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ABSTRACT

THOMAS DOWUONA NORTEY. Green’s function-stochastic approach to solv-
ing linear, nonlinear and nonhomogeneous evolution transport problems.
( Under the direction of DR. RUSSELL KEANINI )

A general, analytical Green’s function-stochastic approach for solving linear,

nonlinear and non-homogeneous evolution and transport problems is presented.

Analysis of practical and natural engineering situations reveal the basic ele-

ments from which an understanding of such systems is best put together. Partial

differential equations that evolve from such analysis sometimes become difficult to

solve by classical approaches. While numerical solutions are often sought in some

studies, Green’s function methods often offer a powerful alternative.

Green’s function in the case of linear models, provide integral solutions that

depend strictly on known boundary conditions, initial conditions, and when neces-

sary, space and/or time varying system forcing functions. The approach of Green’s

function best reveals the responses to the problems effected by Dirac delta func-

tions. Green’s function methods are especially useful when the system is subject to

random boundary and/or initial conditions, and/or random forcing. Under these

conditions, Green’s function based solution describes exactly the random response

of the modeled system. In addition, the Green’s -based solution allows explicit

calculation of the space-and possibly time-dependent mean response, as well as the

space and time-dependent system variance about the mean evolves in space and

time is, in turn typically

Problems of physics and engineering that reveal probabilistic characteristics or

involve boundary conditions that are random in nature as well as possibly stochas-

tic in-system forcing can be analysed by Green’s function methods. For such

problems, Green’s function methods can be usefully combined with methods from

theory of stochastic differential equations. Here, the time and space-dependent evo-
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lution of the variables describing the system response is often modeled as a random

walk/stochastic process, the evolution of which is governed by advection-diffusion

stochastic differential equation. The probabilstic decription of how the stochas-

tic process, evolves in space and time is, in typically embedded in the transition

probability density, p, which gives the (conditional) probability of observing the

stochastic process/random system response, at some specified position and time,

given its position at an earlier time. Importantly and as detailed and exploited in

this dissertation, the equation governing the evolution of the transition density, p

- the Chapmann-Kolmogorov equation - corresponds exactly, under fairly general

conditions, to the Green’s function describing the system’s response. Thus, the

important problem of modeling the random response of linear systems subject to

random forcing can be powerfully tackled by initially determining the system’s

Green’s function, and explicitly identifying the system variable describing system

response as stochastic process /random walker. Using this recipe provides scientists

and engineers with a near-complete, rigorous, physics-based, probabilistic picture

of how the system evolves under random forcing and /or random boundary and

initial conditions.

This dissertation first analysed the flow problem from continuum approach em-

ploying conservation principles of mass and momentum. Such analysis led to a pure

diffusion problem. The diffusion problem is then solved for a semi-infinite and finite

medium with moving boundary. The Green’s function method is then employed to

solve the diffusion equation but this time with time - dependent boundary motions.

Some useful Green’s function results were obtained. The Chapmann-Kolmogorov

equation is then derived and simplified to the Fokker- Planck equation for ap-

plication to randomly-forced incompressible flow problems. Finally, two simple

example flow problems, the random response of a semi-infinite fluid layer, and the

random response of a finite layer, both driven by the random boundary motion are
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considered.
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CHAPTER 1: INTRODUCTION

The analysis of flow fields initiated by moving boundaries have long been of

interest to physicists and engineers. Many experimental and numerical techniques

have been used to investigate the flow field initiated by moving boundaries. A

variety of solutions are known for laminar flow with moving boundaries. The

moving boundary may be part of the domain for which the flow field is being

solved. It may be semi-infinite with a moving boundary or a finite domain between

two long infinite plates with one of the plates given an initial velocity. Stokes was

one of the earlier scientists who investigated flow initiated by a moving boundary

in a semi-infinite medium. Couette also investigated wall-driven flow in which the

domain is finite between boundaries, one stationary and the other moving with a

velocity. In Couette’s flow the domain may be between linear boundaries or two

cylindrical boundaries. In Stokes investigations , the boundary velocities were one

with uniform motion and the an oscillatory motion. In both cases, the domain

describes a semi-infinite domain with fluid initially at rest and bounded below by

a solid plane.

The flow field developed varies according to the function describing the motion

of the boundary that initiated the flow. The boundary motion could be uniform

or vary with time. Solutions already exist in literature for diffusion equations with

uniform boundary motion condition. Classical methods of solving partial differ-

ential equations could be used to solve the resulting partial differential equations

deduced from the continuity and momentum Navier Stokes equations applied to the

flow filed with uniform boundary motion and initial conditions. When the partial

differential diffusion equation governing the flow field has a time-dependent source
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term and time-dependent boundary conditions, the classical approach could not

be used to solve the flow field. The Duhamel theory or Green’s function method

may have to be adopted.

Duhamel’s principle relates the construction of the solution of inhomogeneous

equations to one involving a homogeneous equation. The method is valid for initial

and boundary value problems for hyperbolic and parabolic equations. We consider

the parabolic equation of form:

ρ(x) Ux(x, t) + L[U(x, t)] = g(x, t) (1− 1)

where

L[U ] = − ∂

∂x
(ρ(x)

∂u

∂x
) + q(x)u

ρ(x) > 0 and g(x, t) a given forcing or source term. We assume U(x, t) satisfies ho-

mogeneous initial conditions at t =0. For the initial and boundary value problem

of (1 − 1) in a boundary region C, we again assume that homogeneous bound-

ary condition U(x, t) = 0. Duhamel’s principle proceeds as follows. Consider a

homogeneous version of (1− 1), that is :

ρ(x)Vt(x, t) + L[v(x, t)] = 0 (1− 2)

for the function V (x, t), which is assumed to satisfy the same boundary conditions

(if any are given ) as U(x, t) . It is assumed that the problem above for V (x, t) can

be solved by the separation of variables for the initial and boundary value problem.

The solution depends on the parameter τ (ie initial initial time), so we write it as

v(x, t; τ).

Duhamel’s principle states that the solution v(x, t) of the given inhomogeneous
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problem is :

U(x, t) =
∫ t

0
v(x, t; τ)dτ (1− 3)

A motivation for the method is obtained by noting that the effect of the term

g(x, t) can be characterized as resulting from a superposition of impulses at times,

t = τ over the time span 0 ≤ τ ≤ t

This section of the chapter describes to a short extent what Green’s function

about. Green’s function can be considered as an integral kernel which can be used

to solve boundary value problems. It can be used to solve both ordinary and par-

tial differential equations of physics and engineering. Green’s function provides

means to describe the response to an arbitrary differential equation with or with-

out a source term. The equation may have boundary conditions but may or may

not have initial condition. Partial differential equations of physics and engineer-

ing namely, Poisson’s equation, the diffusion equation and the wave equation with

boundary conditions that make it difficult to solve by classical approach could be

solved by Green’s function approach. Data prescribed at one point contribute to

the solution at other spatial remote points. Analysis reveals the basic elements

from which an understanding of such systems is best put together, namely point

sources described by Dirac delta functions, and the Green’s function which de-

scribes their effects. Most partial differential equations of physics and engineering

can be tackled by Green’s function techniques which bring out their similarities and

at the same time highlight their significant differences. Green’s function encour-

ages a spontaneously efficient common approach to propagation from prescribed

initial conditions, volume distributed sources, surface distributed sources and line

distributed sources or boundary data. Even with time-independent equations, data

prescribed at one point contribute to the solution at other remote points. The use-

fulness of Green’s function lies in the fact that the solution of the original problem

can be represented only in terms of Green’s function. Once the Green’s function is
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known, the response distribution in the medium is readily computed. Green’s func-

tion has close ties to the transition probability distribution function of a stochastic

field. Derived representations for the generating function of Green’s function of

stochastic problems are stated either with the use of derived diffusion equation

in different forms. Solutions of a second-order stochastic differential equation in

the framework of the stochastic field theory is constructed. The combined Green’s

function-stochastic approach leads to determination of explicit integral formulas

for computing probability density functions and constituents expectations. Once

these are obtained, then the nonlinear and non-homogeneous problems are tackled

by limiting integrals to small time steps. The probability density functions become

descriptive solutions to stochastic flow fields and can be used to obtain the moment

generating functions which are the properties of each flow. The Green’s function-

stochastic method is applied to flows with a moving boundaries. The resulted flow

field is due to the type of domain, the initial condition and the function governing

the motion of each boundary.

1.1 Dirac Delta Function:

Dirac delta function is a means by which, point-sources, its application and the

responses generated are represented. Intuitively, the function δ(x) is defined to be

zero, when x 6= 0 and is infinite at x = 0 in such a way that the area under it is

unity. To express this we write:

δ(x) = 0, ifx 6= 0 and
∫ η2

−η1
dx δ(x) = 1 (1− 4)

The integral in (1-11) could be written as :

∫ ∞
−∞

dx δ(x) = 1 (1− 5)
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If we reverse the limits on the integral :

∫ −η1
η2

dx δ(x) = −
∫ η2

−η1
dx δ(x) = −1 (1− 6)

If f(x) is a well behaved function, continuous and differentiable as often as required,

then ∫ η2

−η1
dx δ(x)f(x) = f(0)

∫ η2

−η1
dx δ(x) = f(0) (1− 7)

f(x) is called a test function. The equality in equation (1-14) holds because

δ(x 6= 0) = 0 entails that there is no contribution to the integral from anywhere

where f(x) 6= f(0). Consequently f(x) may be replaced by f(0). The delta-function

and its derivatives make sense only if multiplied by a sufficiently well- behaved test

function and then integrated over some finitely wide range of x. Infact despite

its name, δ(x) is not really a function at all, it is more properly described as a

”distribution” or a generalized function. Often it is helpful to think of it as a

”functional”. While an ordinary function f maps numbers x unto number f(x), a

functional maps any ordinary (test) function f unto the numbers f(0). The delta

-function can be related to convolutions. A convolution C is a special kind of

operator mapping functions unto other functions of the same variable say g onto

G written symbolically as Cg = G. the convolution C is represented by a function

c(x-y), and one defines

G(x) =
∫ ∞
−∞

dyc(x− y)g(y) =
∫ ∞
−∞

dy c(y)g(x− y) (1− 8)

For general c, G is of course a function different from g. In the special case where

c(x− y) = δ(x− y), the equation

∫ −η1
η2

dxδ(x) = −
∫ η2

−η1
dxδ(x) = −1
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entails that

G(x) =
∫ ∞
−∞

dy δ(x− y)g(y) = g(x) (1− 9)

Thus δ(x− y) regarded as a convolution represents the identity (unit) operator, 1,

which maps any test function unto the same function.

1.2 The Diffusion Equation:

The flow of fluid in a domain is analysed from two perspectives. First from

the perspective of a macroscopic view and from the perspective of a near micro-

scopic view. In the macrscopic view, the application of conservation principles of

mass and momentum(Navier Stokes equations) led to the diffusion equation. The

diffusion equation was derived in the continuum limit employing, forces, fluxes,

concentrations of particles, potentials and transient quantities within the flow.

Reynolds number which helps to categorize flows as laminar or turbulent is a ratio

of inertial forces to viscous forces in a fluid. Therefore we can say that at very low

Reynolds numbers, the viscous effects outweigh the inertial effects. If our initial

analysis of the flow field has led us to a pure diffusion situation, it brings to our

attention that Reynolds number must be very low and viscous forces must be very

dominant. The quantities or properties of the fluid that are undergoing diffusion

must be of interest to us . These may include mass, momentum, concentration

and vorticity. The solution method to be adopted to solve the flow field from a

continuum mechanics view is dictated by the boundary and initial conditions. The

diffusion equation is generally stated as:

∂u(x, t)

∂t
= D∇2u(x, t)

Unlike the mechanics of solids, the mechanics of fluids is more considered as par-

ticles in motion. The motion of a small particle is dominated by fast timescales,

short distances and collisions with neighbouring particles, that yield highly irregu-
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lar and rapidly changing motion. It can be said that what highlights the difference

between macro and microscopic life is an issue of scale. To approximate the me-

chanics of collision between molecules which occur on time scale orders of about

1012s and distances of order of about 10−9m , the idea of the stochastic behaviour

and random walk is adopted. The ideas of vorticity and random walk are in place

only to allow us to ignore the massive complexity of such a small fast system to

yield a more tractable problem.[ref] Since the diffusion concept alerts us to look

beyond the slow observations of particle motion into the world of molecular dy-

namics, it can be said the diffusion equation allows us to talk about the statistics of

randomly moving particles. This yields us to the temptation of abandoning New-

tonian mechanics and notion of inertia in favor of a system that directly responds

to fluctuations in the surrounding environment. The Brownian motion of a particle

can be described as stochastic process. Another closely related concept to stochas-

tic process is the random walk. In distinction to the Brownian motion where the

randomness appears as continuous Wiener process, the random walk proceeds by

discrete steps. Random walks provide a basis for understanding a wide range of

phenomena and require the use of many mathematical techniques to solve the re-

lated problems. Random walk look the same on all scales and the general features

of the statistical behavior are independent of the microscopic details. The concept

of random walk is described as follows:

A man starts from point O and walks l yards in a straight line; He then turns

through any angle whatever and walks another l yards in a straight line. He re-

peats this process n times. The probability is required that after these n stretches

he is at a distance between r and r + δr from the starting point O. the drunk-

ard takes a series of steps of equal length away from the last point but each at

a random angle. The random walk on a line is much simpler. The positions are

spaced regularly along a line. The walker has two possibilities; either one step to
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the right(+1) with probability P or one step to the left(-1) with probability q =

1- p. For a symmetric case like a pure diffusion situation q = p = 1/2.

After n steps, the position of the random walker is given by:

s(n) =
n∑
i=1

li; with li = 1 (1− 10)

A series of fluctuating values s(n) is obtained when the random walk is repeated

many times. Interesting quantities are the averages over an ensemble of m different

realizations. For an ifinitely large ensemble, m→∞, the probability theory allows

us to caculate the probability distribution s(n), as well as the mean values. For

the symmetric case p = q = 1/2, we have zero mean value. < s(n) >= 0. Since

s(n) and s(-n) are equally likely, the root-mean-square

σ(n) =
√
< s(n)2 > − < s(n) >2 =

√
n (1− 11)

characterizes the average deviation amplitude from the mean value. The theoritical

results given by (1-10) and (1-11) as well as the probability distribution over the

position of the random-walker follow easily from the properties of the Markov

chain describing the process, namely the probability P(m, n+1) that the walker

is at position m after n+1 steps is given by the set of probability P(m,n) after n

steps in accordance with the master equation.

P (m,n+ 1) = pP (m− 1, n) + qP (m+ 1, n)

In 1996, J. T. C. Liu investigated the problem of flow induced by the impulsive

motion of an infinite flat plate in a dusty gas. This kind of problem was first

considered by Stokes. Liu’s work considered the corresponding Rayleigh problem

for a viscous incompressible dusty gas. Two elementary limiting situations were
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confirmed. For ’small’ times, the viscous diffusion layer grows parabolically;- (νt)
1
2

as if the particle phase were absent. For ’large” times, the viscous diffusion layer

also grows parabolically, but as (νt)
1
2 where ν is the kinematic viscousity based

upon the viscosity of the gas but the total density of the combined gas and solid

phases.

Hassan Aref and Eric D. Siggia, in 1980 studied the initial value problem defined

by two parallel vortex sheets of opposite signs. They numerically simulated the

roll-up of the sheets into vortex street. The breakdown of the metastable street

into a two-dimensional, turbulent shear flow was also studied. Using dimensional

arguments, they derived the relevant scaling theory, and showed that it applies to

a flow started from two random vortex sheets. For the turbulent flow that follows

from the breakdown of a regular vortex street two length scales with different

power-law growth in time appear to be necessary. The important differences in the

asymptotic structures of the flows initialized from random and regular sheets were

revealed. The initial condition considered by them consisted of two vortex sheets

of opposit sign discretized into point vortices. When the same perturbation was

applied to both sheets, they rolled up to produce a staggered array of finite area

vortices. The breakdown of the vortex street led to a two-dimensional turbulent

shear flow. They argued that when a street of point vortices breaks down, the

momentum thickness increases as t
1
2

In 2004, H Basirzadeh and A. V. Kamyad introduced an approach for solving a

wide range of moving boundary problems by using calculus of variations and mea-

sure theory. They transformed the problems equivalently into an optimal control

problem. They then modified the new problem into one consisting of the minimiza-

tion of a linear functional over a set aof Radon measures. By using the solution

of finite linear programming the suboptimal measures were obtained. Finally the

approximate optimal control as constructed, and then an approximate solution for
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moving boundary function on specific time. They obtained solution for the posi-

tion of the moving boundary at various times. Also obtain solutions that showed

the variations of the piecewise constant control functions and trajectory functions

with time.

T. C. Illingworth and I. O Golosnoy in 2005 developed a numerical scheme to find

transient solutions to diffusion problems in two distinct phases that were separated

by a moving boundary. In order to model the differential equations governing the

diffusion process, they assume that the diffusion coefficients were functions of com-

position only, and the equilibrium concentration were constant. They included the

interface position as a continuous variable in the model and solved a finite-difference

form of the differential differential equation. Difficulties arose in tracking the mo-

tion of the interface because of the discontinuity in the concentration profile there.

Since the chemical activity of each species varies continuously across the sample,

describing the way in which diffusion affects activity(rather than concentration)

could potentially overcome these problems. Another way they dealt with the dis-

continuity at the interface was to use discretization of space which took into account

the motion of the interface.. from their scheme, they were able to to predict how

the interface position varies as a function of time for a particular planar system.

the numerical scheme used conserved solute( to within rounding accuracy) in ev-

ery calculation. A concentration profile implied that the position of the interface

moved in a parabolic manner.

s(t) = k
√

4DBt

where k is a constant that depended on the geometry of the system; as well as the

concentration. The interface position varied as with the square root of time.

Pablo Suarez and Abhinandan Chowdhury numerically studied the stochastic

Burger’s equation with moving boundaries in 2014. Their aim was to investigate
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the effect of random noise on the Burger’s equation describing a field between

boundaries moving with a prescribed manner. A time-dependent noise term was

chosen. Two types of moving boundary functions were considered, a constant ve-

locity moving boundary and a boundary moving with a rapidly oscillating function.

Different intensities of the noise term were tested by their solution. They showed

that the solution profile for Burgers equation without the noise term matches the

solution profile obtained for the Burger’s equation with similar moving boundary.

The solution profile between the boundaries does not appear to be perturbed by

the presence of the random term. For the case of the rapidly oscillating bound-

aries the solution profiles at the boundaries, do not appear to be perturbed to

a significant extent. But the solution profiles between the boundaries experience

very high frequency oscillation with very small magnitude which is predominantly

dependent on the value of ε the time-dependent noise created substantially amount

of perturbation in the boundary, but cannot influence the solution profile between

the boundaries in a significant manner.

Christopher J. Vogl, Michael J. Miksis and Stephen H Davis in 2012 investi-

gated a class of one-dimensional moving boundary problems that involves one or

more regions governed by anomalous diffusion. A novel numerical method was

developed to handle the moving interface. Two moving boundary problems were

solved; the first involves a subdivision region to the one side of an interface and

a classical diffusion region to the other. Anomalous diffusion describes a process

where then mean-squared behaviour of < x2(t) >∼ tα where α 6= 1. The processes

were modelled by an integro-differential equation known as the fractional diffusion

equation. the numerical method they developed was based on the method of Di-

ethelm et al. The moving boundary problem was solved on an infinite domain with

Heaviside initial data. The boundary condition at the interface were formulated

from aa consideration of a vitrification front that was postulated to occur during
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the anhydrobiosis of certain organisms, by Aksan et al(2000). With vitrification,

continuity of water concentration and flux were expected at the formation front.

With these conditions, two problems were considered. the first problem had an

interface bounded by an anomalous region to the one side and a classical diffusion

region to the other. Instead of moving monotonically the interface was found to

reverse direction after a given time, which depended on material parameter. The

anomalous-classical problem was then generalized to involve subdiffusion on both

sides of the interface. This new problem was denoted as the anomalous-anomalous

problem. This interface could also reverse direction after a given time, but only if

the orders of subdivision are distinct.

In 2008, Dmitri Volfson and Jorge Vinals studied the induced by random vi-

bration of a solid boundary in otherwise quiescent fluid. Their work examined the

formation and separation of viscous layers in a fluid which in contact with a solid

boundary that is vibrated randomly. Their analysis was motivated by the low level

and random acceleration field that affects a number of microgravity experiments.

They first studied the case of a planar boundary to generalize the classical result

of Stokes. Next they considered a slightly curved boundary and show that steady

streaming appears in the ensemble average at first order in the perturbed flow vari-

ables. Finally, they addressed the case of a modulated boundary that is vibrated

randomly. The study of Volfson and Vinals was motivated by the significant levels

of residual accelerations (g-jitter) that have been detected during space missions

in which microgravity experiments have been conducted. Direct measurement of

these residual accelerations has shown, they have a wide frequency spectrum, rang-

ing approximately from 10−4 Hz to 102 Hz.

Despite the efforts of a number of researches over the last decade, there remain

areas of uncertainty about the potential effect of such a residual acceleration field

on typical micigravity fluid experiments, especially in quantitative terms. the for-
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mation of viscous layer around solid boundaries when the flow amplitude has a

random component has not been addressed yet despite its potential relevance for

a number of microgravity experiments. The study of Volfson and Vinals included

the dynamics of colloidal transport, coarsening studies of solid-liquid mixtures in

which purely diffusive controlled transport is desired, or the interaction between

the viscous layer produced by bulk flow of random amplitude and morphological

instability of a crystal-melt interface.

Zhang et al (1993) and thompson et al (1997) adopted a statiscal description of the

residual acceleration field on board spacecraft and modeled the acceleration time

series as a stochastic process in time. Progress was achieved through the consider-

ation of specific stochastic model according to which each Cartesian-component of

the residual accelerationfield g(t0 is modeled as a narrow band boise. This noise

is a Gaussian process defined by three independent parameters. Each realization

of narrow band noise can be viewed as a temporal sequence of periodic function

of angular frequency Ω with amplitude and phase that remain constant only for a

finite amount of time.

In the paper of Volfson and Vinals, the flow induced in an otherwise quiescent

fluid by the random vibration of a solid boundary, the velocity of the boundary

U0(t) is assumed presribed, and modeled as a narrow band stochastic process. In

the monochromatic limit, the variance of the velocity field decays exponentially

away from the wall, with a characteristic decay length given by the Stokes layer

thickness δs = (2ν/Ω)
1
2 , where ν is the kinematic viscosity of the fluid and Ω is the

angular frequency of vibration of the boundary. They showed that for any finite

correlation time the stationary variance of the tangential velocity asymptotically

decays as the inverse squared distance from the wall, in contrast with the exponen-

tial decay in the deterministic case. This asymptotic behavior originates from the

low frequency range of the power spectrum of the boundary velocity. Volfson and
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Vinals next investigated two additional geometries in which the equationsgoverning

fluid flow are not linear, and showed that several of the generic features obtained

for the case of a planar boundary still hold. they found that if the thickness of

Stokes layer, δs , and the amplitude of oscillation ’a’ are small compared with a

characteristic length scale of the boundary L (δs << L, a << L) then the genera-

tion of secondary steady streaming may be described as follows. Vibration of the

rigid boundary gives rise to an oscillatory and nonuniform motion of the fluid. The

flow is potential in the bulk, and rotational in the boundary layer because of no

slip conditions on the boundary. The bulk flow applies pressure at the outer edge

of the boundary layer, which does not vary across the layer. The non-uniformity of

the flow leads to vorticity convection in the boundary layer. Both convection and

the applied pressure drive vorticity, diffusion and thus induce secondary steady

motion which does not vanish outside of the boundary layer.

Volfson and Vinal also investigated the flow field induced by a wavy wall. Wavy

wall geometry induced flow had earlier been studied by Lyne(1971) to address the

interaction between the flow above the sea bed and ripple pattern on it. Lyne(1971)

deduced the existence of steady streaming in the limit in which the amplitude of

the wall deviation from planarity is small compared with the thickness of the Stokes

layer. Lyne introduced a conformal transformation and obtained an explicit solu-

tion in the limit of small kRe, where k is the wavenumber of the wall profile scaled

by the thickness of the Stokes layer, and Re is the Reynolds number. The detailed

structure of the secondary flow depends on the ratio between the wavelength of

the boundary profile and the thickness of the Sokes layer.

Volfson and Vinals addressed the flow created by a gently curved solid boundary

that is being vibrated randomly. The perturbatiion parameter they used was the

ratio between the amplitude of vibrations and the characteristic inverse curvature

of the wall. they found that the average velocity diverges logarithmically away from
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the boundary because of the low frequency range of the power spectrum. They

also studied the formation of a boundary layer around a wavy boundary that is

vibrated randomly. Positive and negative vorticity production in adjacent regions

of the boundary introduces a natural decay length in the solution, thus leading

toexponential decay of the flow away from the boundary, even in the absence of

a low frequency cut-off in the power spectrum of the boundary velocity. Steady

streaming is found at second order comprising two or four recirculating cells per

period of the boundary profile. Volfson and Vinals examined the case of a planar

boundaryvibrated along its own plane. The Navier-Stokes equation reduced to a

linear equation, a fact that allows a complete solution of the flow. The simple

solution still exhibited several of the qualitative features that are present in the

case of random forcing by a curved boundary namely asymptotic power law decay

of the velocity field away from the boundary, and sensitive dependence on the low

frequency range of the power spectrum of the boundary velocity.

Two types of moving boundary initiated flow fields are considered. These are the

Stoke’s flow and the Couette flow. In the Stoke’s flow, the domain is a semi-infinite

medium with the flow initiated by the finite side of the boundary. In the couette

flow, the domain is a finite medium between two long plates, considered infinite

in length. One of the plates is given a motion while the other is maintained sta-

tionary. The moving plate initiates the flow. A variety of solutions are known for

laminar flow with moving boundaries. Stokes two problems were some of the very

first problems in which the Navier Stokes equations were solved. In both cases,

the domain describes a sem-infinite fluid at rest initially and bounded below by

a solid plane at y = 0 In the first case, the plane is accelerated to a constant

velocity Uo. In the second case, the plane is given a steady oscillation at veloc-

ity of Ucoswt. Numerical approaches have been used to simulate this problem.

Some domain methods such as the finite difference method(FDM), finite element
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method(FEM) and finite volume method(FVM) are difficult to simulate in an infi-

nite or semi-infinite domain with unrestricted boundary conditions. The boundary

element method(BEM), another numerical scheme that involves mesh reduction

has been used by Zhu et al and Bulgakov et al to solve diffusion equations. S.P.

Hu, C.M. Fan, C. W. Chen and D.L Young employed the methods of Fundamental

solutions(MFS) a numerical scheme to solve the Stoke’s problem. Before Young et

al , Chen et al and Barakrishnan and Ramachandran applied the MFS for diffusion

equations by using the modified Helmholtz fundamental solution. An important

issue of the MFS is the locations of source points, which was circumvented with

the consideration of the source positions as unknown variables by Fairwether et al.

Young et al applied the unsteady MFS successfully for multi-dimensional diffusion

equations. The Laplace transform or the finite difference scheme is used to deal

with the time derivative of the governing equations. This is due to the fact that

the MFS is treated always in the spatial domain with respect to the location of

the source points and the field points. Young et al used the fundamental solution

of Stokes problem with the unsteady MFS without the need for Laplace transform

or finite difference method to take care of the time derivative term.



CHAPTER 2: GOVERNING EQUATIONS AND BOUNDARY WITH
UNIFORM MOTION

2.1 Governing Equation

Fluid flow in a continuum medium can be analyzed by the application of con-

servation principles. These are the principles of conservation of mass, conservation

of momentum and conservation of energy. For most incompressible flows, the prin-

ciples conservation of mass and conservation of momentum may be all that are

needed to solve the flow field. The conservation of energy princilple may not be

necessarily needed in the analysis of some fluid problems and the derivation of the

governing equations.

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2− 1)

We assume a two dimensional flow field. There is therefore no variation of any

quantity in the z-direction. Since the boundary is of infinite length no velocity

changes in x, ie ∂u
∂x

= 0. The continuity equation reduces to:

∂v

∂y
= 0 (2− 2)

Upon partial integration, it is found that v is a function of x only. The flow is

induced by a moving boundary. The boundary has no velocity component in the

y-direction. Therefore for no-slip condition v = 0 at the boundary. Since there is

no variation of y-component velocity with respect to y, v = 0 everywhere within
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the flow. Lets consider the x-momentum equation of the Navier Sokes equations;

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
) = ν(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
)− 1

ρ

∂p

∂x
+ gx (2− 3)

The flow is fully developed in x-direction, v = 0 and flow is assumed two dimen-

sional. We shall take the pressure to be constant throughout the fluid. There is

no gravitation effect in x direction. The x-momentum equation reduces to:

∂u

∂t
= ν

∂2u

∂y2
(2− 4)

The equation obtained is commonly called the diffusion equation. It is a diffusion

equation with no source term. Many formal methods are available for the solution

of this equation. Since there is no typical physical length in the formulated problem,

it is logical to suspect that the solution, u will be a function of some combination of

y and t. For the diffusion differential equation to be solvable, we need boundary and

initial conditions for it. The boundary and initial conditions directs the solution

approach adopted for the problem. This reasearch is also involved in solving flow

field induced by moving boundaries. In this research, two types of medium are

considered, a semi-infinite medium and a finite medium between two long infinite

plates. The solution to the flow field developed is influenced by the function of

the motion given to boundary. A uniform boundary motion is first considered and

when the boundary motion is time-dependent. Of interesting consideration is when

the flow is initiated by a random boundary motion. The analysis of this type of

flow is handled in chapter five. Presently in this chapter we will consider when the

boundary is given a uniform velocity. We will solve uniform boundary situation for

both the semi-infinite medium and the finite medium. Let us first consider when

the boundary motion is uniform, also known as Stoke’s first problem.
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2.2 Flow In A Semi-Infinite Medium

In this problem the boundary is given a constant velocity to initiate the flow.

The problem equation with its boundary and initial conditions is set up as shown.

∂u

∂t
= ν

∂2u

∂y2
(2− 5a)

u(y, t) = U0 at y = 0 (2− 5b)

u(y, t) = 0 for t = 0 (2− 5c)

The diffusion equation in a semi-infinite medium with zero initial velocity and

constant velocity of the boundary can be solved by normal classical method for

solving such problems. A new dependent variable is Q(y,t) is defined as

Q(y, t) = u(y, t)− U0 (2− 6)

The problem takes the form

∂Q

∂t
= ν

∂2Q

∂y2
(2− 7a)

Boundary Condition and initial condition:

Q(y, t) = 0 at y = 0 (2− 7b)

Q(y, t) = −U0 for t = 0 (2− 7c)

Problem (2−7) can now be solved employing the method of separation of variables.

Assume solution of form

Q(y, t) = Y (y)T (t) (2− 8)



20

substitute (2− 8) into (2− 7a), we obtain

Y T ′ = kY ′′T (2− 9)

where ”k” is substituted for the diffusion

Y ′′

Y
=

T ′

νT
= −α2 (2− 10)

where α is a positive constant

Y ′′ + α2Y = 0 (2− 11)

T ′ + α2νT = 0 (2− 12)

Solving equation (2− 12)

T ′ + α2νT = 0 (2− 13)

T (t) = Ce−να
2t (2− 14)

Solving equation (2− 11)

Y ′′ + α2Y = 0

From the boundary conditions of equation (2− 7b)

Y (0) = 0

General solution for (2− 11)

Y (y) = A cosαy +B sinαy (2− 15)
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where A nad B are constants

Y (0) = 0, A = 0

Y (y) = B sinαy (2− 16)

Since equation (2−15) has eigenvalues , we can express it in terms of eigenfunction

as such,

Yn(y) = Bn sinαny (2− 17)

Similarly equation (2-14) can be written in terms of eigenfunction as

Tn(t) = Cne
−να2

nt (2− 18)

Substitute (2− 17)and(2− 18) into (2− 8)

Qn(y, t) = (Bn sinαny)(Cne
−να2

nt) (2− 19)

solution for (2− 7a) takes the form

Q(y, t) =
∞∑
n=1

Qn(y, t) (2− 20)

Combining coefficients, equation (2-20) can be written as :

Q(y, t) =
∞∑
n=1

(Dn sinαny)(e−να
2
nt) (2− 21)

Taking the limit of the sum as n gets larger and larger, the general solution for

(2− 7a) can be expressed as

Q(y, t) =
∫ ∞

0
De− να2t sinαy dα (2− 22)
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Appying initial condition

Q(y, 0) =
∫ ∞

0
D sinαy dα (2− 23)

Suppose the initial condition were a function of y, equation (2−23) can be written

as

F (y) =
∫ ∞

0
D(α) sinαy dα (2− 24)

Representing F(y) by a Fourier series, Fourier coefficients take the form:

D(α) =
2

π

∫ ∞
0

F (y′) sinαy′ dy′ (2− 25)

Q(y, t) =
2

π

∫ ∞
0

D(α)e− να2t sinαy dα (2− 26)

Q(y, t) =
∫ ∞

0

2

π

∫ ∞
0

F (y′) sinαy′e−να
2t sinαy dαdy′ (2− 27)

Q(y, t) =
2

π

∫ ∞
0

F (y′)
∫ ∞

0
e−να

2t sinαy′ sinαy dαdy′ (2− 28)

The integration with respect to α is evaluated by making use of the following.

2 sinαy′ sinαy = cosα(y − y′)− cosα(y − y′) (2− 29)

∫ ∞
0

e−να
2t cosα(y − y′)dα =

√
π

4νt
exp[−(y − y′)2

4νt
] (2− 30)

∫ ∞
0

e−να
2t cosα(y + y′)dα =

√
π

4νt
exp[−(y + y′)2

4νt
] (2− 31)

2

π

∫ ∞
0

e−να
2t sinαy′ sinαy dα =

1

(4πνt)
1
2

[exp(−(y − y′)2

4νt
−exp(−(y + y′)2

4νt
] (2−32)

The solution Q(y, t) becomes

Q(y, t) =
1

(4πνt)
1
2

∫ ∞
0

F (y)[exp(−(y − y′)2

4νt
)− exp(−(y + y′)2

4νt
)] (2− 33)
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In the case when the function F(y) takes on a constant value, ie

F (y) = −U0

Equation (2− 33) can be written as:

Q(y, t)

−U
=

1

(4πνt)
1
2

[
∫ ∞

0
exp(−(y − y′)2

4νt
)−

∫ ∞
0

exp(−(y + y′)2

4νt
)] (2− 34)

Introducing a new variable:

−η =
(y − y′)√

(4νt)
dy′ =

√
(4νt) dη for first integral

−η =
(y + y′)√

(4νt)
dy′ =

√
(4νt) dη for second integral

Q(y, t)

−U
=

1√
π

∫ ∞
− y√

4νt

e−η
2

dη −
∫ ∞

y√
4νt

e−η
2

dη (2− 35)

since e−η
2

is symmetrical about η = 0

Q(y, t)

−U
=

2√
π

∫ y√
4νt

0
e−η

2

dη (2− 36)

Q(y, t)

−U
= erf(

y√
4νt

) (2− 37)

Q(y, t) = −U0 erf(
y√
4νt

) (2− 38)

but u(y, t) = Q(y, t) + U0

u(y, t) = U0 − U0 erf(
y√
4νt

) (2− 39)

u(y, t) = U0[1− erf(
y√
4νt

)] (2− 40)
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u(y, t) = U0 erfc (
y√
4νt

) (2− 41)

Solution equation (2−40) expresses u(y, t) in terms of U0 and an error function.The

influence of the moving boundary extends to infinity soon after after the boundary

starts moving. At large distances ie as y → ∞ the erfc(∞) → 0, the viscous

effect is very minimal. There is still a minute viscous influence throughout the

flow. From the tables of error function, erf(1.99) = 0.99511. It is seen that when

y√
4νt

= 1.99, u(y,t) is reduced to one percent of U0 that is when y = 4
√
νt. This

result shows that viscosity diffuses from the solid boundary into the fluid and that

the distance at which a given effect occurs varies with
√
νt. The elapsed time t

may be expressed in terms of the distance x through which the plate travels ie

t = x
U0

so that we can write

y ∼ x

√
ν

U0x

. If we assume the viscosity to be constant throughout, then it can be said that the

distance at which the viscosity diffuses from the solid boundary is proportional to
√
t. The diffusion of viscous effect from the boundary into the flow is a recurring

feature of real fluid flows.

2.3 Flow In a Finite Medium.

The governing diffusion equation is now solved for a finite medium between two

long infinite plates a distance h apart.

∂u

∂t
= ν

∂2u

∂y2
(2− 42a)

u(y, t) = 0 at y = 0 (2− 42b)

u(y, t) = U0 at y = h (2− 42c)

u(y, t) = 0 for t = 0 (2− 42d)
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u(y, t) = v(y, t) + Uo
y

h
(2− 43)

The problem stated in terms of the variable v(y, t) becomes

∂v

∂t
= ν

∂2v

∂y2
(2− 44a)

v(y, t) = 0 at y = 0 (2− 44b)

v(y, t) = 0 at y = h (2− 44c)

v(y, t) = −Uo
y

h
for t = 0 (2− 44d)

The method of separation of variables is adopted in solving problem (2 − 44).

Assume solution

v(y, t) = Y (y)T (t) (2− 45)

Y T ′ = νY ′′T (2− 46)

Y ′′

Y
=

T ′

νT
= −α2 (2− 47)

where α is a constant. Two separate equations of the y and t respectively can be

written as:

Y ′′ + α2Y = 0 (2− 48)

T ′ + α2νT = 0 (2− 49)

From the boundary conditions of (2− 44b) and (2− 44c)

v(0, t) = Y (0)T (t) = 0

v(h, t) = Y (h)T (t) = 0
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Thus Y (0) = 0, and Y (h) = 0 The solution to equation (2− 48) takes the form

Y (y) = A cosαy +B sinαy (2− 50)

Since Y (0) = 0, A = 0. To satisfy the second condition,

Y (h) = B sinαh = 0 (2− 51)

The constant B cannot be zero. Therefore sinαh = 0, and α = nπ
h

Substituting

these eigenvalues, we have

Yn(y) = Bn sin
nπ

h
(2− 52)

Equation (2− 49) is stated as

T ′ + α2νT = 0 (2− 53)

The solution of which is :

T (t) = Ce−να
2t (2− 54)

In terms of eigen funtion and eigen values equation (2− 54− 18) is written as:

Tn(t) = Cne
−να2t (2− 55)

Substituting (2− 52) and (2− 55) into (2− 45),

Vn(y, t) = Yn(y)Tn(t) (2− 56)

Vn(y, t) = ane
−να2t sinαy (2− 57)
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where an = BnCn The series form for Vn becomes

Vn(y, t) =
∑
n=1

ane
−να2

nt sinαy (2− 58)

The initial condition equation of (2− 44d) can be rewritten as:

Vn(y, t) = F (y′) for t = 0 (2− 59)

substituting (2− 59) into (2− 58), the initial condition becomes

F (y′) =
∑
n=1

an sinαny (2− 60)

Fourier coefficient an is given by

an =
2

h

∫ h

0
F (y′) sinαy′ dy′ (2− 61)

Substituting (2− 61) into (2− 58) gives:

V (y, t) =
∑
n=1

[2

h

∫ h

0
F (y′) sin(αn y

′)dy′
]
e−να

2
nt sinαy (2− 62)

F (y′) = −Uo
h
y (2− 63)

Now ∫ h

0
F (y′) sinαny

′ dy′ =
Uo
αn

(−1)n (2− 64)

The solution equation V (y, t) becomes:

V (y, t) =
∑
n=1

2

h

Uo
αn

(−1)ne−να
2
nt sinαny (2− 65)
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From equation (2− 43) the solution of u(y, t) is given as:

u(y, t) = v(y, t) +
Uo
h
y (2− 66)

Substituting (2− 65) into (2− 66)) gives:

u(y, t) =
Uo
h
y +

2Uo
h

∑
n=1

1

αn
(−1)ne−να

2
nt sinαny (2− 67)

u(y, t) =
Uo
h
y +

2Uo
h

∑
n=1

h

nπ
(−1)ne−ν(nπ

h
)2t sin

nπ

h
y (2− 68)

where αn = nπ
h

In the finite medium, the viscosity diffuses from the moving boundary into the

fluid. For a fixed time, and very close to the moving boundary, the diffusive effect

is a higher percentage of U0. As time become longer and longer and also very close

to the boundaries the diffusion of viscosity reduces rapidly and the diffusion is more

contolled by the relation u)y, t) ∼ U0u
h

and independent of time. The diffusion of

the viscosity is a recurring feature as indicated by the eigen value nπ
h



CHAPTER 3: FLOW FIELD WITH TIME-DEPENDENT MOVING
BOUNDARY: DUHAMEL APPROACH

3.1 Flow In A Semi-Infinite Medium

When the diffusion equation has a time-dependent boundary condition and or

a source term which varies with time, the problem cannot be solved by the classical

method. A different approach has to be adopted. One of the methods by which it

can be solved is by Duhamel’s theory, which is based on Duhamel’s superposition

integral.

If we consider the diffusion equation over a semi-infinite strip (0 ≤ y ≤ 1) in

a distance-time plane, the non-homogeneous condition along the lines y = 0 and

y = 1 prescribe the solution variable φ as a constant along each of these boundaries.

The problem was solved by determining a particular solution φs of the governing

differential equation which satisfy those conditions, and then using conventional

separation - of- variables methods to determine the ”correction” φT = φ−φs which

then is to satisfy homogeneous conditions along the two boundaries y = constant.

Restating the general diffusion equation and its boundary and initial conditions:

∂u

∂t
= ν

∂2u

∂y2
(3− 1a)

u(y, t) = F (t) at y = 0, (3− 1b)

u(y, t) = f(y) = 0 for t = 0, (3− 1c)

As a first step we solve the problem in the special case when F(t) is unity. Denote
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this solution by u = A(y, t), we obtain with f(y) = 0, u1 = 1, the result;

A(y, t) = [1− erf (
y√
4νt

)] (3− 2)

A(y, t) = erfc (
y√
4νt

) (3− 3)

From the linearity of the problem, it is seen that, at the instant following t = τn,

the solution distribution corresponding to the step-function approximation F(t) is

given by the sum:

u = F (0)A(y, t) + [F (τ1)− F (0)]A(y, t− τ1) + [F (τ2)− F (τ1)]A(y, t− τ2)

+......+ [F (τn)− F (τn−1)]A(y, t− τn) (3− 4)

F (τk+1)− F (τk) = ∆Fk (τk+1)− (τk) = ∆τk (3− 5)

u = F (0)A(y, t) +
n−1∑
k=0

A(y, t− τk+1)(
∆F

∆τ
)∆τk (3− 6)

u = F (0)A(y, t) +
∫ t

0
A(y, t− τ)F (τ)dτ (3− 7)

Assuming F(t) is differentiable. This is a version of Duhamel’s principle, and it

gives the desired solution in terms of the basic function A(y, t). An alternative

form is obtained by integration by parts,

u(y, t) = F (0)A(y, t)+[A(y, t−τ)F (τ)]τ=t
0 −

∫ t

0
F (τ)

∂

∂τ
A(y, t−τ)dτ (3−8)

∂

∂τ
A(y, t− τ) = − ∂

∂t
A(y, t− τ) (3− 9)

u(y, t) = F (0)A(y, 0) +
∫ t

0
F (τ)

∂

∂τ
A(y, t− τ)dτ (3− 10)
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A(y.0) vanishes when y ≥ 0

u(y, t) =
∫ t

0
F (τ)

∂

∂t
A(y, t− τ)dτ (3− 11)

u(y, t) =
∫ t

0
−F (τ)

∂

∂τ
A(y, t− τ)dτ (3− 12)

When (3-11) is used, where;

A(y, t) = [1− erf (
y√
4νt

)]

∂A(y, t− τ)

∂t
=

y√
(4πν)(t− τ)

3
2

exp
[
(− y2

4ν(t− τ)
)
]

(3− 13)

The solution to problem (3-1), the diffusion equation with no source term and

a moving boundary of function F(t) in a semi-infinite medium can be expressed

generally as

u(y, t) =
y√
4πν

∫ t

0

F (τ)

(t− τ)
3
2

exp
[
− y2

4ν(t− τ)

]
dτ (3− 14)

If we introduce the independent variable: η = y√
4ν(t−τ)

t− τ =
y2

4νη2
and dτ =

2

η
(t− τ)dη

u(y, t) =
2√
π

∫ ∞
y√
4νt

e−η
2

f(t− y2

4νη2
)dη (3− 15)

Suppose the boundary condition at y = 0 is given as;

F (t) = U0t (3− 16)
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Substituting into (3-15), the solution gives

u(y, t) =
2U0√
π

∫ ∞
y√
4νt

e−η
2

(t− y2

4νη2
)dη (3− 17)

If the function of the boundary motion were to be sinusoidal;

F (t) = U0 Cos ωt (3− 18)

the solution equation takes the form

u(y, t) =
2U0√
π

∫ ∞
y√
4νt

e−η
2

Cos[ω(t− y2

4νη2
)]dη

u(y, t)

U0

=
2√
π

∫ ∞
y√
4νt

e−η
2

Cos[ω(t− y2

4νη2
)]dη (3− 19)

The obtained equation above can be split into two term equation with change in

integral limits as shown.

u(y, t)

U0

=
2√
π

∫ ∞
0

e−η
2

Cos[ω(t− y2

4νη2
)]dη

− 2√
π

∫ y√
4νt

0
e−η

2

Cos[ω(t− y2

4νη2
)]dη (3− 20)

The first integral can be evaluated. The solution equation becomes:

u(y, t)

U0

= exp[−y(
ω

2ν
)
1
2 ]Cos[ωt− y(

ω

2ν
)
1
2 ]

− 2√
π

∫ y√
4νt

0
e−η

2

Cos[ω(t− y2

4νη2
)]dη (3− 21)

3.2: Flow in A Finite Medium:

Duhamel’s theory is applied to flow in a finite medium between long infinite

plates distance h apart. Flow field is governed by pure diffusive equation. The
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boundary condition here is different from the semi-infinite medium. Problem is

solved for the case when the boundary moves with a linearly increasing velocity

and also when it moves with a sinusoidal motion. As in previous section solution

obtained is expressed in terms of an auxilliary one which is the solution when the

time dependent boundary is replaced by unity. The governing equation is stated

with its boundary and initial conditions.
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∂2u

∂y2
=

1

ν

∂u

∂t
(3− 22a)

u(0, t) = 0 at y = 0 (3− 22b)

u(h, t) = F (t) at y = h (3− 22c)

u(y, 0) = f(y) ≡ 0 for t = 0 (3− 22d)

An auxilliary equation is formed with F(t) in (3-22c) being replaced by unity.

∂2A

∂y2
=

1

ν

∂A

∂t
(3− 23a)

A(0, t) = 0 at y = 0 (3− 23b)

A(h, t) = 1 at y = h (3− 23c)

A(y, 0) = 0 for t = 0 (3− 23d)

As a first step toward the solution of this problem, an auxilliary equation is formed

with F(t) in (3-23 c) being replaced by unity. The solution of (3− 23) is

A(y, t) =
y

l
+

2

π

∞∑
n=1

(−1)n

n
sin

nπy

l
e−

n2t
λ (3− 24)

The realationship between solution to the pure diffusion equation of (3− 22) and

its auxilliary solution is given by:

u(y, t) = F (0)A(y, t) +
∫ t

0
A(y, t− τ)F ′(τ)dτ (3− 25)

u(y, t) =
∫ t

0
F (τ)

∂

∂t
A(y, t− τ)dτ (3− 26)
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The integral appearing in (3-25) or (3-26) is often known as superposition integral.

When (3-26) is used, the solution of the given problem takes the form

u(y, t) =
2

πλ

∞∑
n=1

(−1)n+1)n
[ ∫ t

0
F (τ)e

n2τ
λ dτ

]
e−

n2t
λ sin

nπy

h
(3− 27)

wheras (3-25) leads to the equivalent form

u(y, t) =
y

h
F (t)+

2

π

∞∑
n=1

(−1)n

n

[
F (0)+

∫ t

0
F ′(τ)e

n2τ
λ dτ

]
e−

n2t
λ sin

nπy

h
(3−28)

Suppose the boundary motion function at y = h is given by

F (t) = U0t (3− 29)

Substituting this into (3-27) and performing the integration gives:

u(y, t) =
2λU0

π

∞∑
n=1

(−1)n+1)

n3

[n2t

λ
− (1− e−

n2t
λ )
]

sin
nπy

h
(3− 30)

and substituting (3-29) into (3-28) gives:

u(y, t) = U0
y

h
t+

2λU0

π

∞∑
n=1

(−1)n
1− e−n

2t
λ

n3
) sin

nπy

h
(3− 31)

The equivalence of (3-30) and (3-31) is verified by noticing the validity of the

expansion

y

h
= − 2

π

∞∑
n=1

(−1)n

n
sin

nπy

h
(0 ≤ y < h) (3− 32)

Comparing the integrals of (2−36) and (3−17), there is similarity to some extent.

There is a factor of (t− y2

4νη2)
in the integrand of (3−17) due to the time t influenc-
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ing the velocity U0 of the boundary. The diffusion of viscosity when the boundary

moves with linearly increasing velocity has some similarity to diffusion effect of

viscosity when the boundary moves with uniform velocity. The integral of (3− 17)

has not been explicitly solved. It is therefore difficult to comment deeply on the

results. In the case of the finite medium, at fixed times and close to the boundaries,

the diffusion effect is more controlled by the first term of equation (3− 31) due to

the eigen function sin nπy
h

in the second term. As time gets longer and longer, the

second term still contributes to the diffusive effect but effect is majorly controlled

by the first term of U0
y
h
t. The diffusion effect is recurring in the finite medium.

If the motion of the boundary is now sinusoidal, and represented by

F (t) = Uo cos(ωt− β) (3− 33)

From equation (3− 26), the solution u(y, t) becomes

u(y, t) = −2D

h

∫ t

τ=0
Uo cos(ωt− β)

∑
n=1

e−Dα
2
n(t−τ)(−1)nαn sinαny (3− 34)



CHAPTER 4: FLOW FIELD WITH TIME-DEPENDENT MOVING
BOUNDARY; GREEN’S FUNCTION APPROACH

4.1 Greens Function In An Infinite Medium

Fluid flow in a semi-infinite medium with time-dependent moving boundary

can also be solved by employing Greens Function method. The general diffusion

equation in a semi-infinite medium with initial and boundary conditions as stated

is considered.

∂u

∂t
= ν

∂2u

∂y2
(4− 1a)

u(0, t) = g(t) at y = 0 (4− 1b)

u(y, 0) = f(y) for t = 0 (4− 1c)

To solve the semi-infinite medium diffusion problem by using Green’s function,

it seem proper to solve the diffusion problem in an unbounded space and then

employ the method of images to obtain the solution for the semi-infinite medium.

Rewriting equation (4− 1) in the unbounded space :

ψ(
∂

∂t
− ν ∂

2

∂y2
) = 0 (4− 2a)

ψ(y, t0) = F (y) for t = t0 (4− 2b)

where D is the diffusion coefficient, t0 is the initial time, instead of zero in (4-1c)

and ψ is the solution variable. Let the differential operator L be defined as:

L = (
∂

∂t
− ν ∂

2

∂y2
) (4− 3)
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The intention is to determine ψ(y, t) for all t > t0 given:

Lψ = 0 and ψ(y, t0) = F (y) for t = t0 (4− 4)

Define the propagator K0 by

LK0(y, t|y′, t′) = 0, for t > t0 (4− 5a)

K0(y, t′|y′, t′) = δ(y − y′), (at equal times) (4− 5b)

K0 = 0 as y →∞, (4− 5c)

K0 satisfies the homogeneous equation without a delta function on the right, There-

fore it is not a Green’s function. K0 is subject to the boundary conditions (4−5c).

Once K0 is known, then the problem is solved by the following expressions.

ψ(y, t) =
∫ ∞
−∞

dy′ (K0(y, t|y′, t0)F (y′) (4− 6)

T o obtain an expression for K0 we proceed by the following:

Equation (4− 6) is substituted into (4− 4) and written as

Lψ = L
∫
dy′K0ψ(y′) =

∫
dy′ (LK0)ψ(y′) = 0 (4− 7)

Satisfying the initial condition of equation (4− 5b):

ψ(y, t0) =
∫ ∞
−∞

dy′ (K0(y, t0|y′, t0)F (y′) =
∫
dy′δ(y−y′)F (y′) = F (y) (4−8)

If K0 is expressed as a Fourier integral with respect to its y-independence,

K0(y, t|y′, t′) =
∫ ∞
−∞

dk A(k, t, y′, t′)exp(iky) (4− 9)
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Substitute the Fourier integral of K0 into 4− 5a

LK0 =
∫
dkL(A exp(iky)) =

∫
dk [

∂A

∂t
+ νk2A]exp(iky) = 0 (4− 10)

∂A

∂t
= −νk2A, A = B(k, y′, t)exp(−νk2t) (4− 11a, b)

Substitute (3− 32b) into (3− 31), set t = t′ and appeal to (4− 5b).

∫
dk exp(−νk2t′)B(k, y′, t′)exp(iky) = δ(y − y′) (4− 12)

Using the standard Fourier representation of δ(y − y′) (4− 12) becomes

∫
dk exp(−νk2t′)B(k, y′, t′)exp(iky) =

1

2π

∫
dk exp(ik(y − y′)) (4− 13)

Equating coefficients of exp(iky),

B(k, y′, t′) =
1

2π
exp(νk2t′)exp(iky′)

whence

A(k, t, y′, t′) =
1

2π
exp(−ν(t− t′)k2)exp(iky) (4− 14)

K0(y, t|y′, t′) =
1

2π

∫ ∞
−∞

dk exp(−ν(t− t′)k2)exp(ik(y − y′)) (4− 15)

Let ξ = y − y′ and τ = t− t′ Equation (4− 15) is rewritten as

K0(ξ, τ) =
1

2π

∫ ∞
−∞

dk exp(−ντk2 + ikξ) (4− 16)

K0(ξ, τ) is evaluated from first principles by completing the square in the exponent

in (4− 16)

(−ντk2 + ikξ) = −ντ(k2 − ikξ

ντ
)
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−ντ(k2 − ikξ

ντ
) = −ντ [(k − iξ

2ντ
)
2

+
ξ2

4ν2τ 2
] (4− 17)

substituting (4− 17) into(4− 16), K0 is written as:

K0(ξ, τ) =
1

2π

∫ ∞
−∞

dk exp
[
− ντ [(k − iξ

2ντ
)
2

+
ξ2

4ν2τ 2
]
]

(4− 18)

K0(ξ, τ) =
1

2π
exp(− ξ2

4ντ
)
∫ ∞
−∞

dk exp[− ντ(k − iξ

2ντ
)
2

] (4− 19)

Changing integration variables to σ = (k − iξ
2ντ

) Then the integration becomes∫
c dσ exp(−ντσ2) This form of integration conforms to the Gaussian integral, the

solution of which is:

∫
c

=
∫ ∞
−∞

dσ exp(−ντσ2) = (
π

ντ
)
1
2 (4− 20)

Substituting (4− 20) into (4− 19), the expression for K0 can now be expressed as:

K0(ξ, τ) = (
π

ντ
)
1
2

1

2π
exp(− ξ2

4ντ
)

K0(ξ, τ) =
1

(4πντ)
1
2

exp(− ξ2

4ντ
) (4− 21)

Equation (4− 16) can now be written as:

ψ(y, t) =
∫ ∞
−∞

dy′[
1

[4πD(t− t0)]
1
2

exp(− (y − y′)2

4D(t− t0)
)]ψ(y′, t0) (4− 22)

Equation (4−22) expresses the solution for the diffusion equation in an unbounded

space but with an initial condition given.

To expand the diffusion problem of equation (4− 2) and to make it more general,

we include a source term. Restating problem (4− 2) but with a source term and

initial condition:

ψ(
∂

∂t
− ν ∂

2

∂y2
) = ρ(y, t) (4− 23a)
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ψ(y, t0) = F (y) for t = t0 (4− 23b)

where ρ(y, t) is the source term. To solve problem (4 − 23), an auxiliary problem

for the same region is considered. If G0 is the Green’s function in unbounded space,

then introducing G0 into problem (4− 23), we obtain:

LG0 = (
∂

∂t
− ν∇2)G0(r, t | r′, t′) = δ(t− t′)δ(r − r′), (4− 24a)

G0 = 0 for t < t′) (4− 24b)

G0 = 0 as r →∞ (4− 24c)

In the auxiliary problem of (4−24), the source is a unit impulsive source for a three-

dimensional problem, the δ(r − r′) represents a point source located at r’, while

the delta function δ(t− t′) indicates that it is an instantaneous source releasing its

energy spontaneously at time t′ In the case of two-dimensional problems, δ(r− r′)

is a two dimensional delta function that characterizes a line energy source located

at r’, while for the one-dimensional problems δ(r − r′) is a one-dimensional delta

function which represents a plane surface energy source located at r’. The physical

significance of the Green’s functionG(r, t | r′, t′) for the three-dimensional problems

is as follows: It represents the diffusive quantity at the location r, at time t, due to

an instantaneous point source of unit strength, located at the point r’, releasing its

energy spontaneously at time t = t’. The auxiliary problem satisfied by Green’s

function is valid over the same region as the original physical problem (4 − 23),

but the boundary conditions (4−24b) is the homogeneous version of the boundary

conditions (4−23b) and the initial condition is zero. On the basis of this definition,

the physical significance of Green’s function may be interpreted as;

G(r, t | r′, t′) ≡ G(effect | impulse) (4− 25)
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The first part of the argument, (r, t) represents the effect, that is the diffusive

quantity in the medium at the location r at time t, while the second part, (r′, t′)

represents the impulse, that is, the impulsive (instantaneous) point source located

at r′, releasing its energy spontaneously at time t′.

The usefulness of Green’s function lies in the fact that the solution of the

original problem (4 − 2), can be represented only in terms of Green’s function.

Therefore, once the Green’s function is known, the diffusive quantity distribution

ψ(r, t) in the medium is readily computed.

(
∂

∂t
− ν∇2)G0(R, τ) = δ(τ)δ(R), (4− 26a)

G0 = 0 for τ < 0) (4− 26b)

G0 = 0 as R→∞ (4− 26c)

K0 fully determines G0

G0(R, τ) = θ(τ)K0(R, τ) (4− 27)

When τ > 0, G0 and K0 coincides.

This leads to a more explicit form of the initial condition on G0, obtained by taking

the limit of equation (4− 27) as τ → 0;

lim
τ→0+

G0(R, τ) = lim
τ→0+

K0(R, τ) = K0(R, 0) = δ(R) (4− 28)

The Green’s function in unbounded space G0, therefore can be equated to the

expression for K0, in (4− 21).

G0 =
1

[4πν(t− t′)] 12
exp(− (r − r′)2

4ν(t− t′)
) (4− 29)

Alternative Method For Determining Green’s Function For Unbounded Space
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Restating the diffusion equation with boundary and initial conditions :

∂2u

∂y2
− 1

ν

∂u

∂t
= ρ(y, t) (4− 30)

The Green’s function for the one dimensional diffusion equation is governed by

∂G

∂t
− ν ∂

2G

∂y2
= δ(y − y′)δ(t− t′) (4− 31a)

lim
|y|→∞

|G(y, t|y′, t′)| <∞ (4− 31b)

G(y, 0 | y′, t′) = 0 (4− 31c)

To find the Green’s function G(y, t | y′, t′) , we begin by taking the Laplace trans-

form of (4-31)

g(y, t | y′, t′) =
∫ ∞

0
e−stG(y, t | y′, t′)dt (4− 32)

∂2g

∂y2
− s

ν
g = −δ(y − y

′)

ν
e−st

′
(4− 33)

Next we take the Fourier transform of (4-33) :

F (k) =
1√
2π

∫ ∞
−∞

f(t)eiktdt (4−−34)

F̂ (
d2g

dy2
) = (−ik)2F̂ (g) = −k2Ḡ

F̂ (
s

ν
g) =

s

ν
Ḡ, F̂ [δ(y − y′)] =

eiky
′

√
2π

Fourier transform of (4-33) therefore becomes:

−(k2Ḡ+
s

ν
Ḡ) = −e

iky′ .e−st
′

√
2πν

(4− 35)
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Ḡ(k2 +
s

ν
) =

1√
2π

eiky
′
e−st

′

ν
(4− 36)

Ḡ =
1√
2π

1

(k2 + s
ν
)

eiky
′
e−st

′

ν
(4− 37)

Fourier inverse transform is given by :

F (y) =
1√
2π

∫ ∞
−∞

F (k)e−ikydk (4− 38)

Taking the inverse Fourier transform of (4-37), we obtain:

g =
e−st

′

2πν

∫ ∞
−∞

e−i(y−y
′)k

(k2 + s
ν
)
dk (4− 39)

Equation (4-39) is transformed into a closed contour and evaluated by the residue

theorem. The residue theorem is given by :

∫ ∞
−∞

f(y)dy = 2πi
∑

Resf(z) (4− 40)

In equation (4-39) f(z) = 1
k2+ s

D

Resf(z) = [
1

2k
]z=z1 where z1 = k1 =

i
√
s√
ν

(4− 41)

Resf(z) = Res[
1

2k
]z=z1 =

i
√
ν

2
√
s

(4− 42)

∫ ∞
−∞

e−i(y−y
′)k

(k2 + s
D

)
dk = 2πi[e

−i(y−y′) i
√
s√
ν ]
i
√
ν

2
√
s

(4− 43)

g =
e−st

′

2πν

∫ ∞
−∞

e−i(y−y
′)k

(k2 + s
ν
)
dk =

e−st
′

2πν
2πi[e

−i(y−y′) i
√
s√
ν ]
i
√
ν

2
√
s

(4− 44)

g =
e−st

′
[e
−i(y−y′)

√
s√
ν ]√

ν
√
s

(4− 45)
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g =
e
−|y−y′|

√
s√
ν
−st′

2
√
ν
√
s

(4− 46)

Taking the inverse of the Laplace transform of (4-46) we obtain:

G(y, t|y′, t′) =
1√

4πν(t− t′)
exp

(
− (y − y′)2

4ν(t− t′)
)

(4− 47)

This expression for G(y, t|y′, t′) compares well with equation ( 4-29 ). While (4−29)

is for generalized coordinates expression (4−47) is for one dimensional coordinate.

the generalized solution in terms of Green’s function can be expressed as:

ψ(y, t) =
∫ ∞
−∞

dt′
∫ ∞
−∞

dV G0(r, t|r′, t)ρ(r′, t′) (4− 48)

In other words ψ(r, t) is just the linear combinations of the contributions from all

the elementary sources ρ(r′, t′)dV ′dt′ that have ever acted.

Lψ =
∫ t

−∞
dt′dV ′[LG0]ρ(r′, t′) =

∫ t

−∞
dt′
∫ t

−∞
dV δ(t−t′)δ(r−r′)ρ(r′, t′) (4−49)

Equation (4− 48) may be written as:

ψ(y, t) =
∫ t

t0
dt′
∫
dV ′ G0(r, t|r′, t)ρ(r′, t′) =

∫ t

t0
dt′
∫
dV ′ K0(r, t|r′, t)ρ(r′, t′) = f0(r, t) (4−50)

where f0 stands for the integrals regarded as explicit constructs from the data ρ.

The general inhomogeneous problem can now be solved by combining the solutions

(4− 48) of the homogeneous equation for given ψ(r, t0) with the solution (4− 50)

of the inhomogeneous equation with given ρ.

ψ(r, t) = f0(r, t) + h0(r, t)

ψ(r, t) =
∫ t

t0
dt′
∫
dV ′ G0(r, t|r′, t)ρ(r′, t′)+

∫
dV ′ (G0(r, t|r′, t0)ψ(r′, t0) (4−51)
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ψ(r, t) =
∫ t

t0
dt′
∫
dV ′

1

[4πν(t− t′)]n2
exp(−| r − r

′ |2

4ν(t− t′)
)ρ(y′, t0) +

∫
dV ′

1

[4π = ν(t− t0)]
n
2
exp(− | r − r

′ |2

4ν(t− t0)
)ψ(r′, t0) (4− 52)

The first term on the right hand side of equation (4 − 52) is for the contribution

of the source term ρ(y′, t0), to the solution ψ(r, t). The second term on the right

is for the contribution of the initial condition ψ(r′, t0) to the solution ψ(r, t).
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4.2 The Method Of Images

The Green’s function may be required in a semi-infinite medium. Considering a

three dimension medium in a semi-infinite medium. The domain can be considered

to be a halfspace V, that is bounded by the x-y plane plus say an infinite hemisphere

on which G is likewise to vanish. When we place an x-y plane at z = 0 and mirror

a point (x′, y′,+z) on the positive z-axis in the x-y plane, the mirrored image of

the point will be at x′, y′,−z). We are looking for the Green’s function, when a

unit negative source is situated at r′ ≡ (x′, y′,−z). By symmetry along the z-axis,

Green’s function vanishes on the median plane between r′, a location above the

plane whose z-coordinate is positive, and r′′ which is at location that a reflection

of the point r′ in the x-y plane, ie Green’s function vanishes on the x-y plane.

Similar to equation (4− 29) and employing the method of images, we can express

the Green’s function referencing the mirrored image point as the excitation point

as

G0(r, t|r′′, t′′) =
1

[4πν(t− t′)] 12
exp(− (r − r′)2

4ν(t− t′)
) (4− 53)

Defining R′′ = r − r′′ and R = r − r′, the Green’s function for the halfspace

semi-infinite medium can expressed as

GD(r, t | r′, t′) = G0(r, t | r′, t′)−G0(r, t | r′′, t′′) (4− 54)

Combining equations (4 − 47) and (4 − 54), we obtain the Green’s function for

diffusion equation in semi-infinte medium as:

GD(r, t | r′, t′) =
1

[4πν(t− t′)] 12

(
exp

(
− (r − r′)2

4ν(t− t′)
)
− exp

(
− (r + r′)2

4ν(t− t′)
))

(4−55)

We want to determine the flow field for a semi-infinite medium with a moving

boundary. The top boundary is given a constant velocity ’v’ The boundary moves
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as y = vt. The equation to be solved is stated as:

∂2u

∂y2
− 1

ν

∂u

∂t
= ρ(y, t) (4− 56)

u(0, t) = v at y = 0

u(y, 0) = 0

The Green’s function for the one dimentional diffusion equation is governed by

∂G

∂t
− ν ∂

2G

∂y2
= δ(y − y′)δ(t− t′) (4− 57a)

G(y, t|y′, t′)|y=vt = 0, t′ < t (4− 57b)

limy→∞|G(y, t|y′t′| <∞

G(y, 0 | y′, t′) = 0 0 < y (4− 57c)

We begin by writing Green’s function as linear combination of the free -space

Green’s function plus a presently unknown function Γ(y, t). The purpose of the

free-space Green’s function is to eliminate the delta functions in (4-56a) while

Γ(y, t) is a homogeneous solution that was introduced so that g(y, t|y′, t′) satisfies

the boundary conditions. Therefore,

G(y, t|y′, t′) =
1√

4πν(t− t′)
exp

(
− (y − y′)2

4ν(t− t′)
)

+ Γ(y, t) (4− 58)

Substitute (4-58) into (4-57a), we find that

∂Γ

∂t
− ν ∂

2Γ

∂y2
= δ(y − y′)δ(t− t′) (4− 59a)
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with the boundary conditions that

Γ(y, t)|y=vt = − 1√
4πν(t− t′)

exp
(
− (vt− y′)2

4ν(t− t′)
)

(4− 59b)

and

limy→∞|Γ(y, t)| <∞ t′ < t (4− 59c)

and the initial condition that

Γ(y, 0) = 0 0 < y (4− 59d)

To eliminate the moving boundary, we introduce the new independent variable

z = y − vt and τ = t− t′ and the dependent variable

Γ(y, t) = exp
[
− vz

2ν
− v2τ

4ν

]
ω(z, τ) (4− 60)

substitute (4-60) into (4-59), we obtain

∂ω

∂τ
= ν

∂2ω

∂z2
, 0 < z, τ (4− 61a)

with the boundary conditions

ω(0, τ) = − 1

2
√
πντ

exp
[vε0

2ν
− ε0

2τ

4ντ

]
(4− 61b)

and

limz→∞|ω(z, τ)| <∞ 0 < τ (4− 61c)

and the initial condition

ω(z, 0) = 0 0 < z (4− 61d)
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where ε0 = ε− vt′ To solve (4-61), we take their Laplace transform

ν
d2W

dz2
− sW = 0, (4− 62a)

with

W (0, s) = − 1

2
√
νs

exp
[
− ε0
√
s√
ν

+
vε0
2ν

]
(4− 62b)

and

limz→∞|W (z, s)| <∞ (4− 62c)

The solution to (4-62) is

W (z, s) = − 1

2
√
νs

exp
[
− (z + ε0)

√
s√

ν
+
vε0
2ν

]
(4− 63)

Taking the inverse of (4-63) we obtain,

ω(z, τ) = − H(τ)

2
√
πντ

exp
[
− (z + ε0)2

4ντ
+
vε0
2ν

]
(4− 64)

so that

Γ(y, t) = − H(t− t′)
2
√
πν(t− t′)

exp
[
− (y + ε− 2vt′)2

4ν(t− t′)
+
v(ε− vt′)

ν

]
(4− 65)

substitute (4-65) into (4-58) gives the Green’s function:

G(y, t|y′, t′) =
H(t− t′)√
4πν(t− t′)

exp
(
− (y − y′)2

4ν(t− t′)
)

− H(t− t′)√
4νπ(t− t′)

exp
[
− (y + ε− 2vt′)2

4ν(t− t′)
+ ν

v(ε− vt′)
ν

]
(4− 66)

G(y, t|y′, t′) =
H(t− t′)

2
√
πν(t− t′)

[
exp(− (y − y′)2

4ν(t− t′)
)−exp(−(y + ε− 2vt′)2

4ν(t− t′)
+
v(ε− vt′)

ν
)
]

(4−67)
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4.3 Green’s Function Method For Flow In A Finite Medium.

The fluid flow field bounded by a finite medium of two infinite plates and

governed by a pure diffusion equation with the top boundary moving with a time

dependent motion can also be solved by the Greens’ function method. Restating

the governing equation with its boundary and initial conditions:

∂u

∂t
= ν

∂2u

∂y2
(4− 68a)

u(y, t) = 0 at y = 0 (4− 68b)

u(y, t) = F (t) at y = h (4− 68c)

u(y, t) = 0 for t = 0 (4− 68d)

In order to be able to establish an expression of solution to the diffusion problem

with boundary and initial values employing the Green’s function, one need to

explore the characteristics of time-invariance and symmetry of the Greens funtion.

The popagator K, is similar to the Green’s function but not exactly the same as the

Green’s function. It satisfies the homogeneous version of the diffusion equation.

LK = (
∂

∂t
− ν∇2)K(r, t | r′, t) = 0 for t ≥ t′ (4− 69a)

where L is the operator ( ∂
∂t
− ν∇2)

At equal times,

K(r, t′ | r′, t′) = δ(r − r′) (4− 69b)

K(r, t | r′, t′) = 0 for r on S (4− 69c)

where the boundary surface is designated by ”S”: The Greens function is defined
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by :

LG(r, t | r′, t′) = δ(t− t′)δ(r − r′) (4− 70a)

G(r, t | r′, t′) = 0 for t < t′ (4− 70b)

G(r, t | r′, t′) = 0 for r on S (4− 70c)

Green’s function can be related to the propagator K as:

G(r, t | r′, t′) = θ(t− t′)K(r, t | r′, t′)′ (4− 71)

K and G are functions of t and t′ only through τ = t− t′ hence they can be written

as K(r, r′; τ) and G(r, r′; τ) Since τ = (t − t′) is unaffected by the replacements

t→ −t′, t′ → −t, we have:

K(r, t | r′, t′) = K(r,−t′ | r′,−t) (4− 72)

Rewriting equations (4− 69a) and(4− 69b)

(
∂

∂t
− ν∇2)K(r, t | r′, t) = 0, K(r, t′ | r′, t′) = δ(r − r′) (4− 73a, b)

In (4 − 73a) if (r′, t′) is replaced by (r′′, t′′) and rearranged by using (4 − 72), we

obtain:

(
∂

∂t
− ν∇2)K(r, t | r′′, t′′) = (

∂

∂t
− ν∇2)K(r,−t′′ | r′′,−t) = 0 (4− 74)

Changing the names of the two variables as t→ −t, hence:

∂

∂t
→ −∂

∂t
, t′′ → −t′′ this yields :
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(− ∂

∂t
− ν∇2)K(r, t′′ | r′′, t) = 0, K(r,−t′′ | r′′, t′′) = δ(r − r”) (4− 75a, b)

Multiply (4 − 73a) by K(r, t′′ | r′′, t) and (4 − 75a) by K(r, t | r′, t′) Take the

difference, and integrate it:

∫ t2

t1
dt
∫
V
dV {[K(r, t′′ | r′′, t) ∂

∂t
K(r, t | r′, t′) +

∂K(r, t′′ | r′′, t)
∂t

K(r, t | r′, t′)]

−ν[K(r, t′′ | r′′, t)∇2K(r, t | r′, t′)−(∇2K(r, t′′ | r′′, t))K(r, t | r′, t′)]} = 0 (4−76)

The contents of the second pair of square brackets are integrated with respect to

volume, using Green’s theorem, which yields:

∫ t2

t1
dt
∫
S
dS[K(r, t′′ | r′′, t)∂nK(r, t | r′, t′)− ∂nK(r, t′′ | r′′, t)K(r, t | r′, t′)] = 0

Accordingly, the contents of the first pair square bracket in (5 − 9) must also

integrate to zero. Inspection reveals that these contents are just the total time-

derivative of the products of the two propagators. In shorthand form,

∫ t2

t1
dt
∫
V
dV

∂

∂t
(KK) =

∫ t2

t1
dt
d

dt

∫
V
dV

∂

∂t
(KK) (4− 77)

=
∫
V
dV (KK)

∣∣∣∣
t=t2

−
∫
V
dV (KK)

∣∣∣∣
t=t1

= 0 (4− 78)

In other words the volume integral
∫
V dV K(r, t” | r”, t)K(r, t | r′, t′) is independent

of t.

Finally we equate the values of this integral at t = t” and t = t′, determining them

by exploiting the delta-functions on the right of (4 − 70b) and (4 − 68b). Finally

we equate the values of this integral at t = t′′ and t = t′, determining them by

exploiting the delta-functions on the right of (4− 75b) and (4− 73b).

∫
V
dV K(r, t′′ | r′′,′′ )K(r, t′′ | r′, t′) =

∫
V
dV δ(r−r′′)K(r, t′′ | r′, t′′) = K(r′′, t′′ | r′, t′)
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=
∫
V
dV K(r, t′′ | r′′, t′)K(r, t′ | r′, t′) =

∫
V
dV K(r, t′′ | r′′, t′)δ(r − r′)

= K(r′, t′′ | r′′, t′) (4− 79)

K(r′′, t′′ | r′, t′) = K(r′, t′′ | r′′, t′) (4− 80)

If the double primes are dropped, equation (4− 80) can be written as:

K(r, t | r′, t′) = K(r′, t | r, t′) (4− 81)

The time translation invariance of (4− 72) and the symmetry of (4− 81) together

imply reciprocity relation.

K(r, t | r′, t′) = K(r′,−t′ | r,−t) (4− 82)

By virtue of G(r, r′τ) = θ(τ)K(r, r′ : τ)’, the Greens function entails the same

properties of time translation, symmetry and reciprocity, namely:

G(r, t | r′, t′) = G(r,−t′ | r′,−t) = G(r′, t | r, t′) = G(r′,−t′ | r,−t) (4− 83)

The symmetry relations of (4−83) show the K and G obey the same boundary con-

ditions as functions of r’ as of r. The diffusion equation can be written employing

the Green’s function and the reciprocity relation as:

(
∂

∂t
−ν∇2)G(r, t | r′, t′) = (

∂

∂t
−ν∇2)G(r′,−t′ | r,−t) = δ(t−t′)δ(r−r′) (4−84)

Since t→ −t′, hence ∂
∂t

= − ∂
∂t

Also r → −r′, hence ∇′2 = ∇2 This yields:

(− ∂

∂t
− ν∇′2)G(r, t | r′, t′) = δ(−t+ t′)δ(r − r′) = δ(t− t′)δ(r − r′) (4− 85)

Equation (4 − 85) ia called the reciprocal equation or often called the adjoint
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equation. In order to solve the general diffusion problem, an expression involving

Green’s function is derived that can be used to solve it. Rewrite the inhomogeneous

diffusion problem using primed variables.

(
∂

∂t′
− ν∇′2)ψ(r′, t′) = ρ(r′, t′) (4− 86)

under initial conditions ψ(r′, t0) and inhomogeneous boundary conditions on the

boundary S.

(− ∂

∂t′
− ν∇′2)G(r, t | r′, t′) = δ(t− t′)δ(r − r′) (4− 87)

Multiply (4− 86) by G(r, t | r′, t′) and (4− 87) by ψ(r′, t′)

G(r, t | r′, t′)( ∂
∂t′
− ν∇′2)ψ(r′, t′) = ρ(r′, t′)G(r, t | r′, t′) (4− 88)

ψ(r′, t′)(− ∂

∂t′
− ν∇′2)G(r, t | r′, t′) = δ(t− t′)δ(r − r′)ψ(r′, t′ (4− 89)

Subtracting (4− 89) from (4− 88)

G(r, t | r′, t′)( ∂
∂t′
ψ(r′, t′) + ψ(r′, t′)(

∂

∂t′
G(r, t | r′, t′)

−ν[G(r, t | r′, t′)∇′2ψ(r′, t′)− ψ(r′, t)∇′2G(r, t | r′, t′)]

= G(r, t | r′, t′)ρ(r′, t′)− ψ(r′, t)δ(t− t′)δ(r − r′) (4− 90)

Integrate with respect to dV ′ over V and with respect to t’ from t0 to t+, where

t+ = t+ ε,

∫ t+

t0
dt
∫
V
dV

∂

∂t′
[G(r, t | r′, t′)ψ(r′, t′)]−ν[G(r, t | r′, t′)∇′2ψ(r′, t′)−ψ(r′, t)∇′2G(r, t | r′, t′)]
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=
∫ t+

t0
dt
∫
V
dV G(r, t | r′, t′)ρ(r′, t′)−

∫ t+

t0

∫
V
dV ψ(r′, t)δ(t−t′)δ(r−r′) (4−91)

Applying Green’s theorem to the second term on the left and noting that:

∫ t+

t0

∫
V
dV ψ(r′, t)δ(t− t′)δ(r − r′) = ψ(r, t) (4− 92)

∫
V
dV ′[G(r, t | r′, t′)ψ(r′, t′)]|t′=t+t′=t0 −ν[

∫ t+

t0
dt′
∫
S
dS[G(r, t | r′, t′)∂′nψ(r′, t′)−ψ(r′, t)∂′nG(r, t | r′, t′)]

=
∫ t+

t0
dt
∫
V
dV G(r, t | r′, t′)ρ(r′, t′)− ψ(r′, t) (4− 93)

In the first term on the left, the upper limit vanishes because t′ = t+ > t, so that

G vanishes. In the second term on the left, we replace t+ by t.

−
∫
V
dV ′G(r, t | r′, t0)ψ(r′, t0)−ν[

∫ t+

t0
dt′
∫
S
dS[G(r, t | r′, t′)∂′nψ(r′, t′)−ψ(r′, t)∂′nG(r, t | r′, t′)]

=
∫ t+

t0
dt
∫
V
dV G(r, t | r′, t′)ρ(r′, t′)− ψ(r, t) (4− 94)

Solving for ψ(r, t)

ψ(r, t) =
∫ t

t0
dt′
∫
V
dV ′G(r, t | r′, t′)ρ(r′, t′)

+ν
∫ t

t0
dt′
∫
S
dS ′[G(r, t | r′, t′)∂′nψs(r′, t′)− (∂′nG(r, t | r′, t′)ψs(r′, t′)]

+
∫
V
dV ′G(r, t | r′, t0)ψ(r, t0) (4− 95)

To determine the Green’s function G(y, t/y′, t′), for problem (4−68) a homogeneous

version with an initial condition of ’F(y)’ is stated as :

∂u

∂t
= ν

∂2u

∂y2
(4− 96a)

u(y, t) = 0 at y = 0 (4− 96b)
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u(y, t) = 0 at y = h (4− 96c)

u(y, t) = F (y) for t = 0 (4− 96d)

By employing the method of separation of variables similar to that used in chapter

three, the solution to (4− 96) can be obtained as :

u(y, t) = [
∑
n=1

2

h

∫ h

y′=0
e−Dα

2
nt sin(αny) sinαy′]F (y′)dy′ (4− 97)

The homogeneous solution in terms of homogeneous Green’s function for bounded

diffusion equation with initial condition at time equal zero can be written as;

u(y, t) =
∫
R
G(y, t/y′, 0)F (y′)dy′ (4− 98)

Comparing equations (4− 97) and (4− 98), the homogeneous Green’s function is

given as:

G(y, t/y′, 0) =
2

h

∑
n=1

e−Dα
2
nt sin(αny) sinαy′ (4− 99)

If the initial excitation where at a time ” t’ ” other than zero, the Green’s Function

will be stated as:

G(y, t/y′, t′) =
2

h

∑
n=1

e−D(nπ
h

)2(t−t′) sin(
nπ

h
)y) sin

nπ

h
)y′ (4− 100)

where αn = nπ
h

There are other means of obtaining the Green’s function of the dif-

fusion equation we are dealing with. One other way is by use of Laplace transform

and eigen function expansion. This technique is illustrated next.

Consider one dimensional diffusion equation over the interval 0 < y < h

∂u

∂t
− ν ∂

2u

∂y2
= f(y, t) 0 < y < h, (4− 101)
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To find the Green’s function for this problem, we consider the following problem

with Green’s function ” G ” substituted into the governing equation:

∂G

∂t
− ν ∂

2G

∂y2
= δ(y, y′)δ(t− t′) 0 < y, y′ < h 0 < t, t′ (4− 102a)

with the boundary conditions:

α1G(0, t|y′, t′) + β1Gy(0, t|y′, t′) = 0, 0 < t (4− 102b)

and

α2G(h, t|y′, t′) + β2Gy(h, t|y′, t′) = 0, 0 < t (4− 102c)

G(y, 0|y′, t′) = 0, 0 < y < h (4− 102d)

Taking the Laplace transform of (4-102) we have

∂2g

∂y2
− s

D
g = −δ(y, y

′)

ν
e−st

′
0 < y < h (4− 103a)

with

α1g(0, s|y′, t′) + β1g
′(0, s|y′, t′) = 0, 0 < t (4− 103b)

and

α2g(h, s|y′, t′) + β2g
′(h, t|y′, t′) = 0, 0 < t (4− 103c)

Applying the technique of eigen function expansion, we have

g(y, s|y, t′) = e−st
′
∞∑
n=1

ϕn(y′)ϕn(y)

s+Dk2
n

(4− 104)

where ϕn(y) is the nth orthonormal eigenfunction to the regular Sturm-Liouville

problem

ϕ′′(y) + k2ϕ(y) = 0, 0 < y < h, (4− 105a)
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subject to the boundary conditions

α1ϕ(0) + β1ϕ
′(0) = 0 (4− 105b)

and

α2ϕ(h) + β2ϕ
′(h) = 0 (4− 105c)

Taking the inverse of the Laplace transform (4-104) we have the Green’s function

G(y, t|y′, t′) =
[ ∞∑
n=1

ϕn(y′)ϕn(y)e−k
2
nD(t−t′)

]
H(t− t′) (4− 106)

Restating equation (4-104)

∂G

∂t
− ν ∂

2G

∂y2
= δ(y, y′)δ(t− t′) 0 < y, y′ < h 0 < t, t′ (4− 107a)

with boundary and initial conditions

G(0, t|y′, t′) = G(h, t|y′, t′) = 0, (4− 107b)

G(y, 0|y′, t′) = 0, 0 < y < h (4− 107c)

The Sturm-Liouville problem is

ϕ′′(y) + k2ϕ(y) = 0, 0 < y < h, (4− 108)

with boundary conditions ϕ(0) = ϕ(L) = 0. The nth orthonormal eigenfunction

to (4-108) is

ϕn(y) =

√
2

h
sin

(nπy
h

)
(4− 109)

Substitute (4-109) into (4-106) the Green’s function for equation (4-107) is given
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as:

G(y, t|y′, t′) =
2

h

{ ∞∑
n=1

sin
(nπy′

h

)
sin

(nπy
h

)
e−ν(nπ

h
)2(t−t′)

}
H(t−t′) (4−110)

In shorthand representation , the solution equation of (4− 95) can be written as

ψ(r, t) = f(r, t) + g(r, t) + h(r, t) (4− 111)

where

f(r, t) =
∫ t

t0
dt′
∫
v
dv′G(r, t/r′, t′)ρ(r′, t′)

g(r, t) = D
∫ t

t0
dt′
∫
v
ds′[G(r, t/r′, t′)∂′nψs(r

′, t′)− ∂′nG(r, t/r′, t′)ψs(r
′, t′)]

h(r, t) =
∫
v
dv′G(r, t/r′, to)ψ((r′, to)

In equation (4 − 95), the term f(r,t) represents the contribution from the source

term ρ(r, t), g(r, t) represents the contribution from the boundary condition to the

general solution while h(r, t) represents the contribution from the initial conditions

to the solution. In solving the Couette flow problem of equation (4− 68), there is

no source term in the diffusion problem, thus ρ(r, t) = 0 . Therefore f(r, t) = 0.

The initial condition of (4 − 68d) is also zero. There is no contribution from the

initial condition. That is h(r, t) = 0. The solution ψ(r, t) is solely in response to

the boundary condition, that is the flow initiated by the motion of the boundary

at h. Since equation (4− 68) is being solvde in one dimension, the solution u(y, t)

can be expressed as:

u(y, t) = ν
∫ t

t0
dt′
∫
y
dy′[G(y, t/y′, t′)∂′nus(y

′, t′)−∂′nG(y, t/y′, t′)uh(y
′, t′)] (4−112)

In the Couette problem of equation (4−46), the boundary condition of (4−46c) is

specified. This makes the Green’s Function on the boundary at y = h zero. That
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is :

G(y, t/y′, t′) = 0 at y = h (4− 113)

Equation (4− 112) reduces to:

u(y, t) = ν
∫ t

t′=0
dt′
∫ h

y′=0
dy′[−∂G(y, t/y′, t′)

∂y′
F (t′)] (4− 114)

Rewriting equation (4− 110);

G(y, t/y′, t′) =
2

h

∑
n=1

e−ν(nπ
h

)2(t−t′) sin(
nπ

h
)y) sin

nπ

h
)y′ (4− 115)

∂G(y, t/y′, t′)

∂y′
=

2

h

∑
n=1

e−ν(nπ
h

)2(t−t′)(
nπ

h
) sin

nπ

h
y cos

nπ

h
y′ (4− 116)

Performing the spatial integration in equation (4− 114), it reduces to;

u(y, t) = −ν
∫ t

t′=0

∂G(y, t/y′, t′)

∂y′
|y′=hF (t′)dt′ (4− 117)

u(y, t) = −2ν

h

∑
n=1

e−ν(nπ
h

)2(t)(
nπ

h
) sin

nπ

h
y cos

nπ

h
h
∫ t

t′=0
e−ν(nπ

h
)2(t′)F (t′)dt′ (4−118)

u(y, t) = −2ν

h

∑
n=1

(−1)ne−ν(nπ
h

)2(t)(
nπ

h
) sin

nπ

h
y
∫ t

t′=0
e−ν(nπ

h
)2(t′)F (t′)dt′ (4−119)



CHAPTER 5 : FLOW WITH RANDOM MOVING BOUNDARY

5.1 Stochastic Processes

In this chapter, the flow fields within the domain of both semi-infinite and finite

are considered but with the boundary moving with a random motion. The flow

field therefore has random characteristics and the solution methods are stochastic

in nature. We begin first by looking at a general stochastic analysis of a flow field.

Systems in which a certain time-dependent random variable χ(t) exists, can be

described as a stochastic process, in which systems evolve probabilistic in time.

The probability events can be assigned both joint and conditional probabilities,

which we define as follows:

If U and V are two discrete random variables, the probability distribution for

their simultaneous occurrence can be represented by a function with values f(u,v)

for any pair of values (u,v) within the range of random variables U and V. It is

customary to refer to this function as the joint probability function of U and V.

The probability of an event B occurring when it is known that some event A has

occurred is called a conditional probability and is denoted by P(B/A) which is read

”the probability of B given A”.

A set of values, x1, x2, x3, .... etc. of the random variable χ(t) can be measured at

times t1, t2, t3, ....... A set of joint probability densities exist p(x1, t1;x2, t2;x3, t3; ....)

which describe the system completely. In terms of these joint probability density

functions, a conditional probability density function can be defined:

p(x1, t1;x2, t2; .... | y1, τ1; y2, τ2; ...)
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= p(x1, t1;x2, t2; ....; y1, τ1; y2, τ2; ....)/p(y1, τ1; y2, τ2; ....) (5− 1)

If the future can be determined by the knowledge of the most recent condition, the

process is known as a Markov process, if the times are such that:

t1 ≥ t2 ≥ t3 ≥ .......τ1 ≥ τ2 ≥ ..... (5− 2)

The concept of an evolution equation leads us to consider the conditional proba-

bilities as predictions of the future values of χ(t) (ie, x1, x2, , ...at times t1, t2, ...)

given the knowledge of the past values (y1, y2, .....at times τ1, τ2, ...). If the times

satisfy (5− 2), the conditional probability is determined entirely by the knowledge

of the most recent condition, as stated in the following equation.

p(x1, t1;x2, t2; .... | y1, τ1; y2, τ2; ...) = p(x1, t1;x2, t2; ....; | y1, τ1) (5− 3)

By definition of the conditional probability density:

p(x1, t1;x2, t2; | y1, τ1; ) = p(x1, t1 | x2, t2; y1, τ1)p(x2, t2; | y1, τ1) (5− 4)

and using Markov assumption, we find:

p(x1, t1;x2, t2; y1, τ1; ) = p(x1, t1 | x2, t2; )p(x2, t2; | y1, τ1) (5− 5)

An arbitrary joint probability can be expressed simply as:

p(x1, t1;x2, t2;x3, t3; ....xn, tn; ) =

p(x1, t1 | x2, t2; )p(x2, t2; | x3, t3)p(x3, t3; | x4, t4)......p(xn−1, tn−1; | xn, tn)p(xn, tn) (5−6)
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provided

t1 ≥ t2 ≥ t3 ≥ .....tn−1 ≥ tn
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5.2 Chapman-Kolmogorov Equations

It is required that summing over all mutually exclusive events of one kind in a

joint probability eliminates that variable, ie

∑
i

P (A ∩Bi) = P (A) =
∑
i

P (A/Bi)P (Bi)

∑
i

P (Ai ∩Bj ∩ Ck....) = P (Bj ∩ Ck ∩ ...); (5− 7)

When this is applied to stochastic process we get:

p(x1, t1) =
∫
dx2 p(x1, t1;x2, t2) =

∫
dx2 p(x1, t1; | x2, t2)p(x2, t2) (5− 8)

This equation is an identity valid for all stochastic processes. It can also be written

that

p(x1, t1 | x3, t3)) =
∫
dx2 p(x1, t1;x2, t2 | x3, t3))

=
∫
dx2 p(x1, t1; | x2, t2;x3, t3)p(x2, t2 | x3, t3) (5− 9)

If t1 ≥ t2 ≥ t3 the t3 dependence in the doubly conditioned probability can be

dropped and we can write:

p(x1, t1 | x3, t3)) =
∫
dx2 p(x1, t1 | x2, t2)p(x2, t2 | x3, t3) (5− 10)

Equation (5− 10) is the Chapman-Kolmogorov equation.

Differential Chapman Kolmogorov Equation.

The assumptions made are closely connected with the continuity properties of

the process under consideration. Because of the form of the continuity condition,

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx p(x, t+ ∆t | z, t) = 0 (5− 11)
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uniform in z, t and ∆t For all ε > 0, the following conditions are required:

i) lim
∆t→0

p(x, t+ ∆t | z, t)/∆t = W (x | z, t) (5− 12)

ii) lim
∆t→0

1

∆t

∫
|x−z|>ε

dx(xi − zi)p(x, t+ ∆t | z, t) = Ai(z, t) +O(ε) (5− 13)

iii) lim
∆t→0

1

∆t

∫
|x−z|>ε

dx(xi−zi)(xj−zj)p(x, t+∆t | z, t) = Bij(z, t)+O(ε) (5−14)

All higher-order coefficients of the form (5−13) and (5−14) must vanish. Consider

the time evolution of the expectation of a function, f(z) which is twice continuously

differentiable.

∂t

∫
dxf(x)p(x, t | y, t′) = lim

∆t→0
{
∫
dxf(x)[p(x, t+ ∆t | y, t′)− p(x, t | y, t′)]}/∆t =

lim
∆t→0
{
∫
dx
∫
dzf(x)p(x, t+∆t | z, t′)p(z, t | y, t′)−

∫
dzf(z)p(z, t | y, t′)}/∆t (5−15)

The integral over x is divided into two regions, |x− z| ≥ ε and |x− z| < ε. When

|x− z| < ε, since f(z) is by assumption twice differentiable, we may write

f(x) = f(z) +
∑
i

∂f(z)

∂zi
(xi − zi) +

∑
ij

1

2

∂2f(z)

∂zi∂zj
(xi − zi)(xj − zj)

+ |x− z|2R(x, z) (5− 16)

but |R(x, z)| → 0 as |x− z| → 0

Substitute equation (5− 16) into (5− 15),
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∂t

∫
dxf(x)p(x, t | y, t′) = lim

∆t→0

1

∆t
{
∫ ∫

|x−z|<ε
dxdz

[∑
i

(xi−zi)
∂f

∂zi
+
∑
ij

1

2
(xi−zi)(xj−zj)

∂2f

∂zi∂zj

]

× p(x, t+ ∆t | z, t)p(z, t | y, t′)

+
∫ ∫

|x−z|<ε
dxdz |x− z|2R(x, z)p(x, t+ ∆t | z, t)p(z, t | y, t′)

+
∫ ∫

|x−z|≥ε
dxdzf(x)p(x, t+ ∆t | z, t)p(z, t | y, t′)

+
∫ ∫

|x−z|<ε
dxdzf(z)p(x, t+ ∆t | z, t)p(z, t | y, t′)

−
∫ ∫

dxdzf(z)p(x, t+ ∆t | z, t)p(z, t | y, t′)} (5− 17)

For lines 1 and 2 of equation (5 − 17), we take the limits inside the integral to

obtain

∫
dz
[∑

i

Ai
∂f

∂zi
+
∑
ij

1

2
Bij

∂2f

∂zi∂zj

]
p(z, t | y, t′) + O(ε) (5− 18)

Line 3 is a remainder term and vanishes as ε→ 0 Lines 4 through 6 can all be put

together to obtain

∫ ∫
|x−z|≥ε

dx dzf(z)[W (z, | x, t)p(x, t | y, t′)−W (x, | z, t)p(z, t | y, t′)] (5− 19)

Taking the limit of equation (5− 17) as ε→ 0, its found,

∂t

∫
dzf(z)p(z, t | y, t′) =

∫
dz
[∑

i

Ai(z, t)
∂f(z)

∂zi
+
∑
ij

1

2
Bij(z)

∂2f(z)

∂zi∂zj

]
p(z, t | y, t′)

+
∫
dzf(z){

∫
dx[W (x, | z, t)p(x, t | y, t′)−W (x, | z, t)p(z, t | y, t′)]} (5− 20)

Integrating equation (5− 20) by parts we obtain
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∫
dzf(z)∂tp(z, t | y, t′) =

∫
dzf(z){−

∑
i

∂

∂zi
Ai(z, t)p(z, t | y, t′)+

∑
ij

1

2

∂2

∂zi∂zj
Bij(z, t)p(z, t | y, t′)

+
∫
dx[W (z, | x, t)p(x, t | y, t′)−W (x, | z, t)p(z, t | y, t′)]}+surface terms. (5−21)

If we choose f(z) to be arbitrary but nonvanishing only in an arbitrary region R′

entirely in R, it can be deduced that for all z in the interior of R,

∂tp(z, t | y, t′) = {−
∑
i

∂

∂zi
Ai(z, t)p(z, t | y, t′) +

∑
ij

1

2

∂2

∂zi∂zj
Bij(z, t)p(z, t | y, t′)

+
∫
dx[W (z, | x, t)p(x, t | y, t′)−W (x, | z, t)p(z, t | y, t′)]} (5− 22)

Equation (5− 22) is called the differential Chapman-Kolmogorov Equation. It can

be shown that, under certain conditions, if A(x, t), B(x, t) and W (x | y, t), that

a non-negative solution to the differential Chapman-Kolmogorov equation exists,

and this solution also satisfies the Chapman-Kolmogorov equation. The condition

to be satisfied is the initial condition,

p(z, t | y, t) = δ(y − z) (5− 23)

which follows from the definition of conditional probability density, and any ap-

propriate boundary conditions.

5.3 Diffusion Process: The Fokker-Planck Equation

If we assume W (z, | x, t) to be zero, the differential Chapman Kolmogorov

equation reduces to the Fokker- Planck equation:

∂p(z, t | y, t′)
∂t

= −
∑
i

∂

∂zi
[Ai(z, t)p(z, t | y, t′)] +

1

2

∑
ij

∂2

∂zi∂zj
[Bij(z, t)p(z, t | y, t′)] (5−24)
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Equation (5 − 24) is known as the diffusion process. A(z, t) is known as the drift

vector and the matrix B(z, t) as the diffusion matrix. If the drift term is zero,

a pure diffusion equation is obtained and the term B(z, t) becomes the diffusion

coefficient.

∂p(z, t | y, t′)
∂t

=
1

2

∑
ij

∂2

∂zi∂zj
[Bij(z, t)p(z, t | y, t′)] (5− 25)

If equation (5−25) is combined with equation (5−23) as its initial condition, it can

be realized that the conditional probability p(z, t | y, t) is equivalent to the Green’s

function discussed in chapter four. The requirement for continuity of the sample

paths is satisfied if W (x | z, t) is zero. Hence, the Fokker Planck equation describes

a process in which χ(t) has continuous sample paths. For small time changes, ∆t,

the solution of the Fokker Planck will still be on the whole sharply peaked, and

hence derivatives of Ai(z, t) and Bij(z, t) will be negligible compared to those of p.

We are thus reduced to solving approximately

∂p(z, t | y, t′)
∂t

= −
∑
i

Ai(y, t)
∂

∂zi
p(z, t | y, t′) +

1

2

∑
ij

Bij(y, t)
∂2

∂zi∂zj
p(z, t | y, t′) (5−26)

where we have neglected the time dependence of Ai and Bij for small (t − t′). If

equation (5− 26) is subject to the initial condition:

p(z, t | y, t) = δ(z − y) (5− 27)

we get:

p(z, t+ ∆t | y, t) = (2π)−
N
2 {det[B(y, t)]}

1
2 [∆t]−

1
2

× exp{−1

2

[z − y − A(y, t)∆t][B(y, t)]−1[z − y − A(y, t)∆t]

∆t
} (5− 28)

Equation (5−28) is a Gaussian distribution with variance matrix B(y,t) and mean
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y+A(y, t)∆t. It also depicts the picture of a system moving with systematic drift,

whose velocity is A(y, t) on which is superimposed a Gaussian fluctuation with

covariance matrix B(y, t)∆t.

5.4 Stochastic Differential Equation

Equation (5− 25) is a pure diffusion process equation with no drift part to it.

Momentum and vorticity equations describe time-dependent diffusion. Diffusion

of physical entities, typically diffusing particles, can also be described in stochastic

terms via a stochastic differential equation:

dχ(t) =
√

2ν dw(t) (5− 29)

where χ(t) is the position of the physical entity, ν is the diffusion coefficient, and

w(t) is a Wiener process. We proposed that individual vortex sheets, produced dur-

ing short time increments, ∆t, at the fluid layer’s moving boundary, can be viewed

as a swarm of thinner elemental vortex sheets. The swarm of elemental vortex

sheets(constituting the thicker vortex sheets formed over ∆t), in turn, is viewed as

a stochastic process, ie of a swarm of random walkers. The evolution/random mo-

tion of each elemental vortex sheet is described by the above stochastic differential

equation.

The flow field is randomly generated, therefore a rapidly and irregularly fluc-

tuating random function of time χ(t) is considered. For a differential equation

involving such a random variable, we turn to Langevin’s equation which describes

such a stochastic process. Langevin equation can be described as an ordinary dif-

ferential equation in which a rapidly and irregularly fluctuating random function

of time occurs. Langevin equation can be written in the form :

dχ

dt
= a(x, t) + b(x, t)ε(t) (5− 30)
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where x is a variable of interest, a(x, t) and b(x, t) are certain known functions and

ε(t) is the rapidly fluctuating random term. An idealised mathematical formulation

of the concept of a ”rapidly” varying highly irregular function is that for t 6= t′,

ε(t) and ε(t′) are statistically independent. It is required that the mean of ε(t) must

be zero, ie < ε(t) >= 0. Any nonzero mean can be absorbed into the definition of

a(x, t) and thus require that :

< ε(t)ε(t′) >= δ(t− t′) (5− 31)

The differential equation (5− 30) is expected to be integrable and hence, it can be

written:

u(t) =
∫ t

0
dt′ε(t′) (5− 32)

It can thus be written:

∫ t

0
ε(t′)dt′ = u(t) = W (t) (5− 33)

The integral of ε(t) is W (t) which is itself not differentiable. However the corre-

sponding equation :

χ(t)− χ(0) =
∫ t

0
a[x(s), s]ds+

∫ t

0
b[x(s), s]ε(s)ds (5− 34)

the integral of ε(t) is interpreted as the Wiener process W (t), that

dW (t) = W (t+ dt)−W (t) = ε(t)dt (5− 35)

Equation (5− 34) can therefore be written as :

χ(t)− χ(0) =
∫ t

0
a[x(s), s]ds+

∫ t

0
b[x(s), s]dW (s) (5− 36)
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What is the probability of the random variable χ(t) at (x, t) given that it ws at ( x’,

t’) ? We focus on the transition density, P (x, t/x′, t′). We want to find a governing

differential equation that describe the space-time evolution of P (x, t/x′, t′). Einstein

first made the connection between the random motion of a diffusing particle and the

equation corresponding to a Fokker-Planck equation that describes the space-and-

time dependent evolution of the particle’s transition density, p. For an introduction

of a random walker and the diffusion process, we consider a man moving randomly

along a line. The steps are of length l so that his position can take on only the

value Nl, where N is integral. Let p be the probability that he moves to the right

and q the probability that he moves to the left. Let P (x,N) be the probability

that the random walker is at site x at the N th time step. The probability P (x,N)

satisfies the stochastic difference equation:

P (x,N + 1) = pP (x− 1, N) + qP (x+ 1, N) (5− 37)

where, P (x,N+1) = probability that the random walker will be at x after (N +1)

time steps, P (x − 1, N) = probability that the random walker will be at x − 1

position after N time step, P (x+ 1, N) = probability that the random walker will

be at x+ 1 position after N time steps. If we consider the special case, p = q = 1
2
,

equation (5− 37) can be written as:

P (x,N + 1)−P (x,N) =
P (x− 1, N) + P (x+ 1, N)− 2P (x,N)

2
(5−38)

∆t[P (x,N + 1)− P (x,N)]

∆t
=

[P (x− 1, N) + P (x+ 1, N)− 2P (x,N)](∆x)2

2(∆x)2
(5−39)

In the limit of large N, the differences become differentials such that:

∆t
∂P

∂t
=

(∆x)2

2

∂2P

∂x2
(5− 40)
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∂P

∂t
= D

∂2P

∂x2
where D =

(∆x)2

2∆t
=

l2

2τ
(5− 41)

5.5 Non-Anticipating Functions:

A function G(t) is called a non-anticipating function of t if for all s and t, such

that t < s. G(t) is statistically independent of (W (s) −W (t)). This means that

G(t) is independent of the behavior of the Wiener process in the future of t. For a

non-anticipating function f of W(t), a general differentiation can be expressed as :

df [W (t), t] =
∂f

∂t
dt+

1

2

∂2f

∂t2
(dt)2+

∂f

∂w
dW (t)+

1

2

∂2f

∂W 2
[dW (t)]2+

∂2f

∂W∂t
dtdW (t)+.... (5−42)

Using the following:

(dt)2 → 0, dtdW (t)→ 0, [dW (t)]2 = dt (5− 43

and all higher power greater than 2 vanishing we arrive at

df [W (t), t] = (
∂f

∂t
dt+

1

2

∂2f

∂W 2
)dt+

∂f

∂w
dW (t) (5− 44)

A stochastic quantity χ(t) obeys an Ito SDE written as:

dχ(t) = a[x(t), t]dt+ b[x(t), t]dW (t) (5− 45)

If for all t and to,

χ(t) = χ(0) +
∫ t

t0
a[x(t′), t′]dt′ +

∫ t

t0
b[x(t′), t′]dW (t′) (5− 46)

χ(t), the solution to the stochastic differential equation (5− 46) is a Markov Pro-

cess. Given an initial condition χ(t0), the future time development is uniquely

determined, that is χ(t) for t > t0 is determined only by i) the particular path of
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W (t) for t > t0; and ii) the value of X(t0). Since χ(t) is a nonanticipating function

of t, W (t) for t > t0 is independent of χ(t) for t < t0. Thus the time development

of χ(t) for t > t0 is independent of χ(t) for t < t0 provided χ(t0) is known. Hence

χ(t) is a Markov process. Consider an arbitrary function of x(t) f[x(t)]. If the

differential of f [x(t)] is expanded to second order in dW (t)

df [x(t)] = f [x(t) + dx(t)]− f [x(t)] = f ′[x(t)]dx(t) +
1

2
f ′′[x(t)]dx(t)2 + ........

= f ′[x(t)]{a[x(t), t]dt+b[x(t), t]dW (t)}+1

2
f ′′[x(t)]b[x(t), t]2[dW (t)]2+........ (5−47)

where all other terms have been discarded since they are of higher order. Using

[dW (t)]2 = dt, we obtain

df [x(t)] = {a[x(t), t]f ′[x(t)]+
1

2
b[x(t), t]2f ′′[x(t)]}d(t)+.b[x(t), t]f ′[x(t)]dW (t) (5−48)

Equation (5−47) is Ito’s formula. Connection between Fokker Planck Equation and

Stochastic Differential Equation. Consider the time development of an arbitrary

functionf(x, t). Using Ito’s formula,

< df [x(t)] >

dt
=<

df [x(t)]

dt
>=

d

dt
< f [x(t)] >

=< a[x(t), t]
df

dx
+

1

2
b[x(t), t]2

d2f

dx2
(5− 49)

However χ(t) has a conditional probability density p(x, t | x0, t0) and

d

dt
< f [x(t)] >=

∫
dxf(x)∂tp(x, t|x0, t0)

=
∫
dx[a(x, t)∂xf +

1

2
b(x, t)2∂2

x]p(x, t | x0, t0) (5− 50)
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Integrating by parts and discarding surface terms, we obtain:

∫
dxf(x)∂tp =

∫
dxf(x){−∂x[a(x, t)p+

1

2
∂2
xb(x, t)

2p]} (5− 51)

Since f(x) is arbitrary,

∂tp(x, t | x0, t0) = −∂x[a(x, t)p(x, t | x0, t0)]+
1

2
∂2
x[b(x, t)

2p(x, t | x0, t0)] (5−52)

This is a complete equivalence to a diffusion process defined by a drift coefficient

a(x, t) and a diffusion coefficient b(x, t)2. For small time changes, ∆t, the solution

of the Fokker Planck equation will still be on the whole sharply peaked, and hence

the derivatives of Ai(z, t) and Bij(z, t) will be negligible compared to those of the

probability density. In one dimension the Fokker Planck equation takes the form:

∂f(x, t)

∂t
= − ∂

∂x
[A(x, t)f(x, t)] +

1

2

∂2

∂x2
[B(x, t)f(x, t)] (5− 53a)

The Fokker Planck equation is valid for the conditional probability, that is

f(x, t) = p(x, t|x0, t0)

for any initial condition (x0, t0)

p(x, t0|x0, t0) = δ(x− x0) (5− 53b)

For one time probability :

p(x, t) =
∫
dx0 p(x, t;x0, t0) =

∫
dx0 p(x, t|x0, t0)p(x0, t0) (5− 54)
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One time probability is also valid for p(x, t) with initial condition

p(x, t)
∣∣∣
t=t0

= p(x, t0)

5.6 Boundary Conditions

We consider the forward equation of Chapman Kolmogorov.

∂p(z, t)

∂t
= −

∑
i

∂

∂zi
[Ai(z, t)p(z, t)] +

1

2

∑
ij

∂2

∂zi∂zj
[Bij(z, t)p(z, t)] (5− 55)

The above equation can be written as :

∂p(z, t)

∂t
= −

∑
i

∂

∂zi
Ji(z, t)) = 0 (5− 56)

where

Ji(z, t) = Ai(z, t)p(z, t) −
1

2

∑
j

∂

∂zj
Bij(z, t)p(z, t) (5− 57)

Ji(z, t) is called the probability current. Equation (5− 56) has the form of a local

conservation equation and can be written in an integral form as follows:

Consider some region R with a boundary S and define

P (R, t) =
∫
dz p(z, t)

Then (5-56) is equivalent to

∂P (R, t)

∂t
= −

∫
s
ds.n.J(z, t) (5− 58)

where n is the outward normal to S. Thus equation (5-58) indicates that the total

loss of probability is given by the surface integral of J over the boundary of R.
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A surface integral over any surface S gives the net flow of probability across that

surface. We consider the possible scenarios of boundary conditions that may be

attended to in stochastic diffusion equation.

Reflecting Barrier:

We consider the situation where the particle cannot leave a region R, hence there

is zero net flow of probability across S, the boundary of R. Thus it is required:

n.J(z, t) = 0 for z ε S and n ≡ normal to S. Since the particle cannot cross S, it

must be reflected there and hence the name reflecting barrier for this condition.

Absorbing Barrier:

Here, one assumes that the moment the particle reaches S, it is removed from the

system, thus the barrier absorbs. Consequently the probability of being on the

boundary is zero ie p(z, t) = 0 for zεS.



78

Periodic Boundary Condition:

We assume that the process takes place on an interval [a, b] in which the two end

points are identified with each other.( this occurs for example if the diffusion is on

a circle.) Then we impose the boundary condition of discontinuity ie

I. limx→b−p(x, t) = limx→a+p(x, t) and II. limx→b−J(x, t) = limx→a+J(x, t) Most

frequently, periodic boundary conditions are imposed when the functions A(x,t)

and B(x,t) are periodic on the same interval so that we have

A(b, t) = A(a, t) and B(b, t) = B(a, t)

Prescibed Boundaries

If the diffusion coefficient vanishes at a boundary, we have a situation in which

the kind of boundary may be automatically prescribed. Supose the motion occurs

only forx > a, If a Lipschitz condition is obeyed by A(x, t) and
√
B(x, t) at x = a,

and B(x,t) is differentiable at x = a, then

∂xB(a, t) = 0

The stochastic differential equation then has solutions, and we may write

dx(t) = A(x, t)dt+
√
B(x, t)dW (t) (5− 59)

In this special case, the situation is determined by the sign of A(x,t). Three cases

can be considered.

i) Exit Boundary.

In this case, we suppose

A(a, t) < 0

so that if particle reaches the point a, it will certainly proceed out of region to

x < a, hence the name ”exit boundary” .

ii) Entrance Boundary.



79

Suppose A(a, t) > 0 In this case, if the particle reaches the point a, the sign of

A(a,t) is such as to return it to x > a; thus a particle placed to the right of a can

never leave the region.

iii) Natural Boundary:

A particle introduced at x =a will certainly enter the region. Hence the name ”

entrance boundary” . Consider

A(a, t) = 0

The particle, once it reaches x = a, will remain there. However it can be demon-

strated that it cannot ever reach this point. This is a boundary from which we can

neither absorb nor at which we can introduce any particles.

5.7 Infinite Medium: One Dimensional Diffusion

For a one dimensional random walk ( Wiener process , Brownian motion) with

no drift, the Fokker Planck equation of (5− 26) can be written as:

∂p(y, t)

∂t
= ν

∂2p(y, t)

∂y2
(5− 60a)

where ν is a constant representing the diffusion coefficient. The diffusion equation

is completed by an initial and boundary conditions.

p(y, t0) = δ(y − y′) (5− 60b)

limx→±∞p(y, t) = 0 (5− 60c)

The solution of the diffusion equation with initial condition as a delta-peak at y′

and natural boundary conditions, is the Gaussian distribution:

p(y, t) =
1√

4πνt
exp

(
− (y − y′)2

4νt

)
(5− 61)
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A generalization for an arbitrary initial distribution p(y, t = 0) = p0(y) is posible

due to the superposition of probability densities created by different sources(initial

distributions), which is a property of our diffusion equation due to its linearity.

Hence, for

p0(y) ≡
∫ +∞

−∞
p0(y′)δ(y − y′)dy′ (5− 62)

the solution is an integral over the normal distributions corresponding to p(y, t =

0) = δ(y − y′) weighted by the source intensity p0(y′), so

p(y, t) =
1√

4πνt

∫ +∞

−∞
p0(y′)exp

(
− (y − y′)2

4νt

)
dy′ (5− 63)

The solution of the diffusion equation can be obtained by one-dimensional Fourier

transformation to pw(k, t) (transformation to inverse space by a generating func-

tion) which is defined by :

p(y, t) =
1√
2π

∫ +∞

−∞
eikypw(k, t)dk. (5− 64)

where:

pw(k, t) =
1√
2π

∫ +∞

−∞
e−ikyp(y, t)dy. (5− 65)

The left hand side of the diffusion equation (5− 60a) is transformed as :

∂

∂t
p(y, t) =

∂

∂t

1√
2π

∫ +∞

−∞
dk eikypw(k, t) =

1√
2π

∫ +∞

−∞
dk eiky

∂pw(k, t)

∂t
. (5−66)

whereas for the right hand side starting with the first differential ;

∂

∂y
p(y, t) =

∂

∂y

1√
2π

∫ +∞

−∞
dk eikypw(k, t) =

1√
2π

∫ +∞

−∞
(ik) eikypw(k, t)dk (5−67)
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becomes

∂2

∂y2
p(y, t) =

∂

∂y

1√
2π

∫ +∞

−∞
(ik) eikypw(k, t)dk =

1√
2π

∫ +∞

−∞
(ik)2 eikypw(k, t)dk

=
1√
2π

∫ +∞

−∞
k2 eikypw(k, t)dk (5− 68)

Hence the transformed equation reads

1√
2π

∫ +∞

−∞
dk eiky

∂pw(k, t)

∂t
= − ν√

2π

∫ +∞

−∞
dk k2 eikypw(k, t) (5− 69)

The integrand of (5− 69) must equal:

∂pw(k, t)

∂t
= −k2ν pw(k, t) (5− 70)

which leads to a local problem in the k-space. An elementary integration yields

the solution

pw(k, t) = pw(k, t = 0)e−k
2νt (5− 71)

in the form of an exponentially decaying kth Fourier mode. The condition trans-

forms as

pw(k, t = 0) =
1√
2π

∫ +∞

−∞
eikyp(y, t = 0)dx

=
1√
2π

∫ +∞

−∞
e−ikyδ(y − y′)dx =

1√
2π
eiky

′
(5− 72)

so that the solution in the Fourier space is

pw(k, t) =
1√
2π
e−iky

′
e−k

2νt (5− 73)

Now taking the inverse transformation to the coordinate space;

p(y, t) =
1√
2π

∫ +∞

−∞
dk eiky

1√
2π
e−iky

′
e−k

2Dt
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p(y, t) =
1√
2π

∫ +∞

−∞
dk eik(y−y′)−k2Dt (5− 74)

p(y, t) =
1√
2π

∫ +∞

−∞
dk e−νt[k

2− ik(y−y
′)

Dt
] (5− 75)

p(y, t) =
1√
2π

∫ +∞

−∞
dk e

−νt

[
(k− ik(y−y

′)
2νt

)
2
+( (y−y′)

2νt
)
2

]
(5− 76)

To solve the above problem, we set the variable:

z = (k − ik(y − y′)
2νt

), with dz = dk (5− 77)

The integration is made in the complex plane along the line which is parallel to the

real axis, although shifted by c = (− ik(y−y′)
2Dt

). The integral does not depend on c

and therefore the integration path can be shifted to the real axis. If we substitute

the variable in (5 − 77) into equation (5 − 76), equation (5 − 76), can be written

as:

p(y, t) =
1√
2π

∫ +∞

−∞
dz e−νtz

2

e−Dt(
(x−x0)

2νt
)
2

(5− 78)

p(y, t) =
1

2π
e−( (y−y′)

2νt
)
2 ∫ +∞

−∞
dz e−νtz

2

(5− 79)

By using the formula

I =
∫ ∞
−∞

e−αx
2

dx =

√
π

α
(5− 80)

where α = νt equation (5− 79) becomes

p(y, t) =
1

2π

√
π

νt
e−

(y−y′)2
4νt (5− 81)

The solution to the one dimensional random walk Fokker Planck diffusion equation
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with natural boundaries and initial condition can finally be obtained as

p(y, t) =
1√

4πDt
e−

(y−y′)2
4νt (5− 82)

The Gaussian integral (5-80) can be calculated as follows. In terms of another

variable the Gaussian integral can also be written as:

I =
∫ ∞
−∞

e−αx
2

dx =

√
π

α
(5− 83)

The square of the integral can therefore be written as :

I2 =
( ∫ ∞
−∞

e−αx
2

dx
)( ∫ ∞

−∞
e−αβ

2

dβ
)

(5− 84)

I2 =
∫ ∞
−∞

dx
∫ ∞
−∞

dβ e−α(x2+β2) (5− 85)

We make the transformation to polar coordinates:

x = r cos θ, β = r sin θ, r =
√
x2 + β2 dx dβ = rdrdθ

Thus we have

I2 =
∫ 2π

0
dθ
∫ ∞
r

rdr e−αr
2

dr (5− 86)

making the substitution :

z = r2 dz = 2r dr

Then

I2 = π
∫ ∞

0
e−αzdz
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Also by substituting

αz = u, du = αdz

I2 = π
∫ ∞

0

1

α
e−udu =

π

α

∫ ∞
0

e−udu =
π

α
(5− 87)

Thus

I =

√
π

α
(5− 88)

The moments of the density distribution function is stated as

〈Y n〉(t) =
∫ ∞
−∞

dy Xnp(y, t) (5− 89)

The moment of the zeroth order has to be one, as it represents the normalization

integral.

〈Y 0〉(t) ≡ 1 =
∫ ∞
−∞

p(y, t)dx (5− 90)

To check it, we insert the solution:

p(y, t) =
1√

4πνt
e−

(y−y′)2
4νt (5− 91)

〈Y 0〉 =
∫ ∞
−∞

dy
1√

4πνt
e−

(y−y′)2
4νt (5− 92)

Let (y − y′) = z; dy = dz Denoting a2 = 1
4νt

〈Y 0〉 =
∫ ∞
−∞

a√
π
e−a

2z2dz (5− 93)

〈Y 0〉 =
2a√
π

∫ ∞
0

e−a
2z2dz (5− 94)

Again employing the integral expression I =
∫∞
−∞ e

−αx2dx =
√

π
α

we obtain

〈Y 0〉 =
2a√
π

1

2

√
π

a2
= 1 (5− 95)
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The first moment of the probability density function represents the mean. We can

calculate the first moment as :

〈Y 1〉 =
∫ ∞
−∞

y p(y, t)dx (5− 96)

〈Y 1〉 =
∫ ∞
−∞

y
1√

4πνt
e−

(y−y′)2
4νt dy (5− 97)

〈Y 1〉 =
1√

4πνt

∫ ∞
−∞

ye−
(y−y′)2

4νt dy (5− 98)

To solve for the mean we let y − y′ = z so y = y′ + z . Thus

〈Y 1〉 =
1√

4πνt

∫ ∞
−∞

(y′ + z)e−
z2

4nut dz (5− 99)

〈Y 1〉 = y′
1√

4πνt

∫ ∞
−∞

e−
z2

4νt dz +
1√

4πνt

∫ ∞
−∞

ze−
z2

4νt dz (5− 100)

As in the moment of zero order, the product of 1√
4πνt

and the integral in the first

term is one. The second term of equation (5− 93) is zero. The first moment of the

probability density function therefore leads to y′.

〈Y 1〉 = y′ + 0 = y′

The mean value 〈y〉 = y′ does not change in time, it keeps the initial value.

The second moment is expressed as

〈Y 2〉 =
∫ ∞
−∞

y2 p(y, t)dy (5− 101)

The second moment is related to the standard deviation σ via

〈(y − 〈y〉)2〉 = 〈(y − y′)2〉 ≡ σ2 (5− 102)
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Denoting α = 1
4νt

, we have

〈Y 2〉 =
∫ ∞
−∞

y2 1√
4πνt

e−
(y−y′)2

4νt dy (5− 103)

Let x = y − y′, dx = dy Thus

〈Y 2〉 =
1√

4πνt

∫ ∞
−∞

(x+ y′)2e−αx
2

dx (5− 104)

〈Y 2〉 =
1√

4πνt

∫ ∞
−∞

(x2 + 2y′x+ y′2)e−αx
2

dx (5− 105)

〈Y 2〉 = y′2 + 0 +
1√

4πνt

∫ ∞
−∞

x2e−αx
2

dx (5− 106)

To solve the integral term in (5-106) we use the identity

∫ ∞
−∞

q2e−αq
2

dq = − d

dα

∫ ∞
−∞

e−αq
2

dq (5− 107)

Equation (5-99) becomes

〈Y 2〉 = y′2 +
1√

4πνt

(
− d

dα

∫ ∞
−∞

e−αx
2

dx
)

(5− 108)

Again using the identity I =
∫∞
−∞ e

−αq2dq =
√

π
α

and calculating further we have

〈Y 2〉 = y′2 − 1√
4πνt

d

dα

(√π√
α

)
(5− 109)

〈Y 2〉 = y′2 −
√
π√

4πνt

(
− 1

2

)
α−

3
2 (5− 110)

〈Y 2〉 = y′2 +

√
π

2
√

4πνt

(
− 1

4νt

)− 3
2 (5− 111)

〈Y 2〉 = y′2 + 2νt (5− 112)
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which finally gives

σ2 ≡ 〈(y − 〈y〉)2〉 = 2νt (5− 113)

σ =
√

2νt ∼
√
t (5− 114)

5.8 The Mirror Method

The solution of the diffusion equation in shifted coordinates together with the

initial condition p(y, t = 0) = δ(y − y′) and different boundary conditions can be

obtained as a superposition of solutions.

Py0(y, t) =
1√

4πνt
e−

(y−y′)2
4νt (5− 115a)

for natural boundary conditions with different positions y′ of the delta- peaks at the

initial time moment t = 0. Any such superposition satisfies the diffusion equation

due its linearity. The only problem is to fulfill the initial and boundary conditions.

Let us consider the case where there is a reflecting boundary at y = 0 and we are

looking for the solution within y ε [0,∞), so the other boundary is located at +∞.

Formally we can extend the y interval from −∞ to +∞ and make a mirror image.

If the image point of y′ were to be at −y′, then the fundamental solution of the

diffusion equation with natural boundaries will be :

P−y0(y, t) =
1√

4πνt
e−

(y+y′)2
4νt (5− 115b)

Obviously, the superposition as the sum of Py0(y, t) and P−y0(y, t) fulfills the initial

condition for the interval y ε [0,∞) as well as the reflecting boundary condition.

∂p(y,t)
∂y

around this point.

P (y, t) = Py0(y, t) + P−y0(y, t) (5− 116)
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which yields the solution

P (y, t) =
1√

4πνt
e−

(y−y′)2
4νt +

1√
4πνt

e−
(y+y′)2

4νt (5− 117)

5.9 Diffusion in a Finite Interval with Absorbing Boundaries:

Restating The Diffusion Equation but with finite absorbing boundaries:

∂p(y, t)

∂t
= ν

∂2p(y, t)

∂y2
(5− 118a)

Initial Condition:

p(y, t0) = δ(y − y′) (5− 118b)

Absorbing Boundary Condition at y = 0 (bottom):

p(y = 0, t) = 0 (5− 118c)

Absorbing Boundary Condition at y = h (top)

p(y = h, t) = 0 (5− 118d)

The method of separation of variables can be used to solve the problem (5− 118)

Let p(y, t) be represented by:

p(y, t) = G(t)F (y) (5− 119)

Subtituting (5− 119) into (5− 118) we obtain:

1

G(t)

dG(t)

dt
= ν

1

F (y)

d2F (y)

dy2
(5− 120)
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Both sides should equal a constant −λ

Rewriting the left hand side of (5− 120)

1

G(t)

dG(t)

dt
= −λ (5− 121)

G(t) = G0 e
(−λt) (5− 122)

with G(t = 0) = G0 = 1

The right hand side of (5− 120) can be written as:

ν
1

F (y)

d2F (y)

dy2
= −λ (5− 123)

Introducing the notion of the wave number k given by :

k2 =
λ

ν
(5− 124)

Equation (5− 123) can be written as:

d2F (y)

d2y
+ k2F (y) = 0 (5− 125)

The general solution of (5− 118) is

F (y) = Asin(ky) +Bcos(ky) (5− 126)

At the bottom boundary condition:

p(y, t) = 0,⇒ F (y) = 0, at y = 0 (5− 127)

F (0) = A sin(0) +B cos(0) = 0, B = 0 (5− 128)
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Applying the other absorbing boundary condition at y = h

F (h) = Ak sin(k(h))−Bk cos(k(h)) = 0 (5− 129)

Ak sin k(h) = 0 (5− 130)

sin k(h) = 0 (5− 131)

This yields discrete solutions for k and eigen values :

km =
πm

h
(5− 132)

but λm = νk2
m = νπ2

h2
m2 (5− 133)

where m = 0, 1, 2...............n ie positive integers.

A particular time dependent solution which fulfills the boundary condition and

corresponds to the eigenvalue λm is thus the eigenfunction pm(y, t) given by

pm(y, t) = Ame
−λmt sin(kmy) (5− 134)

The complete solution of the problem is forced as superposition of these eigenfunc-

tions.

P (y, t) =
∞∑
m=0

pm(y, t) =
∞∑
m=0

Ame
−λmt sin(kmy) (5− 135)

To obtain Am , we employ the initial condition

P (y, t = 0) =
∞∑
m=0

Am sin(kmy) = δ(y − y′) (5− 136)

Employing the coefficients of Fourier sine series:

Am =
2

h

∫ h

0
dy δ(y − y′) sin(kmy) (5− 137)



91

Am =
2

h
sin(kmy

′) (5− 138)

but f(y) = A sin(ky) +B cos(ky) and Y (t) = Y0e
−λt

p(y, t) = Y (t)f(y)

The solution reads

p(y, t) =
2

h

∞∑
m=0

e−λmt sin(kmy
′) sin(kmy) (5− 139)

p(y, t) =
2

h

∞∑
m=0

e−ν
π2

h2
mt sin(

πm

h
y′) sin(

πm

h
y) (5− 140)

The probability distribution p(y, t) tends to zero with increasing time.
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5.10 First- Passage Time Problem.

The mean time during which the system finds its stable state by overcoming a

potential barrier due to stochastic fluctuations. The problem is to find the average

time during which a stochastic system reaches for the first time, some given state

if started from another state. This time is called the mean first- passage time.

The first-passage time distribution(breakdown probability density) follows from

the balance condition

P (t, y = h) = − d

dt

∫ h

0
p(y, t)dy (5− 141)

By inserting the solution ( 5- 140 ) into (5-141) we obtain

P (t, h) = − d

dt

[ ∫ h

0

2

h

∞∑
m=0

e−λmt sin (km(y′)) sin (km(y))
]
dy (5− 142)

P (t, h) =
2

h

∞∑
m=0

λme
−λmt sin (km(y′))

∫ b

0
sin (km(y))dx (5− 143)

P (t, h) =
−2

h

∞∑
m=0

λm
km

e−λmt sin (km(y′))
[

cos (km(y))
]∣∣∣∣∣
h

0

P (t, h) =
−2

h

∞∑
m=0

λm
km

e−λmt sin (km(y′))[ cos (km(h))− 1] (5− 144)

λm = Dk2
m, km =

π

h
m cos (km(h)) = (−1)m (5− 145)

substituting quantities in (5-145) into (5-144) we obtain

P (t, h) =
2πD

(h)2

∞∑
m=0

m e−Dk
2
mt sin (km(y′))[1− cos (km(h))] (5− 146)

P (t, h) =
2πD

(h)2

∞∑
m=0

m e−Dk
2
mt sin (km(y′))[1− (−1)m] (5− 147)

5.11 Diffusion in a Finite Interval with Mixed Boundaries:

If the fluid flow were to be in a medium between two infinite plates with absorbing
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boundary condition on one end and a reflecting boundary on the other end. The

flow field may be solved as follows:

∂p(y, t)

∂t
= ν

∂2p(y, t)

∂y2
(5− 148a)

Initial Condition:

p(y, t0) = δ(y − y′) (5− 148b)

Absorbing Boundary Condition at y = 0 (bottom):

p(y = 0, t) = 0 (5− 148c)

Reflecting Boundary Condition at y = h (top)

∂p(y, t)

∂y
= 0 (5− 148d)

The method of separation of variables can be used to solve the problem (5− 148)

Let p(y, t) be represented by:

p(y, t) = G(t)F (y) (5− 149)

Subtituting (5− 149) into (5− 148a) we obtain:

1

G(t)

dG(t)

dt
= ν

1

F (y)

d2F (y)

dy2
(5− 150)

Both sides should equal a constant −λ Rewriting the left hand side of (5− 150)

1

G(t)

dG(t)

dt
= −λ (5− 151)
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G(t) = G0 e
(−λt) (5− 152)

with G(t = 0) = G0 = 1 The right hand side of (5− 150) can be written as:

ν
1

F (y)

d2F (y)

dy2
= −λ (5− 153)

Introducing the notion of the wave number k given by :

k2 =
λ

ν
(5− 154)

Equation (5− 153) can be written as:

d2F (y)

d2y
+ k2F (y) = 0 (5− 155)

The general solution of (5− 153) is

F (y) = Asin(ky) +Bcos(ky) (5− 156)

At the bottom boundary condition:

p(y, t) = 0,⇒ F (y) = 0, at y = 0 (5− 157)

F (0) = A sin(0) +B cos(0) = 0, B = 0 (5− 158)

Applying the reflecting boundary condition at y = h

∂F (y)

∂y
= Ak cos(ky)−Bk sin(ky) = 0 (5− 159)

Ak coshk = 0 (5− 160)

coshk = 0 (5− 161)



95

This yields discrete solutions for k and eigen values :

km =
π

h
(
1

2
+m)) (5− 162)

but

λm = νk2
m =

νπ2

(h)2
(
1

2
+m)2 (5− 163)

where m = 0, 1, 2...............n ie positive integers. A particular time dependent

solution which fulfills the boundary condition and corresponds to the eigenvalue

λm is thus the eigenfunction pm(y, t) given by

pm(y, t) = Bme
−λmtcos(kmy) (5− 164)

The complete solution of the problem is the superposition of these eigenfunctions.

P (y, t) =
∞∑
m=0

pm(y, t) =
∞∑
m=0

Bme
−λmtcos(kmy) (5− 165)

To obtain Bm , we employ the initial condition.

P (y, t = 0) =
∞∑
m=0

Bme
0cos(kmy) = δ(y − y′) (5− 166)

multiply by cos(kny) and integrate over y from 0 to h

∞∑
m=0

Bm

∫ h

0
dy cos(kmy) (coskny) =

∫ h

0
dy δ(y − y′) cos(kny) (5− 167)

The integral on the left hand side can easily be calculated using the orthogonality

of the eigenfunctions

∫ h

0
dy cos(kny) (coskmy) =

1

2

∫ h

0
dy
[

cos [(kn+km)y]+cos [(kn−km)y]
]

(5−168)
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=
1

2

[ 1

kn + km
sin(kn + km)y +

1

kn − km
sin(kn − km)y

]h
0

=
h

2

[ 1

kn + km
sin(kn + km)y +

1

kn − km
sin(kn − km)y

]
(5− 169)

=
h

2
δmn (5− 170)

where the limit limx→0
sinx
x

= 1 has been used. Hence ( 5-167) reduces to

∞∑
m=0

Bm
h

2
δmn =

∫ h

0
dy δ(y − y′) cos(kny) (5− 171)

which yields

Bm =
2

h
cos(kmy

′) (5− 172)

but f(y) = A sin(ky) +B cos(ky) and X(t) = X0e
−λt

p(y, t) = X(t)f(y)

The solution reads

p(y, t) =
2

h

∞∑
m=0

e−λmt cos(kmy
′) cos(kmy) (5− 172)

which is the final probability distribution. The probability distribution p(y, t) tends

to zero with increasing time.
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First- Passage Time Problem.

The mean time during which the system finds its stable state by overcoming

a potential barrier due to stochastic fluctuations. The first-passage time distribu-

tion(breakdown probability density) follows from the balance condition

P (t, y = h) = − d

dt

∫ h

0
p(y, t)dy (5− 173)

By inserting the solution ( 5- 172 ) into (5-173) we obtain

P (t, h) = − d

dt

[ ∫ h

0

2

h

∞∑
m=0

e−λmt cos (km(y′)) cos (km(y))
]
dy (5− 174)

P (t, h) =
2

h

∞∑
m=0

λme
−λmt cos (km(y′))

∫ h

0
cos (km(y))dy (5− 175)

P (t, h) =
2

h

∞∑
m=0

λm
km

e−λmt cos (km(y′))
[

sin (km(y))
]∣∣∣∣∣
h

0

P (t, h) =
2

h

∞∑
m=0

λm
km

e−λmt cos (km(y′)) sin (km(h)) (5− 176)

λm = Dk2
m, km =

π

h
(
1

2
+m) sin (km(h)) = (−1)m (5− 177)

substituting quantities in (5-177) into (5-176) we obtain

P (t, h) =
2πD

(h)2

∞∑
m=0

(−1)m(
1

2
+m)e−Dk

2
mt cos (km(y′)) (5− 178)



CHAPTER 6 : CONCLUSIONS AND DISCUSSIONS

In broad terms, this research shows that fluid-based transport of diffusive quan-

tities for example, heat, mass, momentum and vorticity can be studied from both

classical continuum standpoint using conservation principles of mass and momen-

tum as well as from the perspective provided by the theory of stochastic processes.

The diffusion equation can be derived from the continuum limit using potentials,

forces, fluxes and transient quantities of the fluid and from a microscopic point of

view where the individual probabilistic motions of particles lead to diffusion. The

study also exploits an important mathematical equivalence that exists between the

Green’s function, G(x, t/x′, t′), associated with a given continuum transport prob-

lem, and the transition density, p(x, t/x′, t′), associated with the corresponding

stochastic transport problem.

In detail, the adjoint equation governing a given transport problem’s Green’s

function, G(x,t/x’,t’), is shown to correspond exactly to an associated Fokker-

Panck equation governing the evolution of a transition density, p(x, t/x′, t′) In

order to complete the stochastic description of a given transport problem, we must

hypothesize a physically reasonable entity whose continuum transport is governed

by the continuum transport equations and whose stochastic evolution is described

by an appropriate stochastic. differential equation. The combined approach to

studying transport entities is given the name Green’s function stochastic methods

framework(GFSM). This method provides a large mathematical tool box for in-

vestigating both deterministic and random transport problems. Once a choice of

the physical entity is made the physics and mathematical framework lead to deep

physical insight into how the entity evolves.
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