       HeadDistanceFallen=HeadDistance; 

                     
 [HeadDistanceConverted]=PixelConversion(HeadDistanceStanding,... 
          HeadDistanceFallen,ActualHeight);    %7.3% 
                       HDTable(AccCounter)=HeadDistanceConverted; 

                        
                    if HeadDistanceConverted < HeadDistanceThreshold 
                          k 
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                          figure(4) 
                          imshow(GradientTarget) 
                          fprintf('Fallen? \n') 
               Fallen=input('Press 1 if fallen, press 0 if not:'); 
                          if Fallen==1 
                             xh=-.5; 
                          fprintf('Golf Papa down. Oscar Mike \n') 
                             break 
                          else 
                             xh=-.5; 
                             Wait=0; 
                         fprintf('All good on the home front \n') 
                             continue 
                          end 
                       else 
                           figure(3) 
                           imshow(GradientTarget) 
                       end 

                        
                    else 
                       figure(4) 
                       imshow(GradientTarget) 
                       break 
                    end 
                 end  
              end 

            
           AccelerationFrame(AccCounter)=k; 
           AccThreshold(AccCounter)=Acc; 

            
        end 
    end 
end 

  
if exist('frame') 
    if exist('XPosition') 
        if exist('YPosition') 
            if exist('Acceleration') 
% Creating a table to display frame number and x and y positions 
frame=transpose(frame); 
XPosition=transpose(XPosition); 
YPosition=transpose(YPosition); 
Acceleration=transpose(Acceleration); 
if length(Acceleration)==length(YPosition) 
    T=table(frame,XPosition,YPosition,Acceleration) 
else 
    T=table(frame,XPosition,YPosition) 
end 
            end 
        end 
    end 
end 

  
if AccCounter>0 
    AccelerationFrame=transpose(AccelerationFrame); 
    HeadDistance=transpose(HDTable); 
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    AccThreshold=transpose(AccThreshold); 

     
    T2=table(AccFrame,AccThreshold,HeadDistance) 
end 
  toc 
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% Beth Schlegel 
% 2014-11-01 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Mean-Shift Video Tracking %%% 
%%% Modified version originally written by Sylvain Bernhardt %%% 
%%% July 2008 %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 
%% Description 
% Import a AVI video file from its 'path'. 
% The output is its length, size (height,width) and the video  
  % sequence read by Matlab from this AVI file. 
% [lngth,h,w,mov]=Import_mov(path) 

  
function [lngth,h,w,mov]=VideoImporting(path) 
infomov=VideoReader(path); 
lngth=infomov.NumberOfFrames; 
h=infomov.Height; 
w=infomov.Width; 
mov(1:lngth)=struct('cdata',zeros(h,w,3,'uint8'),'colormap',[]); 

  

  
% Read one frame at a time. 
for k=1:lngth 
    mov(k).cdata=read(infomov, k); 
   %mov(k).alpha = read(infomov, k); 
end 

  
%% General Notes 
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% Beth Schlegel 
% 2014-06-17 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%% Background Subtraction Function %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% 
function[Target,fg,f,bg]=BSAcFunction(Length,height,width,mov,... 
    k,j,f,Wait,AccCounter,AccFrame,FrameInput,SC);   
%%% BSAc-BackgroundSubtractionAcceleration 

  
if j==1 
    f=1; 
elseif rem(j,6)==0 
    f=j; 
end 

  
if Wait==0 
   bgFrame=k-2; % If AccThreshold has not been reached,  
                  % background continues to update 
   FrameInput=k;% Using the current frame as comparison until  
                  % threshold is reached. Then using frames  
                  % in advance 
   if bgFrame<1 
       bgFrame=1; 
   end 
elseif Wait==1 
    if SC==0    
       bgFrame=AccFrame-60;  % If AccThreshold has been reached,  
                             % background stops updating and uses  
                             % bg as frame where Threshold was  
                             % first reached 
    else 
       bgFrame=AccFrame-325; % If checking if person is standing  
                               % and deciding their height, use an  
                               % earlier background reference frame  
    end 
    if bgFrame < 1       
          bgFrame=1; % Making sure there are enough already  
                       % processed frames  
    end 
end 
MovLength=length(mov); 
if FrameInput > MovLength 
   FrameInput=MovLength; 
end 

  
% Setting Frame Variables 
thresh=40;            % Threshold for maximum pixel difference 

  
bg=mov(bgFrame).cdata;%reads in 1st frame as background frame  
                       %initially and then updates using a  
                       %new frame to account for furniture movement 
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fg = zeros(height,width); %Creates an empty array for the foreground 

  
% Processing Frames 
fr=zeros(height,width,3); 
tic 
    fr = mov(FrameInput).cdata;           % reads in frame 
    fr_diff = abs(double(fr) - double(bg)); 

    
    for j=1:width 
        for k=1:height 
            if ((fr_diff(k,j) > thresh))   % Determine if the  
                                             % difference at each  
                                             % pixel is greater  
                                             % than the threshold 
                fg(k,j)=fr(k,j);%Set pixel equal to image pixel  
                                 %of current frame 
            else 
                fg(k,j)= 0;%If not greater than the threshold,  
                            %set the pixel equal to zero 
            end 
        end 
    end 

  
    %Target=fg; 
   Target=wiener2(uint8(fg),[16 12]);       % filter  

  
   %% General Notes 
   %Added Adaptive BS with b=mov(k-2).cdata 
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% Beth Schlegel 
% 2014-03-11 Original 
% 2014-05-09 Update 
% 2014-10-24 Update 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Function for finding head location for each frame %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% Modification of the original Location Function  
% 10-24 Modification. Adding a check to see if the found head  
  % position is valid 
% 10-29 Modification. Adding search limits 
%% 
function [xh,yh,Skip,SkipCounter]=LocationFunctionH(alpha,... 
    xh,height,width) 
%% Initial Parameters and Setting Search Limits 
xhP=xh;     %Setting the last found xh as the xhprevious  
             %to compare the current frame with the previous frame 
Skip=0;             % Initializing Skip variable 
SkipCounter=0;      % Initializing Skip Counter 
invalid=0;          % Initializing invalid counter 
a=1;           % Counter for the yh loop. Used to continue  
                 %searching down if the the original found point  
                 % is determined to be invalid 
q=0;           % q is set to 1 if the found xh point is determined  
                 % to be valid. Otherwise, q remains 0, and the  
                 % function reruns through the loops beginning at  
                 % row a+1 (the row below where it originally broke  
                 % out of the loop when yh was first found) 
LLimit=1;     % Search the entire bounds of the image unless  
                % narrowed for an invalid point  
RLimit=width; 
y=0;          % Initially setting y=0 so that the LLimit and RLimit  
                % will include the entire bounds of the image 

  
% xh is initially set to -.5. Once it runs through this function,  
  % a new value will get assigned. Only once the program has found  
  % two points can it do a comparison so the comparison at the end  
  % of the function will only run if n=1 
if xh==-.5 
    n=0; 
else 
    n=1; 
end 

  
%% Performing the Search and Determining xh 
while q==0     % While the gap between the current and previous  
                 % xh locations remain too far apart 
    if y==1    % If an invalid point is found, the search field for  
                 % the next point is narrowed 
        LLimit=xhP-30; 
        RLimit=xhP+30; 

         
% Making sure the limits stay within the bounds of the image  
        if LLimit<0 
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           LLimit=1; 
        end 

         
        if LLimit==0 
            LLimit=1; 
        end 

         
        if RLimit>640 
           RLimit=640; 
        end 
    end 

     
    for i=a:1:height    % Initially set to 1. Set to the point  
                          % after the initial break if the initial  
                          % point is invalid and finds the next point 
        if max(alpha(i,LLimit:RLimit))>0 
            yh=i; 
            if yh>i-1 
                break 
            end 
        end 
    end 

     
    if ~exist('yh') 
        xh=-.5;   % Resetting xh to -.5 to restart the  
                    % search from the beginning  
        yh=-.5;   % Setting it to -.5 so it has a value to return 
        Skip=1; 
        break     % Breaking out of while loop 
    end 

  
    YC=0; 
    for k=LLimit:1:RLimit 
       YC=YC+1; 
        if max(alpha(i,k))>0 
           xh1(YC)=k; 

            
        else 
           xh1(YC)=0; 
        end 

         
        if y==1  
           ALI(YC)=xh1(YC); 
        end 

         
    end 

    
    % Using only non-zero values of xh 
    pp=length(xh1); 
    j=0; 
    for p=1:pp 
        if xh1(p)>0 
            j=j+1; 
            xh(j)=xh1(p); 
        end  
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    end 

  
    if y==1 
       if exist('ALI')==1  
          pp=length(ALI); 
          j=1; 
          for p=1:pp 
              if ALI(p)>0 
                 xhNew(j)=ALI(p); 
                 j=j+1; 
              %else 
             %   xhNew(j)=0;  
              end  
          end 
       end 
    end 

     
    % Returning only the middle point of the xh1 range 
    LastXh1=length(xh); 
    xh=ceil(abs(xh(1)+xh(LastXh1))/2); 

     
    if y==1 
        if exist('xhNew'); 
           LastxhNew=length(xhNew); 
           xhNew=ceil(abs(xhNew(1)+xhNew(LastxhNew))/2); 
           xh=xhNew; 
        end 
    end 

     
    % Only comparing if there is a previous one to compare with 
    if n==1 
        if abs(xh-xhP)>35      % Value subject to change 
           q=0; 
           y=1; % If y=1, the next search will narrow the x limits 
           invalid=invalid+1; 

            
           if invalid >1 
              a=yh+1; 
           end 

            
           if invalid == 25 
              Skip=1; 
              SkipCounter=SkipCounter+1; 
              q=1;           % Set q=1 to break out of while loop 
              xh=-.5;        % Resetting xh to initial value 
           end 
        else 
            q=1; 
            y=0; 
            invalid=0;  % Resetting the invalid counter if a 
                          % valid point is found 
        end 
    else 
        q=1;            % If n=0, it means it was the first  
                          % frame, so q needs to be set equal  
                          % to 1 to break out of the while loop 
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    end 
end     

  
 %% General Notes 

  
 % Still need to develop a way to validate the initial point.  
   % Currently, it runs under the assumption that the first  
   % point is valid, so the next point gets compared to it.This  
   % will not work if the initial points ends up being an outlier.  
   % 10-24-14.FIXED 

  
 % Also, still need to add in what to do if person is not in frame  
 % andtherefore no xh is found. FIXED 11-15 
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% Beth Schlegel 
% 2014-06-17 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Fall detection based on acceleration using no markers or sensors%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%  
function [Acc,Accx,Accy]=AccelerationFunction(XM1,XM2,XM3,YM1,... 
    YM2,YM3,framerate,fs) 

  
t=fs*(1/framerate);       % Time between measured frame points 

  
vx1=abs((XM2-XM1))/t;     % Initial velocity in the x direction 
vx2=abs((XM3-XM2))/t;%Velocity at the next point in the x direction 

  
Accx=abs((vx2-vx1))/t;    % Acceleration in the x direction 

  
vy1=abs((YM2-YM1))/t;     % Initial velocity in the y direction 
vy2=abs((YM3-YM2))/t;%Velocity at the next point in the y direction 

  
Accy=abs((vy2-vy1))/t;    % Acceleration in the y direction 

  
Acc=ceil(sqrt(Accx^2+Accy^2));  % Acceleration magnitude 

  
end 

  
%% General Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

 

% Beth Schlegel 
% 2014-10-17 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Function for finding the surface base (where the person's %%% 
%%% feet are or where the floor is if they are not one and the same %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
function [yf]=BaseLocationFunction(Target,height) 

  
for j=height:-1:1 
    if max(Target(j,:))>0 
        yf=j; 
    else 
        yf=0; 
    end 
    if yf>j-1 
        break 
    end 
end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

 

% Beth Schlegel 
% 2015-01-24 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Finding the distance of the head from the floor %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
function [HeadDistance]=HeadDistanceFunction(yh,yf); 

  
HeadDistance=yf-yh; 
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% Beth Schlegel 
% 2015-01-24 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Pixel Conversion for the height of the head from the floor %%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% 
function 

[HeadDistanceConverted]=PixelConversion(HeadDistanceStanding,... 
    HeadDistanceFallen,ActualHeight) 

  
%HeadDistanceConverted=(AH*HDFallen)/HeadDistanceStanding; 
PixelsPerInch=HeadDistanceStanding/ActualHeight; 
HeadDistanceConverted=HeadDistanceFallen/PixelsPerInch; 

 

 

 


