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ABSTRACT 
 
 

SAMAN MOSTAFAVI.  Performance comparison of Unscented and Extended Kalman 
Filter implementation on a continuous stirred tank reactor.  (Under the direction of 

Dr.YOGENDRA KAKAD) 
 
 

 In this thesis work, it is intended to investigate not only the Extended Kalman 

Filter (EKF) but to further study the more recent nonlinear Kalman Filters for their 

application to the nonlinear problem of a continuous stirred tank reactor. The various 

filters studied in this thesis are: 

• Extended Kalman Filter (EKF) 

• Monte Carlo Kalman Filter (MCKF) 

• Unscented Kalman Filter (UKF) and its various forms and alternate editions 

The study goes on to provide a comparison of the computational and accuracy costs 

involved in the cases of EKF and UKF. 

Until recently, the EKF has proven to be a better filter in terms of accuracy for the 

majority of non-linear cases such as the various cases of a continuous stirred tank reactor. 

The research work in this thesis also applies these filtering methods to the system 

dynamics of an exothermic continuous stirred tank reactor. Results obtained in this 

research corroborate the notion that an Unscented Kalman Filter tends to have a better 

accuracy than the previously trusted family of Kalman Filters, however after 

investigating the application of the UKF to the problem studied, it is still not possible to 

make a strong case for the UKF in general and the conclusion is that the application of 

this filter remains to be case sensitive.  
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CHAPTER 1: A BRIEF HISTORY ON KALMAN FILTERING 
 
 

In 1960, Rudolf Kalman proposed a new approach to linear filtering and 

prediction problems [1] that were later named Kalman filter in his honor. At that juncture, 

linear filtering that we know today was completely revolutionized. 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process, in a way that 

minimizes the mean of the squared errors. The filter is very powerful in several aspects: it 

supports estimations of past, present and even future states and it can achieve this in spite 

of the fact that the precise nature of the modeled system is unknown [2]. 

Before we begin to explain the Kalman Filtering method in detail, it is worth 

mentioning as to why we would like to stick to this particular approach in filtering: 

Most of the Control problems that are currently being faced are non-linear, but it can be 

argued that the extent of their non-linearity is not high. They are effectively only going to 

be non-linear within certain boundaries. These types of problems can be efficiently 

tackled by the derivatives of the Kalman Filter. These derivatives tend to either linearize 

around estimated points approaching the Taylor series expansion scheme or use nonlinear 

transforms. We can assert that although the prime Gaussian Assumption is not always 

correct, these filters do render their equations to be represented in state space matrix 

form, which reduces the math to being elegant. (Meaning readable to those with less 

mathematical gift!) One can now rely on linear algebra to simplify the equations and also 
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make them computationally efficient. In addition, most of the problems can be accurately 

modeled via a Gaussian distribution with little to negligible error in performance. 

Therefore, the Kalman Filter (and its derivatives) is a good choice not only in theory but 

also in practice as it effectively performs the tasks asked of it, being only a little below 

the optimal solution and it is computationally proves to be highly efficient. 

1.1 The Discrete Kalman Filter 

The Kalman filter addresses the general problem of estimating the state !! ∈ !!! 

of a discrete-time controlled process that is governed by the linear stochastic difference 

equation 

xk = Axk–1 +Buk–1 + wk–1 ,                                   (1.1.1) 

with a measurement ! ∈ !!! that is 

zk = Hxk+ vk   .                                              (1.1.2) 

The random variables !!and !!  represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white, and with 

normal probability distributions 

!(!) !∼ !!(0,!),                                                (1.2.2)  

 

!(!) !∼ !!(0,!).                                                (1.1.4) 

In practice, the process noise covariance Q and measurement noise covariance R 

matrices might change with each time step or measurement, however in case of a linear 

Kalman filter we assume that they are constant. 

Method of estimation in Kalman filter can be said to be very similar to a feedback 

control systems: the filter estimates the process state at some time and then obtains 
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feedback in the form of measurements. (Considered to be noisy most of the time). So in 

essence there are a group of equations called the time update equations that are 

responsible for projecting forward (in time) the current state and error covariance 

estimates to obtain the a priori estimates for the next time step and there is another group 

of equations called the measurement update equations that are responsible for the 

feedback—i.e. for incorporating a new measurement into the a priori estimate to obtain 

an improved a posteriori estimate. 

So in essence the time update equations constitute the predicting phase while the 

measurement update equations represents the corrector phase. Indeed the final estimation 

algorithm resembles that of a predictor-corrector algorithm for solving numerical 

problems. In Figure 1.1 we can see a complete picture as to how the filter actually 

operates: 

 

Figure 1.1: A complete picture of the operation of the Kalman filter[2] 

Note that in the equations represented in the figure 1.1:  

!! and !!! are the a posteriori and a priori estimate error respectively in a sense that: 
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!! ≡ ! – !!                                                     (1.1.5) 

!!! ≡ !!! – !!!  

!! and !!! are the a posteriori and a priori estimate error covariance respectively in a 

sense that 

!!  = E[!!!!!]                                                 (1.1.6) 

!!!  = E[!!!!!!!] 

and !! is a matrix chosen to be the gain or blending factor that minimizes the a posteriori 

error covariance: 

K k = P 
-
k H T (!!!!!!!

!!!!+ !!!)!!                              (1.1.7) 

To explain a little further, the time update equations project the state and 

covariance estimates forward from time step k – 1 to step k and the measurement update 

computes the Kalman gain, !!. The next step is to actually measure the process to obtain 

!!, and then to generate an a posteriori state estimate by incorporating the measurement. 

The final step is to obtain an a posteriori error covariance estimate. 

After each time and measurement update pair, the process is repeated with the 

previous a posteriori estimates used to project or predict the new a priori estimates. This 

recursive nature is one of the very appealing features of the Kalman filter—it makes 

practical implementations much more feasible than (for example) an implementation of a 

Wiener filter [4] which is designed to operate on all of the data directly for each estimate. 

The Kalman filter instead recursively conditions the current estimate on all of the past 

measurements. 
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1.2 Limitations 

In the actual implementation of the filter, the measurement noise covariance R is 

usually measured prior to operation of the filter. Measuring the measurement error 

covariance R is generally practical (possible) because we need to be able to measure the 

process anyway (while operating the filter) so we should generally be able to take some 

off-line sample measurements in order to determine the variance of the measurement 

noise. 

The determination of the process noise covariance Q is generally more difficult as 

we typically do not have the ability to directly observe the process as we are estimating. 

Sometimes a relatively simple (poor) process model can produce acceptable results if one 

“injects” enough uncertainty into the process via the selection of Q. Certainly in this case 

one would hope that the process measurements are reliable. 

In either case, whether or not we have a rational basis for choosing the 

parameters, often times superior filter performance (statistically speaking) can be 

obtained by tuning the filter parameters Q and R. The tuning is usually performed off-

line, frequently with the help of another (distinct) Kalman filter in a process generally 

referred to as system identification. 

It is frequently the case however, that the measurement error (in particular) does 

not remain constant. For example, when sighting beacons in our optoelectronic tracker 

ceiling panels, the noise in measurements of nearby beacons will be smaller than that in 

far-away beacons. Also, the process noise Q is sometimes changed dynamically during 

filter operation,becoming !!, in order to adjust to different dynamics. For example, in the 

case of tracking the head of a user of a 3D virtual environment we might reduce the 
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magnitude of !! if the user seems to be moving slowly, and increase the magnitude if the 

dynamics start changing rapidly. In such cases !! might be chosen to account for both 

uncertainty about the user’s intentions and uncertainty in the model [4]. 

With all of that in mind, The Linear Kalman Filter has two main problems: 

• Linear assumption of the system 

• Gaussian assumption of Random Variable Probability Distribution 

The first limitation is because of the following line of reasoning: the non-linear 

function of the expectation of a Random Variable is generally not the same as the 

expectation of the non-linear function of the Random Variable. The equation below 

delineates it in a mathematical form. 

              !!{!(!)} !≠ !!(!!{!})!!!!                                 (1.1.8) 

, where f(·) is a non-linear function. 

This non-equality is not present for linear functions as the following is true for a linear 

function. 

              !! ! ! = !!(!!{!})!!!!                                  (1.1.9) 

, where g(·) is a linear function. 

The second limitation is more inherent in the nature of the Kalman Filter. The 

reason for this is that it assumes all of its distributions i.e., the measurement noise, the 

process disturbance and the main state variable being estimated to be Gaussian. This has 

its benefits since it allows the Kalman Filter to be broken down to linear algebraic steps; 

thus making it mathematically elegant and computationally efficient. However, it places 

an important limitation on its uses in the practical world of problems. 



CHAPTER 2: THE EXTENDED KALMAN FILTER 
 
 

As described in the previous chapter, the Kalman filter addresses the general 

problem of estimating the state !! ∈ !!! of a discrete-time controlled process that is 

governed by a linear stochastic difference equation. But what if the process to be 

estimated and (or) the measurement relationship to the process is non-linear? Some of the 

most interesting and successful applications of Kalman filtering have been for such 

situations. A Kalman filter that linearizes about the current mean and covariance is 

referred to as an Extended Kalman Filter or EKF. 

2.1. New approaches to improve EKF 

Using a similar method as it is often obtained using a Taylor series expansion, we 

can linearize the estimation around the current estimate using the partial derivatives of 

the process and measurement functions to compute estimates even if we face a non-linear 

process. Let us assume that our process again has a state vector !! ∈ !!!, but that the 

process is now in the form of a non-linear stochastic difference equation 

xk = f (xk–1,  uk–1, wk–1),                            (2.1.1) 

with a measurement ! ∈ !!! that is 

zk = h (xk,vk),                                     (2.1.2) 

where the random variables !!  and !!  again represent the process and 

measurement noise. In this case the non-linear function f in the difference equation
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(2.1.1) relates the state at the previous time step k – 1 to the state at the current time step 

k. It includes as parameters any driving function !!!! and the zero-mean process noise 

!!. The non-linear function h in the measurement equation (2.1.2) relates the state !! to 

the measurement !!. 

In practice of course one does not know the individual values of the noise !! and 

!! at each time step. However, one can approximate the state and measurement vector 

without them as 

!! ̃k = f (!k–1, uk–1, 0)                                            (2.1.3) 

and 

   z ̃k = h (x ̃k,0),                                      (2.1.4) 

where !!  is some a posteriori estimate of the state (from a previous time step k). 

(Note that process disturbance and the measurement noise are assumed to be zero-mean 

Gaussian process) 

It is important to note that a fundamental flaw of the EKF is that the distributions 

(or probability densities in the continuous case) of the various random variables are no 

longer normal after undergoing their respective nonlinear transformations. The EKF is 

simply an ad hoc state estimator that only approximates the optimality of Bayes’ rule by 

linearization [2]. 

To estimate a process with non-linear difference and measurement relationships, 

we linearize the non-linear function about its first order term of the Taylor series 

expansion. It can be summarized in the following explanation. 

Assuming that the nonlinear function f in equation (2.1.1) is differentiable, then 

we can simply linearize it around the estimated point !! with the following equation:   
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! ! ! , ! =

! ! ! , ! + !" ! ! ,!
!" ! ! ! = ! ! ! ! − ! ! +

!!!!!!!!!!!!!!!!
!!! ! ! ,!
!! ! ! ! ! = ! ! ! ! − ! ! ! +⋯!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2.1.5) 

The key fact that enables the working of the Extended Kalman Filter is that, since 

we deal with non-linear yet almost linear dynamics (around a certain boundary) the 

quadratic and higher order terms can be neglected. This would result in the following 

about the estimated trajectory δ!: 

δ! = ! ! ! , ! + !" ! ! ,!
!" ! ! ! = ! ! δx(t)                   (2.1.6) 

using this method, writing the new governing equations that linearize an estimate about 

(2.2.3) and (2.2.4) would result into : 

xk  ≈x ̃k + A(xk – 1 – !k – 1) + Wwk – 1 ,                           (2.1.7) 

zk ≈ z ̃k + H(xk – x ̃k) + Vvk .                            (2.1.8) 

where, 

A is the Jacobian matrix of partial derivatives of f with respect to x,  

W is the Jacobian matrix of partial derivatives of f with respect to w, 

H is the Jacobian matrix of partial derivatives of h with respect to x,  

V is the Jacobian matrix of partial derivatives of h with respect to v, 

So for example the observer matrix H can be given as: 

!! =

!!!
!!!

⋯ !!!
!!!

⋮ ⋱ ⋮
!!!
!!!

⋯ !!!
!!!

!! ! = ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2.1.9) 
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and the rest just follows the same pattern. 

Like the previous case of Kalman Filter, Here is a diagram of how the filter 

actually works: 

 

Figure 2.1: A complete picture of the operation of the Extended Kalman Filter [2] 

An important feature of the EKF is that the matrix H in the equation for the 

Kalman gain K serves to correctly propagate or “magnify” only the relevant component 

of the measurement information. Of course if, over all in measurements there is not a 

one-to-one mapping between the measurement and the state, then as you might expect the 

filter will quickly diverge. In this case the process is unobservable.  

2.2 New approaches to improve EKF 

Before we get to the methods that actually improved upon EKF, it is necessary to 

have a look at an approach once considered to be the ultimate solution, the Particle Filter. 

It is actually way older than the Kalman Filter. Dating back to 1933, particle filters have 

become a very popular class of numerical methods for the solution of optimal estimation 

problems in non-linear non-Gaussian scenarios, both of which are considered to be the 
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weaknesses of Kalman Filtering. In comparison with standard approximation methods, 

such as the Extended Kalman Filter, the principal advantage of particle methods is that 

they do not rely on any local linearization technique or any crude functional 

approximation. The price that must be paid for this flexibility is computational: these 

methods are computationally expensive [5]. 

The accuracy of the particle filter relies on the number of samples (particles) it 

uses. It requires a very large number of particles to produce a decent estimate and an even 

larger set to actually yield better results than an Extended Kalman Filter. While it does 

eventually overcome the EKF by a good amount, the simultaneous propagation of all 

these particles in real-time puts a heavy load on the computation part of the scheme. 

Therefore, it levies a time constraint in a practical scenario where extraordinary 

computational power is not available for filtering and tracking. Therefore, in a case where 

one wants to have the luxury of real time estimation process, it renders itself to be very 

slow and in effective. And the problem only scales up with higher dimensionality of the 

system dynamics. So unless one has a very fast processing machine to spare for this, the 

Particle Filter becomes somewhat a lesser-desired alternative in many cases. 

2.2.1 The Iterated Extended Kalman Filter 

The EKF linearized the state and measurement equations about the predicted state 

as an operating point. This prediction is often inaccurate in practice. Re-evaluating the 

filter around the new estimated state operating point can refine the estimate. This 

refinement procedure can be iterated until little extra improvement is obtained and hence 

it is called the Iterated Extended Kalman Filter. 
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2.2.2 Monte Carlo Kalman Filter 

Before we proceed further, it should be noted that this is not actually a real filter 

used in practice and it is rather presented here as a precursor to the discussion of the 

Unscented Kalman Filter that comes in the next chapter. 

To explain how a Monte Carlo Kalman filter works, we first have to introduce the 

statistical linearization technique. So far we managed to discuss the expansion of Taylor 

series for the design of an EKF. Statistical approximation is an alternate approach and 

one that is generally considered to be more accurate. The basic principle of this technique 

is conveniently illustrated for a scalar function, !(!), of a random variable x [6]. 

A random variable x is a variable that can take on a set of possible different values 

(similarly to other mathematical variables), each with an associated probability. 

Consider that !(!) is to be approximated by a series expansion of the form 

! ! ≅ !!!+!!! + !!!! +⋯+ !!!!!                               (2.2.1) 

The problem of determining appropriate coefficients !!  is similar to the estimation 

problem where an estimate of a random variable is sought from given measurement data. 

Analogous to the concept of estimation error, we define a function representation error, e, 

of the form 

! = ! ! − !!−!!! − !!!! −⋯− !!!!                           (2.2.2) 

It is desirable that !! be chosen so that e is small in some ”average” sense; any 

procedure that is used to accomplish this goal, which is based upon the statistical 

properties of !, so it can be thought of as a statistical approximation technique. The most 

frequently used method for choosing the coefficients in (2.2.1) is to minimize the mean 

square error value of e. This is achieved by forming 
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![(! ! − !!−!!! − !!!! −⋯− !!!!)!]                       (2.2.3) 

and setting the partial derivatives of this quantity with respect to each !!  equal to zero. 

The result is a set of algebraic equations, linear in the !!, that can be solved in terms of 

the moments and cross-moments of ! and !(!). We can now abstractly determine that 

statistical approximation has a distinct advantage over the Taylor Series expansion; it 

simply does not require the existence of derivatives of !(·) function. 

With all that being said, there is a major drawback that we face in statistical 

linearization techniques, and that lies in the nature of the expectation operation. This 

would require the knowledge of the probability density function of ! in order to compute 

the coefficients !!. This requirement does not exist for the Taylor Series expansion 

employed in the EKF. One may argue that approximations can often be made for the 

probability distribution function used to calculate the coefficients !! , such that the 

resulting expansion for !(!) is considerably more accurate than the Taylor series. While, 

this is generally true, we choose not to dwell on this topic because the nature of 

approximate probability distribution functions is complex and beyond the scope of this 

thesis. 

By approximating the Jacobian matrix of the system in a broader region centered 

at the state of the system, we have a statistically linearized Kalman Filter that tries to 

avoid the problems of an EKF. This type of approach also offers the benefit that it does 

not require continuity or differentiability of the motion and measurement models. Since it 

is not necessary to compute Jacobian matrices, these methods can offer benefits in terms 

of computational efficiency as well. 
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Mante-Carlo Kalman Filter (MCKF) samples the points around the mean and 

tries to find the best fit (a line, a plane, etc.) over the points and use this approximation to 

run the Kalman Filter. [7] Consider the prior distribution of !!. MCKF draws sample 

from this distribuition and passes them through the non-linear state propagation function 

!(!). Now, with these transformed samples, we can draw the a priori mean and 

covariance as follows: 

!!!!! = !
! !(!!! )!

!!!                                           (2.2.4) 

This gives us the mean of the distribution that is propagated forward through the non-

linear function !. Here !!!  denotes the samples taken from the prior distribution of !. 

These points are taken about the principal axis of the pdf. Now, for the covariance, 

!!!!! = ! + !
! [(!(!!! )!

!!! − !!!!!) ! !!! − !!!!!
!]               (2.2.5) 

As we can see, here we first draw samples from the prior distribution, pass it 

through the non-linear function and then approximate their mean by averaging methods. 

We could also have chosen to propagate the mean of the prior distribution of ! i.e. !! 

through the function, in case ! is linear and the samples are perfectly Gaussian. The 

primary difficulty encountered in the later approach for non-linear functions was 

explained in section 1.2.  

 Now we pass the samples through the observer function ℎ and obtain the mean 

and covariance of !!!! as well as the cross covariance of ! and !: 

!!!!! = ℎ(! !!! ) 

!!!! = !
! ℎ(! !!! )!

!!!                                          (2.2.6) 
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The error covariance in the estimated observed output !!!!is given by the equation below 

and the measurement noise is incorporated in this step: 

!!"# = ! + !
! [(ℎ(! !!! )!

!!! − !!!!) ℎ(! !!! )− !!!!
!]          (2.2.7) 

The cross-covariance between ! and ! is given by, 

!"!"# = !
! [! !!!!

!!! − !!!!!)) ℎ(! !!! )− !!!!
!]               (2.2.8) 

The Kalman gain !!!! would be simply the cross covariance matrix divided by the error 

covariance:   

!!!! = !"!"#
!!"#

                                                  (2.2.9) 

and after we obtain the actual measurement for the (!!+ !1)!ℎ step,!post-measurement a 

posteriori mean is given by: 

!!!! = !!!!! + !!!![!!!! − !!!!]                              (2.2.10) 

and finally, the a posteriori error covariance is going to be: 

!!!! = !!!!! − !!!!!!"#!!!!!                                (2.2.11) 

The Monte-Carlo Kalman Filter is an intuitive example to grasp the concept of the 

Statistical Linearized Kalman Filter, as well as to understand our transition to Sigma 

Point Kalman Filters (which is explained in the following chapter). However, it is not a 

very practical filter and is rarely (if at all) used in real world applications. This is due to 

the fact that it requires knowledge of the prior pdf of !, the number of samples it 

demands for proper functioning is very high and the fact that if one uses these many 

samples one may as well go with the Particle Filter which is multi-modal compared to the 

unimodal of the MCFK [7]. 



CHAPTER 3: THE UNCENTED KALMAN FILTER 
 
 

Although the EKF maintains the elegant and computationally efficient recursive 

update form of the KF, it suffers from a number of serious limitations: 

Linearized transformations are only reliable if the error propagation can be well 

approximated by a linear function. If this condition does not hold, the linearized 

approximation can be extremely poor. At best, this undermines the performance of the 

filter. At worst, it causes its estimates to diverge altogether. However, determining the 

validity of this assumption is extremely difficult because it depends on the 

transformation, the current state estimate, and the magnitude of the covariance. This 

problem is well documented in many applications and has been mentioned in an example 

in [9] as well.  

Linearization can be applied only if the Jacobian matrix exists. However, this is 

not always the case. Some systems contain discontinuities (for example, the process 

model might be jump-linear, in which case the parameters can change abruptly, or the 

sensor might return highly quantized sensor measurements), where as others have 

singularities (for example, perspective projection equations and in others the states 

themselves are inherently discrete [9]. 

Calculating Jacobian matrices can be a very difficult and error-prone process. The 

Jacobian equations frequently produce many pages of dense algebra that must be 

converted to code. As far as programming is concerned, this is actually going to open up
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windows of opportunities for human errors and it is often said that these errors are 

difficult to debug and identify.   

The Unscented Kalman Filter introduced by Julier, Simon J. and Uhlmann, Jeffrey K. 

[18] led the way for a family of Sigma Point Kalman Filters (which now include the 

UKF, scaled UKF, iterated UKF, Central-Difference Kalman Filter(CDKF) and some 

more). 

So before we actually develop the UKF, it is better to start of by explaining the 

sigma point approach: 

1. A set of weighted sigma-points is deterministically calculated using the mean 

and square-root decomposition of the covariance matrix of the prior random variable. As 

a minimal requirement the sigma-point set must completely capture the first and second 

order moments of the prior random variable. Higher order moments can be captured, if so 

desired, at the cost of using more sigma-points. 

2. The sigma-points are then propagated through the true nonlinear function using 

functional evaluations alone, i.e., no analytical derivatives are used, in order to generate a 

posterior sigma-point set. 

3. The posterior statistics are calculated (approximated) using tractable functions 

of the propagated sigma-points and weights. (These steps are going to be further 

explained under the unscented transform) 

3.1. The Unscented Transform 

Uhlmann’s and Julier’s first paper on the UKF [18] outlines a scheme for 

Unscented Transform that utilized in this research work as well. 
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Let us consider an example: Let our main state vector be described by a random 

variable x having a distinct probability distribution function. Assume a set of sigma 

points chosen from this distribution of x, whose mean is denoted by ! and the covariance 

by !!!. Applying a nonlinear transformation to these sigma points would result in a new 

distribution that will not retain the same properties as that of !. Let the nonlinear function 

transform our random variable ! into another random variable !. (! being a nonlinear 

function ! of !) 

The prime objective here is to obtain the statistics of the random variable !, its 

mean ! and covariance !!!. We do this by transforming each of our sigma points drawn 

deterministically from ! , through the nonlinear function ! . This results in a set of 

transformed sigma points whose mean and covariance are now ! and !!!. 

 

Figure 3.1: The principle of the unscented transform [18] 

Although this method bares a resemblance to Monte Carlo Kalman Filter there is 

an extremely important and fundamental difference. The samples are not drawn at 

random but rather according to a specific, deterministic algorithm with weights attached 

to each sigma points. The different versions of the sigma point filters differ on how these 
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weights are selected. All versions choose weights so that the method behaves perfectly 

for a Gaussian model (linear dynamics) and then optimize the weights for different 

criteria. Since the problems of statistical convergence are not an issue, high order 

information about the distribution can be captured using only a very small number of 

points. 

The n-dimensional random variable !  with mean !! and covariance !!!  is 

approximated by 2n + 1 weighted points given by: 

!!!! = !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! =
!

! + ! 

!!!! = !! + ( ! + ! !!!!)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !
!(!!!)!!!              (3.1.1)  

!!!!!! = !! − ( ! + ! !!!!)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! =
1

2(! + !) 

where ! ∈ ℜ, ( ! + ! !!!!)! is the !th row or column of the matrix square root of 

! + ! !!!  and !!  is the weight which is associated with the !th point. It is worth 

mentioning that essentially ! is the tuning factor which gives us extra room to fine tune 

the UKF to be application specific. 

This procedure consists of these steps: 

1. Generate sigma points from the mean and covariance of the given random variable 

using the weighted selection scheme mentioned in (3.1.1). 

2. Pass each of these sigma points through the nonlinear function, to yield the set of 

transformed sigma points: 

Y!!! = !(!!!!)                                                 (3.1.2) 
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3. The mean of the transformed sigma points is given by the weighted averages of the 

transformed points: 

! = !!
!!
!!! Y!!!                                                (3.1.3) 

4. The covariance is the weighted outer product of the transformed points: 

!!! = !!
!!
!!! [Υ!!! − !][Υ!!! − !]!                               (3.1.4) 

3.2. The Scaled Unscented Transform 

Julier suggested a modified selection scheme for the selection of the sigma points 

in his papers on The Scaled Unscented Transformation [8]. He states that his 

modification to the unscented transformation, would help increase the robustness of the 

sampling method against higher order nonlinearities beyond the second order. 

This method uses adjustable scaling parameters (!, !, !) to allow for some fine tuning of 

the transform for specific applications. Note that λ and γ are auxiliary parameters used for 

notational ease. The structure of the scalar weights used in the unscented transform is 

given by: 

 

              !!!! = !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! = !

!!! 

  !!!! = !! + (γ !!!!)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! = !

!!! + (1− !
! + !)        (3.2.1) 

              !!!!!! = !! − (γ !!!!)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!
! =!!

! = !
!(!!!) !!"#!! ≠ 0  

(note: There are a total of 2n + 1 weights one for each sigma point) 

where λ=!! ! + ! − ! and γ= ! + λ and n is the dimension of random variable !.  

In the above equations the !!
! are the weights used to calculate the mean of the 

transformed distribution and the !!
! are the weights used to calculate the covariance of 
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the transformed distribution. The procedure for sigma points is updated to reflect scaling 

as follows: 

1. Generate sigma points from the mean and covariance of the given RV using the 

weighted selection scheme mention in (3.1.1). 

2. Pass each of these sigma points through the nonlinear function, to yield the set of 

transformed sigma points: 

Y!!! = !(!!!!)                                                    (3.2.2) 

3. The mean of the transformed sigma points is given by the weighted averages of the 

transformed points: 

! = !!
!!!

!!! Y!!!                                                (3.2.3) 

4. The covariance is the weighted outer product of the transformed points: 

!!! = !!
!!!

!!! [Υ!!! − !][Υ!!! − !]!                                 (3.2.4) 

It should be noted that ! is a secondary scaling parameter, which is usually set to 

0. Putting a negative value in !  might affect the positive semi-definiteness of the 

transformed covariance. ! is the main scaling factor. An acceptable range is usually 

somewhere between 10!!  and 1 [12]. In summary as !  approaches one the scaled 

unscented transform is the same as the normal unscented transform and as it goes towards 

0 it further moves sigma points towards the mean. !  is used to incorporate prior 

knowledge of the distribution of (for Gaussian distributions, ! = 2 is optimal [10]). 

3.3. The Filter Algorithm 

We have to slightly restructure the state vector and the dynamic process and the 

observation models. The state vector is augmented with the process and noise terms to 
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give an n + q dimensional augmented vector !!, where q is dimension of the process 

disturbance variance !. Therefore                             

!! = !!
0!×!                                                 (3.3.1) 

One additional step that we need to do is to augment the main error covariance matrix 

!!!: 

!!!!! =
!!!! 0!×!
0!×! ! !                                     (3.3.2) 

Because of these augmentation this algorithm is commonly refered to as the augmented 

UKF. 

In his paper, Julier describes the algorithms steps as being: 

1. The 2na+1 sigma point is created by applying (3.1.1) to the above augmented 

system. Here na is the new dimension of our state vector. If the original state 

vector is of dimension n and the process disturbance is of dimension q then na is 

equal to n+q. 

2. The transformed sigma points is given by instantiating each point through the 

process model (nonlinear function): 

                                                !!!!!!!! = !!(!!!! ,!!)                                       (3.3.3) 

3. The predicted mean should be calculated as: 

                                               !!!!!!! = !!
!!!
!!! !!!!!!! !                                    (3.3.4) 

It should be noted that this is essentially a predicted priori state. 

4. The prior covariance should be computed too: 

                         !!!!!!!! = !!
!!!
!!! [!!!!!!! − !!!!!! ][!!!!!!! − !!!!!! ]! !!!!!!!!!!!!!(3.3.5) 
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5. Passing the points through the observer function, we instantiate each of the 

prediction points:  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = ℎ(!!!!!!! ,!!)                                         (3.3.6) 

6. The predicted observation should be calculated as:  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !!
!!!
!!! !!!!!!                                         (3.3.7) 

7. Since the observation noise is additive and independent, we can just add the 

measurement noise variance R in calculating the covariance: 

                          !!!!!! = ! + !!
!!!
!!! [!!!!! − !!!!][!!!!! − !!!!]!         (3.3.8) 

8. Finally we can find the cross correlation matrix as: 

                           !!" = ! + !!
!!!
!!! [!!!!!!! − !!!!!! ][!!!!! − !!!!]! !           (3.3.9) 

9. The measurement update (correction) in the filter is going to be as follows: 

                                 !"#$"%!!"#$:!!!!!! =
!!"

!!!!!!
                                     (3.3.10) 

!"#$%&#'!!"#$!"!!"#ℎ!!"#$%&'"():!!!!!! = !!!!!! + !!!![!!!! − !!!!]  

!!!"#$%&'"&'!!""#"!!"#$%&$'():!! !!!!! = !!!!!!! − !!!!!!!!!!!!!!! 

By carefully noting that in order to incorporate the effects of the process 

disturbance on the mean and covariance of the sigma points, we augment the state 

vectors. One side effect of this is that it will require us to include more sigma points in 

the propagation. However, Julier has gone on to note that this augmented scheme implies 

that correlated noise sources can be implemented easily and the process disturbance if not 

additive can be incorporated in the mean and the covariance [18]. Overall in most cases 

the augmented implementation is favored when the process disturbance is introduced into 

the system in a nonlinear and/or non-additive way.  
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If we know that the process disturbance is additive then it is not necessary to 

augment the state vector. This can lead to a reduction in the number of the sigma points 

to be propagated and can reduce the computational cost. 

This algorithm utilizes the same non-augmented sigma points as in (3.1.1), so n, 

!! and !!!! are going to remain the same. The main difference here is the fact that when 

calculating a priori covariance matrix here, we should add the process disturbance 

variance matrix ! to it. Thus the step 4 is as follows: 

!!!!!!! = ! + !!
!!
!!! [!!!!!! − !!!!][!!!!!! − !!!!]!             (3.3.11) 

Now that we have included the effect of the process disturbance into our covariance 

matrix, the sigma points in (3.1.1) have to be calculated again and the rest of the 

algorithm is going to remain the same. 

Some have argued that the non-augmented UKF is equivalent to the augmented 

counterpart only if ! + ! = !"#$% is satisfied and that the non-augmented UKF usage 

can lead to noticeable losses in accuracy [12]. The basic difference between the 

augmented and non-augmented UKFs is that the former draws sigma points only once in 

the recursive process while the latter has to redraw a new set of sigma points to 

incorporate the effect of additive process disturbance. This difference generally favors the 

augmented UKF in that the odd-order moment information is captured by the propagated 

sigma points and well propagated within one recursion.  

3.4. A Refined Version of the UKF 

Ever since the introduction of the Unscented Kalman Filter, there have been 

arguments about its practicality. There have been mentions of its computational 

complexity and comparatively slow speed of operation (as to that of the EKF), and 
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therefore in spite of its argued superior accuracy over the EKF, it is still not used in 

applications that are constrained by low computational capabilities. There have been 

many refinements suggested to address these issues. One of the most popular ones is the 

Square-Root Unscented Kalman Filter. 

Rudolph Van der Merwe introduced the Square-Root Unscented Kalman Filter in 

his paper published in 2001 [11]. The most computationally expensive operation in the 

UKF corresponds to calculating the new set of sigma points at each time update. This 

requires taking a matrix square-root of the state covariance matrix (!!! = !!!). While 

!!!!is an integral part of the UKF, it is still the full covariance !!! which is recursively 

updated.  In the SR-UKF implementation, S will be propagated directly, avoiding the 

need to refectories at each time step. 

There are three linear algebraic techniques that we use in SR-UKF namely QR 

decomposition, Cholesky factor up- dating and efficient least squares. 

!"  Decomposition: The !"  Decomposition or factorization of a matrix 

!"!ℜ!×!! is given by !! = !" , where !"!ℜ!×!  is an orthogonal matrix and 

!"!ℜ!×! is upper triangular and !! ≥ !!. The upper right triangular part of !, !, is 

the transpose of the Cholesky factor of  !! = !!!!. This culminates into ! = !!. 

We use the short hand notation !" .  to donate a !" Decomposition of a matrix 

where only ! is returned. 

Cholesky Factor Updating: If ! is the original Cholesky factor of !! = !!!!, then 

the Cholesky factor of the rank-1 update (or downdate) ! ± !!!! is denoted as 

S= choleupdate {!,!,±!}. If ! is a matrix and not a vector, then the result is ! 
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consecutive updates of the Cholesky factor using the ! columns of !.! (Available 

in Matlab as cholupdate)  

Efficient Least Squares: The solution to the equation !!! ! = !!!  also 

corresponds to the solution of the over determined least squares problem !"! = !!. 

This can be solved efficiently using a !"  decomposition with pivoting 

(implemented in Matlab’s ’/’ operator). 

It is important to note that the positive semi-definite matrix ! can have many 

square roots in the form of ! = !!!. The reason for using the Cholesky Decomposition 

of the covariance matrix as an alternative to its usual matrix square root is that it adds 

numerical efficiency and stability as the Cholesky factors of P are generally much better 

conditioned for matrix operations than P itself. The idea of using a Cholesky factor for 

covariance matrix was first implemented by James E. Potter in his efforts to improve the 

numerical stability of the measurement update equations. His implementation came to be 

called as square-root filtering [11]. 

The updated UKF algorithm would be as follows: 

1. Initialize with: 

!! = ![!] 

!! = ![ !! − !! !! − !!
!]                                 (3.4.1) 

!! = !ℎ!"{!!} 

Also the scaled unscented transform mentioned in (3.2) is used to assign the 

weights. 

2. Generate the sigma points using the Cholesky factor of the error covariance: 

!!! = !!! 
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!!! = !!! + !!! !!!!!!!!!!!!!!!!!"#!! = 1,2,… ,!                      (3.4.2) 

!!!!! = !!! + !!! !!!!!!!!!!!!!!!!!"#!! = ! + 1,… ,! 

3. The transformed sigma points are given by instantiating each point through the 

process model (nonlinear function): 

                             !!!!!! = ! !!! ,!! !!!!!!!!!!!"#!! = 0,1,… ,2!                      (3.4.3) 

4. The predicted mean should be calculated as: 

                                        !!!!!! = !!
!!!

!!! !!!!!! !                                         (3.4.4) 

5. Cholesky update is calculated as: 

                !!!!!!!!!!!!!!!!!!!!!!!! = !" !!
! !!!!! |!!!:!! − !!!! !!!!!!!! ! !!       (3.4.5) 

Since the weight of !!
! might be negative, we use this specific update for that: 

                                !!!!! = !ℎ!"#$%&'( !!!!! ,!!!!!! − !!!!,!!
!               (3.4.6) 

6. Now we go through step 2 again with the updated !! essentially reproduce the 

sigma points. Recall that this is as a result of not using the augmented UKF 

7. Passing the points through the observer function, we instantiate each of the 

prediction points:  

                                       !!!!!!!!! = ℎ(!!!!!! ,!!)                                            (3.4.7) 

8. Now we go through the measurement update phase in which we have to calculate 

the a posteriori values:  

!!!! = !!
!

!!

!!!
!!!!!!  

!!!!!! = !"{ !!
! !!!!! |!!!:!! − !!!! !!!!!!!! ! } 

                          !!!!!! = !ℎ!"#$%&'({!!!!!! ,!!!!!! − !!!!,!!
!}                   (3.4.8) 
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9. Finally we solve the cross correlation matrix as follows: 

                          !!" = !!
!!!

!!! [!!!!!! − !!!!! ][!!!!! − !!!!]! !                  (3.4.9) 

10. And we conclude the algorithm by finding the Kalman gain and using that gain to 

minimize the a posteriori error covariance: 

!"#$"%!!"#$:!!!!!! = (!!"/!!!!!! )/!!!!! 

!"#$%&#'!!"#$%&!!"#ℎ!!"#$%&!"#$:!!!!!!! = !!!!!! + !!!![!!!! − !!!!] 

!!!"#$%&'"&'!!ℎ!"#$%&!!"#$%&!!"!!""#"!!"#$%&$'(): 

                          !!!!! = !ℎ!"#$%&'({!!!!! ,!!!!!!!!! ,−1}                       (3.4.10) 

Note that since !!!!! is a square and triangular matrix, efficient ”back-substitutions” can 

be used to solve for the Kalman gain !!!! directly without the need for a matrix 

inversion. 

It has been argued that among all the UKF methods in use, this one has better 

numerical properties and guarantees positive semi-definiteness of the underlying state 

covariance [11]. 

3.5 Comparing UKF and EKF 

A central and vital operation performed in the Kalman Filter is the propagation of 

a Gaussian random variable through the system dynamics. In the EKF, the state 

distribution is approximated by a Gaussian random variable, which is then propagated 

analytically through the first-order linearization of the nonlinear system. This can 

introduce large errors in the true posterior mean and covariance of the transformed GRV, 

which may lead to sub-optimal performance and sometimes divergence of the filter. The 

UKF addresses this problem by using a deterministic sampling approach. The state 

distribution is again approximated by a GRV, but is now represented using a minimal set 
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of carefully chosen sample points. These sample points completely capture the true mean 

and covariance of the GRV, and when propagated through the true non-linear system, 

captures the posterior mean and covariance accurately to the 3rd order (Taylor series 

expansion) for any nonlinearity. The EKF, in contrast, only achieves first-order accuracy. 

Remarkably, the computational complexity of the UKF is of the same order as that of the 

EKF. 

 Below is an illustration of an example of mean a covariance propagation through 

a nonlinear function and how our unscented transform achieves to stay true to the 

propagated values in comparison with a linearization method based on the first order term 

of Taylor series expansion. 

 

Figure 3.2: Example of mean and covariance propagation. a) actual, b) first-order 

linearization (EKF), c) new “sampling” approach (UKF) [11].



CHAPTER 4: MATHEMATICAL MODELING AND FILTERING OF A 
CONTINUOUS STIRRED TANK REACTOR 

 
 

Continuous Stirred Tank Reactor (CSTR) is a typical chemical reactor system 

with complex nonlinear dynamic characteristics. The reason that this specific model was 

selected for this research work is because the variables that characterize the quality of the 

final product in Continuous Stirred Tank Reactor are often difficult to measure in real-

time and cannot be directly controlled using feedback configuration. Hence, there has 

been a great deal of research done and papers published recently, implementing a variety 

of KF methods for this specific problem.  

A CSTR exhibits highly nonlinear behavior and usually has wide operating 

ranges. Chemical reactions in a reactor are either exothermic or endothermic and require 

that energy can either be removed or added to the reactor to maintain a constant 

temperature. The CSTR is normally run at steady state and is usually operated so as to be 

quite well mixed. As a result of this quality, the CSTR is generally modeled as having no 

special variations in concentration, temperature or reaction rate throughout the vessel. 

Since the temperature and concentration are identical everywhere within the reaction 

vessel, they are the same at the exit point as they are elsewhere in the tank. Thus the 

temperature and concentration at the exit are modeled as being the same as those inside 

the reactor [13]. In systems where mixing is not ideal, the well-mixed model is 

inadequate. The following presents the mathematical modeling of an ideal CSTR. 
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4.1. Process Description 

The first principles model of the continuous stirred tank reactor and the operating 

data (given in Table 4.1) as specified in the Pottman and Seborg [14] has been used in 

filter design and the simulation studies. Highly nonlinear CSTR is common in chemical 

and petrochemical plants. In the process considered for the simulation study as shown in 

Figure 4.1, an irreversible, exothermic chemical reaction ! → !  occurs in constant 

volume reactor that is cooled by a single coolant stream. A feed material of composition 

!!!enters the reactor at temperature !!, at a constant volumetric flow rate !. Product is 

withdrawn from the reactor at the same volumetric flow rate !. The mixing is assumed to 

be efficient enough to guarantee homogeneity of the liquid content within the reactor. 

In a jacketed CSTR the heat is added or removed by virtue of the difference 

between the jacket fluid and the reactor fluid. Often, the heat transfer fluid is pumped 

through the agitation nozzles that circulate the fluid through the jacket at a high velocity. 

The coolant flows at a flow rate of !! and at a feed temperature !!!. The exit temperature 

of the coolant fluid is !!. 

 
Figure 4.1: Schematic diagram of a Continuous Stirred Tank Reactor 

 



! 32!

4.2. Modeling 

 The following assumptions are made to obtain the simplified modeling equations 

of an ideal CSTR: 

- Perfect mixing in the reactor and jacket 

- Constant volume reactor and jacket 

Carrying out mass and energy balances, and introducing appropriate constitutive 

equations we formulate the mathematical model for this process: 

Reactor mass balance: 

! !!!
!"

!
= !(!!! !–!!) !− !!!!                                   (4.2.1)!

where, !! is the product (effluent) concentration of component A in the reactor 

and !!is the rate of reaction per unit volume. The Arrhenius expression is normally used 

for the rate of reaction. A first order reaction results in the following expression: 

!! = !!exp!(!!!")!!                                            (4.2.2)!

where, !! is the reaction rate constant, ! is the activation energy, ! is the ideal gas 

constant and ! is the reactor temperature on an absolute scale (R, Rankine or K, Kelvin). 

Reactor energy balance: 

!!!! !"!" != !"!! !!!–! − −∆! − !!! !+ !!!!!" !!! ! 1− exp !!!
!!!!"!!! (!!! !–!)                

(4.2.3)"

where, (−∆!) is the heat of reaction, ℎ!!is the heat transfer coefficient, !! is the feed 

temperature and !!!  is the inlet coolant temperature. The mass balance and energy 

balance equations of the CSTR are obtained as follows: 

!!!
!" =

!
! (!!! !–!!) !− !!!!exp!(

!!
!")                              (4.2.4) 
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!"
!" !=

!
! !!!–! − − ∆!

!!!
!!!! exp !!

!" !+ !!!!"
!!!!

!!! ! 1− exp !!!
!!!!"!!! (!!! !–!) 

(4.2.5)"

The modeling equations of the CSTR contain nonlinear functions of ! and !!. 

They are coupled and it is not possible to solve one equation independently of the other. 

Table 4.1: Steady state operating data [13] 

Parameters Symbols Values 

Product concentration !! 0.0882 mol/l 

Reactor temperature ! 441.2 K 

Coolant flow rate !! 100 l/min 

Feed flow rate ! 100 l/min 

Feed concentration !!! 1 mol/l 

Feed temperature !! 350 K 

Inlet coolant temperature !!! 350 K 

CSTR volume ! 100 l 

Heat transfer term ℎ! 7x10
5
cal/(min K) 

Reaction rate constant !! 7.2x10
10 

min
-1

 

Activation energy term 
!
! 1x10

4 
K 

Heat of reaction −∆! -2x10
5 

cal/mol 

Liquid densities !,!!  1x10
3 

g/l 

Specific heat !!,!!" 1 cal/(g K) 

!
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4.3. Filtering 

Schaffner and Zeitz have suggested the following model of an exothermic 

continuous stirred tank reactor (CSTR)[13] to be considered for nonlinear estimation 

problems. The model is a standard CSTR model whose parameters were tuned in such a 

way that it is prone to autonomous periodic oscillations, which usually are undesired and 

often pose a safety risk. We attempt to design a monitoring system for such a reactor that 

may serve as a basis for a stabilizing feedback control scheme. It still uses the same 

parameters as discussed before. The state-space model is going to be as follows: 

!!!
!" = −!!!! + !!! !!, !!  

!!!
!" = −!!!! + !!! !!, !! + !" 

! !! = !! !! + !! !!!!!!!!!! = 0.1!!, ! = 1,2,…                       (4.3.1) 

In the equations, !! denotes the conversion of the chemical reaction (0 ≤ !! ≤

!1), !! is a scaled reactor temperature, ! is a scaled cooling temperature. For the reaction 

rate ! !!, !! , the rate expression 

! !!, !! = 1− !! exp!(− !
!!!!

)                                    (4.3.2) 

is assumed. The variable !! !denotes measurement noise with mean value 0 and variance 

!. 
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4.3.1. Extended Kalman Filter 

The predictor step of the Extended Kalman Filter for the reactor model is going to 

be as follows: 

Prediction of system states: 

!!!
!" = −!!!! + !!! !!, !! !,!!!!!!!!! ≤ ! ≤ !! "

!!!
!" = −!!!! + !!! !!, !! + !"! 

Initial condition: 

!!!! =
!!(!!!!)
!!(!!!!)  

Final predicted value at !!: 

!!! =
!!(!!)
!!(!!)  

Error Propagation: 

!"
!" = !" + !!! !, !!!! ≤ ! ≤ !! 

Where: 

! =
−!! − !!exp!(−

!
1+ !!

) −(1− !!)!!exp!(−
!

1+ !!
)( !
1+ !!

)

−!!exp!(−
!

1+ !!
) !! − !!exp!(−

!
1+ !!

)
 

is a positive semi-definite Jacobean matrix. 

The initial conditions read: ! !!!! = !!!! 

The covariance matrix of the predicted states becomes: !!! = !(!!) 

!

!
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The corrector step of the Extended Kalman Filter for the reactor model is formulated as 

follows: 

!!! =
!!! !!"
!!" !!!  

Covariance and cross covariance matrices for calculating the filter gain: 

!!" = !!!(
!ℎ
!") = !!! 0

1 = !!"
!!!  

!!! =
!ℎ
!" !!

! !ℎ
!" + ! = !!! + ! 

Kalman gain is: 

!! =
!!"
!!!

=
!!"

!!! + !
!!!

!!! + !
 

Updated estimates are: 

!! = !!! + !!(! − !! !! ) 

The updated error covariance is: 

!! =
!!! −

!!"!
!!! + !

!!" −
!!"!!!
!!! + !

!!" −
!!"!!!
!!! + !

!!! −
!!!!

!!! + !

 

It can easily be shown that given !!! is positive semi-definite, !! is also going to 

be positive semi definite. 
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4.3.1. Unscented Kalman Filter 

For UKF, we have to first calculate the positions of the sigma points for the 

reactor model. 

First thing to do here is to calculate the square-root of the covariance matrix: 

!!!! = !!! !!"
!!" !!!  

!!!! =
!!! !!"
0 !!!  

!!! = !!! 

!!" =
!!"
!!!

 

!!! = !!! −
!!"!
!!!

 

 Now the positions of the sigma points are obtained as: 

!!!!,! = !!!! 

!!!!,! = !!!! + 2+ ! !!!
!!"  

!!!!,! = !!!! + 2+ ! 0
!!!  

!!!!,! = !!!! − 2+ ! !!!
!!"  

!!!!,! = !!!! − 2+ ! 0
!!!  

 Prediction of the states for the sigma points are obtained as: 

!!!(!)
!" = −!!!!(!) + !!! !!(!), !!(!) !,!!!!!!!!! ≤ ! ≤ !! "

!!!(!)
!" = −!!!!(!) + !!! !!(!), !!(!) + !"! 
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Where the initial condition is given as: 

!!!!,! =
!!(!)(!!!!)
!!(!)(!!!!)

 

Final predicted value at !!: 

!!!,! =
!!(!)(!!)
!!(!)(!!)

 

Predicted expectation of states is: 

!!!!!!!!!!!!!!! = !!

!

!!!
!!!,! !! 

=
!

2+ ! !!
! !! + 1

2 2+ ! (!! ! !! + !! ! !! + !! ! !! + !! ! !! )
!

2+ ! !!
! !! + 1

2 2+ ! (!! ! !! + !! ! !! + !! ! !! + !! ! !! )
 

Predicted measurement value is: 

!!!! = !!

!

!!!
!!!,! ! 

= !
2+ ! !!

! !! + 1
2 2+ ! (!! ! !! + !! ! !! + !! ! !! + !! ! !! ) 

Cross covariance matrix is: 

!!" = !!

!

!!!
[!!,!! − !!!][ !!!,! ! − !!]! 

Covariance matrix is: 

!!" = ! + !!

!

!!!
[ !!!,! ! − !!][ !!!,! ! − !!]! 

!!! = !!

!

!!!
[!!,!! − !!!][!!,!! − !!!]! 
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Kalman gain is: 

!! =
!!"
!!!

 

Updated estimates are: 

!! = !!! + !!(! − !! !! ) 

The updated error covariance is: 

!! = !!! − !!!!!!!! 

 

 

 

 

 

 

 

 

 

!

!

 

 

 

 



CHAPTER 5: COMPARISON OF SIMULATION AND RESULTS USING EKF AND 
UKF FILTERING METHODS 

 
 

 Matlab is used for simulating the system and for the filter design in this research. 

There are a number of reasons for this selection: 

- Controls and Electrical engineering community favors it.  

- The major reason for using Matlab is its prototyping capability. So implementation is 

fast and effective and so more effort can be paid to the filter design.   

- It provides an extensive library of Linear Algebra. The Kalman Filter relies heavily on 

Matrix math, thus, it makes Matlab a convenient environment. 

- Matlab provides excellent plotting and graphing tools. 

  Matlab does have certain inefficiencies, which makes it very slow when compared 

to other programming languages like C and Java. However, all the filters are coded using 

Matlab, thus it provides a common platform for comparing different filter designs. One 

can switch to a Java implementation when dealing with a real-time implementation of the 

Filter for efficient and fast operation.  

 The Simulink models used for the simulations and other verification schemes can 

be used to recreate any of the results and plots documented in the sections below.  
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5.1. Simulation 

 The implementation of the model was carried out using Matlab’s Simulink. Below 

are the demonstrations: 

 

 

Figure 5.1: Model of the time discrete noisy sensor in Simulink 

Our measurement noise is going to have a mean of 0 and a variance of ! = 10!!. 

 

Figure 5.2: Model of the Unscented Kalman Filter 
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 In the above model the cstr_ukf_predictor and cstr_ukf_update blocks are two 

separate m-files written in Matlab and then implemented in Simulink as s-functions. They 

perform prediction and measurement update respectively. The update block for small 

simulation times has to transmit the initial guesses for the states !! and for the error 

covariance matrix !! to the initial condition port of the integrator. For larger simulation 

time steps the update block has to transmit the updated states !! and !! to the initial 

condition port of the integrator. In the Unscented Kalman Filter (UKF) case, we use the 

Matlab function chol to compute !! !. 

 

 

 

Figure 5.3: Complete Implementation of Kalman Filter in Simulink(KF) 

The following values are used for the model parameters discussed in the previous 

chapter: !! != !0.2674 , !! = !1.815 , !! = !0.4686 , !! != !0.139 , !! = !1.5476 , 

!! = !34.2583, !! = !−0.002, the following parameters are explained in more depth: 
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Discretization Time Interval: δt is the time step we use for our numerical 

integration method in seconds. It is set as follows:  

δt = 0.1!s 

Process Disturbance Variance ! : We have process disturbance only in our 

conversion rate and not for any other state variable. Thus it is a scalar and it takes on the 

following value: 

! = 0.0025 

Measurement Noise !: is the variance of the measurement noise included only in 

our temperature state given as: 

! = 10!! 

Initial Error Covariance !!: is the value given by ![ !! − !! !! − !! !]. Here 

!! is the initial best guess of the state vector before beginning with the filtering operation. 

!! is the true state vector (used for our simulations). Since we neither have knowledge of 

the probability distribution function (pdf) of the state vector ! nor access to the true state 

vector !!, we set this value arbitrarily. Trial and error methods are used to fine tune this 

value to increase the accuracy of the filter.  

It should be noted that initial estimate of the state vector can be set to a 

completely random value and allow the filter to catch up to the true state at the expense 

of a certain number of iterations of the simulation. Some approaches even assume that 

they have exact knowledge of the initial conditions of the state, and set !! = !! and thus 

making !! != !0!×!. The approach used in this thesis sets !! to a value near the true state 

(by including some random noise over the value of the true state vector). 

! is set to 2 for the UKF. 
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5.2. Results 

 In testing out these filters, some scenarios have been proposed and in each case 

one or more parameters change. These includes the noise measurement variance and 

mean, initial conditions 

5.2.1. Case One 

This is carried out using an off guess for the initial condition. As it can be noticed 

in figure (5.4), EKF actually does have a convergence problem and never seems to be 

able to pick up from the initial conditions that weren’t favorable to it whereas UKF 

carries out the task with impressive accuracy. The convergence problem of the EKF is 

shown in figure (5.6) on a longer run too. 

5.2.2. Case Two 

 The initial condition has set to !! = !! and everything else remains unchanged. 

As can be seen in figures 5.7 and 5.8, since EKF manages to converge faster than the 

UKF in this case, the overall MSE is actually less for EKF and time wise, there’s a fine 

difference between these two, EKF outperforming UKF. 

5.2.3. Case Three 

In this scenario the initial condition is determined as described before (by 

including some random noise over the value of the true state vector). The reason behind 

this is that it actually gives us the benefit of averaging over time for this scenario 

(Discussed later). More important, variance level in measurement noise is increased 

enormously in this case. (! = 10!!) Although both filters seem to have problems in 

terms of convergence, UKF does manage to show better result in terms of accuracy. 

Please do note that run time has been increased five times the original run time. 
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Figure 5.4: EKF plot for true v/s estimated of case one 

 

Figure 5.5: UKF plot for true v/s estimated of case one 
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Figure 5.6: Convergence problem of EKF for case one 

 

Figure 5.7: EKF plot for true v/s estimated of case two 
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Figure 5.8: UKF plot for true v/s estimated of case two 

 

Figure 5.9: EKF plot for true v/s estimated of case three 
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Figure 5.10: UKF plot for true v/s estimated of case three 

5.3. Accuracy and Computational Cost 

 The accuracy of the filters is measured by calculating their Mean Squared Error 

(MSE) over the entire length of the simulation. Matlab’s ’Run and Time’ feature gives 

the necessary data to facilitate a time comparison between filters. 

 The tables below give us a comparison of the filters with respect to accuracy and 

speed. All times are in seconds. 

Table 5.1: Comparison table for case one 

Filters MSE(!!) MSE(!!) Run Time 

EKF N/A N/A 1.016 

UKF 0.0190 0.0143 5.708 
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Table 5.2: Comparison table for scenario two 

Filters MSE(!!) MSE(!!) Run Time 

EKF 3.3947e-04 1.5376e-05 0.908 

UKF 8.7350e-04 5.0664e-05 8.901 

 
Table 5.3: Comparison table for scenario three 

Filters MSE(!!) MSE(!!) Run Time 

EKF 0.0373 0.0200 4.671 

UKF 0.0190 0.0111 18.987 

 
One possible explanation to the above results would be the random noise induced 

into the system via process disturbance and measurement noise. Since process 

disturbance and measurement noise vary from run to run, it is always considered a good 

practice to average any Means Square Error (MSE) over a good number of runs so that 

we eliminate the dependence of the results on randomness. For the case at hand, we will 

compare just the EKF and the UKF over a thousand runs as this would allow us a more 

in-depth analysis of what the true MSE of each of them in the long run might be. To play 

it safe, the MSEs of each of the filters were averaged over 1000 different runs (which 

means thousand different sets of random noise values). This is applied to case three: 

Table 5.4: Comparison table for average performance 

Filters MSE(!!) MSE(!!) Run Time 

EKF 0.0384 0.0194 4.513 

UKF 0.0183 0.0109 17.897 
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5.4. Testing the Convergence of the Unscented Transform 

 The Unscented Transform should be convergent for our filter to maintain stability 

and not loose track of the state being estimated. There exists a very simple scheme to 

perform this verification.  It is as follows: 

1. With the initial Data given generate set of sigma points. 

2. We then pass these points through an identity transform, which basically means 

we do not touch these points at all. 

3. Next we generate the mean and covariance of the transformed sigma points 

respectively. 

4. Since we subjected our sigma points through an identity transform, the state of the 

system should remain the same. Thus, the mean and covariance generated in the 

step above should match with the ones we started off with in the first place. If this 

does not hold then the Unscented Transform will be divergent and the entire 

procedure will fail. 

A code snippet was written in Matlab for executing this verification scheme. Before the 

identity transform the mean and covariance were:  

! = 0.1761
0.1001 ,! = 0.0600 0

0 0.0600  

And after the identity transform the calculated statistics were: 

!!"#$%!%& = 0.1761
0.1001 ,!!"#$%!%& = 0.0600 −0.0000

−0.0000 0.0600  

As one can see the mean remains unaltered. As for the covariance, the misplaced – signs 

arise due to round off and other computational errors. But these too are after the fourth 

decimal place, thus it is safe to conclude that the transform is actually convergent and 

working properly. 



CHAPTER 6: CONCLUSION AND FUTURE WORK 
 
 

 Recently there has been a great deal of interest in the specific problem of 

implementing the UKF for a tank reactor and nearly in all of those cases they come to the 

conclusion than EKF still shows better results and accuracy. Both [16] and [17] use the 

same model with slightly different parameter values and both come to the conclusion that 

indeed EKF is the preferred filter for this specific problem. This thesis actually shows 

better results for the implementation of UKF as the accuracy level is either better or near 

identical to the EKF. While again facing the dilemma of the underperforming UKF, 

several papres suggest that implementing the scaled UKF and fine tuning might be the 

key to solving this particular problem. 

6.1. Conclusion 

 The current claim in the Controls Community is that the UKF outperforms the 

EKF for non-linear applications and does just as well for linear applications. While this is 

true for the various non-linear systems that the UKF has been applied to, the results 

specific to the case of the reactor tank, while impressive on its own, can not entirely 

confirm this for all cases. This might be a specific case of the peculiar system dynamics, 

which results into this outcome. 

It should be noted that the most effective method for this case still remains to be 

the Extended Kalman Filter when the filter is converging in an effective manner. In cases, 
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when the noise level is too high, the Unscented Kalman Filter should be employed 

if the computational costs are acceptable. The final conclusive finding of this research 

from comparing the results would be that for any given problem, there remains no 

definite answer and many factors should be considered and entertained before choosing a 

good filtering method.   

6.2. Future Work 

The following are some suggested extensions based on the work and analysis 

done in this research: 

- Theoretical Investigation of why the UKF performs below expectation for this problem. 

- A mathematical proof of concept as to why the UKF does not give higher accuracy than 

the EKF in most cases. 

-Finding more cases with nonlinearities for which, EKF has a convergence problem. 

- A possible change to UKF tailored for the current system dynamics filtering. 
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