ANALYSIS OF A LOW ENRICHED URANIUM CENTRIFUGAL GAS CORE REACTOR

by
Darrin Leer

A thesis submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Master of Science in Applied Physics

Charlotte
2020

Approved by:

Dr. Donald Jacobs

Dr. Susan Trammell

Dr. Russell Keanini

Darrin Leer
ALL RIGHTS RESERVED

Abstract

DARRIN LEER. Analysis of a Low Enriched Uranium Centrifugal Gas Core Reactor. (Under the direction of DR. DONALD JACOBS)

With the new NASA directive of returning to the Moon in 2024 as a stepping stone to missions to Mars and beyond, there is a renewed interest in developing nuclear thermal rockets (NTR) to reduce trip times. This thesis will focus on the analysis of a conceptual reactor design for use as an NTR. The low enriched uranium centrifugal gas core reactor (CGCR) is a low technology readiness level (TRL) concept that uses centrifuge technology to separate uranium gas from hydrogen propellant. There is also a new US directive for additional focus on research and development of reactors that utilize low enriched uranium (LEU) instead of high enriched uranium (HEU). The inclusion of a moderator in between the gas enables the use of LEU and a lower mass system compared to previous gas core concepts. In addition, the CGCR operates at lower temperatures than previous gas core concepts enabling higher uranium densities, which suggests that the centrifugal separation will aid in minimization of uranium entrainment. This research will cover a thorough analysis of neutronics, thermal transport, fluid dynamics, and comparison to alternative NTR designs utilizing computational methods, such as the Monte Carlo N-Particle transport code MCNP, and analysis software platforms Mathematica and MATLAB.

ACKNOWLEDGEMENTS

I'd like to acknowledge Dr. Michael Houts from NASA for acting as nuclear thermal propulsion subject matter expert, Dr. Russell Keanini for insight and assistance in developing the fluid dynamics model for this research, Dr. Susan Trammell for acting as committee member, and Dr. Donald Jacobs as my primary advisor.

TABLE OF CONTENTS

LIST OF FIGURES vi
LIST OF ABBREVIATIONS viii
CHAPTER 1: INTRODUCTION 1
1.1. Motivation 1
1.2. Problem Statement 6
CHAPTER 2: MODEL: Theory and Methods 9
2.1. Bubble Energy Balance 10
2.2. U-Layer Heat Transfer 11
2.3. U-Layer Fluid Dynamics 12
2.4. Bubble Dynamics 17
2.5. Final Model 20
2.6. Nuclear \& MCNP 21
CHAPTER 3: RESULTS 26
CHAPTER 4: DISCUSSION AND FURTHER STUDY 37
REFERENCES 40
APPENDIX A: ADDITIONAL FIGURES 41
APPENDIX B: PROGRAM FILES 42

LIST OF FIGURES

FIGURE 1.1: Schematic view of a particle bed reactor (PBR) for propulsion. (a) Individual PBR core; (b) fuel elements-assembled PBR core [1]

FIGURE 1.2: Schematic view of a particle bed reactor (PBR) fuel element and its simplification [1]

FIGURE 1.3: Rotating radial in-flow fuel element (no hot frit)[2]
FIGURE 1.4: Rotating radial in-flow fuel element (no hot frit)[2]
FIGURE 1.5: Temperature map of rotating radial in-flow fuel element (no hot frit) [2]

FIGURE 1.6: Hydrogen bubble traveling through uranium layer
FIGURE 2.1: Rotating immiscible fluids [3]
FIGURE 2.2: Reactor top \& side cross-section centrifugal region, as designed in MCNP. Green $=$ Beryllium, Yellow $=L i_{7} H$, Orange $=$ cold H_{2}, Light Blue $=$ Graphite frit, Blue $=$ Uranium, Purple $=$ hot H_{2}

FIGURE 2.3: Reactor top cross-section centrifugal region, as designed in
3

MCNP. Green $=$ Beryllium, Yellow $=L i_{7} H$, Orange $=$ cold H_{2}, Light Blue $=$ Graphite frit, Blue $=$ Uranium, Purple $=$ hot H_{2}

FIGURE 3.1: Radial temperature profile T_{u} within uranium layer. Melting and boiling temperatures of uranium are included to show the location of phase change.

FIGURE 3.2: Radial density profile ρ_{u} for $\Omega_{0} \approx 1605 \mathrm{~Hz}$
FIGURE 3.3: Radial density profile ρ_{u} for various angular velocities. Increasing angular velocity (Ω) results in an increased density shift radially outwards in the vapor region, as expected.

FIGURE 3.4: $k_{\text {eff }}$ vs. various multiples of Ω_{0}. This shows that $k_{\text {eff }}$ increases 28 with increasing angular velocity as more mass is allowed in uranium vapor layer.

FIGURE 3.5: Top: Radial pressure profile P_{u} for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bottom:
Radial pressure profile P_{u} for various angular velocities. Increasing angular velocity (Ω) results in an increased pressure shift radially outwards in the vapor region, as well as increased pressure throughout the liquid region, as expected.

FIGURE 3.6: Top: Radial bubble velocity v_{B} vs. radial position r for $\Omega_{0} \approx$ 1605 Hz . Bottom: Radial bubble velocity v_{B} vs. $\ln (t)$ for $\Omega_{0} \approx 1605$ Hz. Indicates the bubble accelerates rapidly during compression and then decelerates once minimum radius is reached.

FIGURE 3.7: Top: Radial bubble position R_{B} vs. t, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bottom: Radial bubble position R_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$.

FIGURE 3.8: Top: Bubble temperature T_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$.
Bubble initially compresses and super-cools to a minimum temperature $T_{B_{\min }} \approx 0.6591 \mathrm{~K}$, and then increases to 18.3421 K . Bottom: Bubble radius r_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bubble initially compresses to a minimum radius $r_{B_{m i n}}$ and then remains constant.

FIGURE 3.9: Top: Bubble pressure P_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bubble pressure increases as it moves radially inward. Bottom: Bubble density ρ_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bubble initially compresses to a maximum density $\rho_{B_{\max }}$ and then remains constant.

FIGURE 3.10: Bubble pressure P_{B} vs. radial position r, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bottom: Uranium layer pressure P_{u} vs. radial position r, for $\Omega_{0} \approx 1605$ Hz.

FIGURE 3.11: Reactor with 13 fuel elements 36
FIGURE A.1: Preliminary reference design of LEU CGCR with $U F_{6}$ as fuel.
Analysis done by U-space, provided by NASA

CGCR	Centrifugal Gas Core Reactor
GCR	Gas Core Reactor
HEU	High Enriched Uranium
LEU	Low Enriched Uranium
MCNP	Monte-Carlo N-Particle
NASA	National Aeronautics and Space Administration
NTP	Nuclear Thermal Propulsion
NTR	Nuclear Thermal Rocket
PBR	Particle Bed Reactor
SNTP	US Space Nuclear Thermal Propulsion
TRL	Technology Readiness Level
US	United States

CHAPTER 1: INTRODUCTION

1.1 Motivation

Long-term human space exploration missions come with many challenges and an increasing level of risk. One way to reduce that risk to make missions beyond the moon more feasible is to make the journey less long term. The best way to do that is to make our rockets faster by making advancements in propulsion technologies. With the new NASA directive of returning to the Moon in 2024 as a stepping stone to missions to Mars and beyond, there is a renewed interest in developing nuclear thermal rockets (NTR) to reduce trip times. This thesis will focus on the analysis of a conceptual reactor design for use as an NTR. The low enriched uranium centrifugal gas core reactor (CGCR) is a low technology readiness level (TRL) concept that uses centrifuge technology to separate uranium gas from hydrogen propellant. There is also a new US directive for additional focus on research and development of reactors that utilize low enriched uranium (LEU) of enrichment less than 20% instead of high enriched uranium (HEU). Some NASA studies suggest that in order to accomplish a roundtrip mission to Mars, a high thrust engine with a specific impulse, $I_{s p}$, greater than 1300 seconds may be required. [4] [5] Specific impulse is defined as the total impulse delivered per unit of propellant consumed, and is equivalent to the generated thrust divided by the mass flow rate.

Modern chemical rockets have high thrust, but still require an enormous amount of fuel, having an $I_{s p} \sim 500$ s, making them less efficient for longer journeys. Nuclear thermal propulsion (NTP) is an alternative to chemical rockets that provide a boost to the $I_{s p}$ numbers. Current NTP designs estimate $I_{s p}$ double the most advanced chemical rockets at comparable thrust values. In addition to the resulting
faster transit times, NTP engines could double as or be converted for electric power generation, as well as being expected to double or triple payload capacity compared to chemical propellants.

First generation NTP engines are limited to an $I_{s p} \sim 900$ s, with designs for up to \sim 2000s. However, no significant work has been performed since the 1970s, due to changes in NASA policies and the spectre that comes with the words "nuclear" and "rocket". With this renewed initiative to continue work on NTP systems, new generation concepts are needed; particularly, ones that build on 1st Generation designs and experience.

One approach is to build on designs used in the US Space Nuclear Thermal Propulsion (SNTP) program. These designs used relatively large nuclear fuel elements in a moderator block where propellant would flow through the fuel elements. Nuclear fuel in the SNTP engine design was held in place using a "cold frit" and a "hot frit" to allow hydrogen to flow radially inward through the fuel and then exit axially at high temperature. [4] This can be seen in Figures $1.1 \& 1.2$,

Figure 1.1: Schematic view of a particle bed reactor (PBR) for propulsion. (a) Individual PBR core; (b) fuel elements-assembled PBR core [1]

Fuel Element

Figure 1.2: Schematic view of a particle bed reactor (PBR) fuel element and its simplification [1]

A similar concept for a 2nd Generation NTP system would utilize centrifugal force as a means of fuel containment instead of the "hot frit" element, allowing for portions of the fuel to operate beyond its melting point. This centrifuge concept could yield good separation between propellant and nuclear fuel. This particular design is the focus of this research and can be seen in Figures 1.3 \& A.1.

Figure 1.3: Rotating radial in-flow fuel element (no hot frit)[2]

The centrifugal gas core reactor can be explored in theory by initially looking at a model of the heat transfer, growth, and dynamics of radially-injected hydrogen bubbles in a rotating finite multi-phase fluid system under zero-gravity. As the CGCR is a nuclear reactor, it is necessary to determine its criticality, and having a proper density profile of nuclear fuel is highly important in this determination. This problem is coupled in nature: the density profile as a function of temperature, which is a function of nuclear heating, which is determined by the density profile of the nuclear fuel. Therefore, an iterative approach must be employed initially to determine the proper density profile.

1.2 Problem Statement

The design of this reactor fuel element, as seen in Figures $1.4 \& 1.5$, consists of coaxial annular cylinders of uranium metal housed by a porous cold frit (graphite), hydrogen coolant region, and a reflector/moderator/pressure vessel material, with a central hot hydrogen plenum. Rotating elements are rotating with angular velocity Ω. Cold hydrogen will flow radially inward through the cold frit, through the uranium fuel layer, and then finally exiting axially at high temperature.

Rotating Radial In-Flow Fuel Element

Figure 1.4: Rotating radial in-flow fuel element (no hot frit)[2]

Temperature Map

Figure 1.5: Temperature map of rotating radial in-flow fuel element (no hot frit) [2]

In this model, Figure 1.6, a hydrogen bubble is traveling radially inward through a layer of high density multi-phase fissioning uranium metal, passing into a central hydrogen plenum. The reactor is designed with a Beryllium pressure vessel of $O D=$ 100 cm and length 110 cm , a $L i_{7} H$ reflector of thickness 1 cm and $O D=14.2 \mathrm{~cm}$, a hydrogen coolant region of thickness 1 mm and $O D=12.2 \mathrm{~cm}$, a porous graphite frit with H_{2} ducting of thickness 1 cm and $O D=12 \mathrm{~cm}$, LEU uranium region (19.75\% enrichment) with $O D=10 \mathrm{~cm}$, hot dense hydrogen region $O D=6 \mathrm{~cm}$; the nonBeryllium region is 100 cm in length. Where r_{u} is the outer radius of the uranium layer, $r_{u_{f}}$ is the location of the interface between solid and liquid uranium, $r_{u_{v}}$ is the location of the interface between liquid and vapor uranium, and r_{p} is the location of the interface between uranium and the hot hydrogen plenum.

Figure 1.6: Hydrogen bubble traveling through uranium layer

CHAPTER 2: MODEL: Theory and Methods

This chapter will demonstrate the building of a model framework that describes several coupled equations that will be solved numerically for a single hydrogen bubble traveling through the liquid uranium layer. In reality there will be more than one bubble traveling the same streamline through the uranium layer, as new bubbles will be formed as each bubble travels radially inward away from the site of injection; however, until a basic model of a single bubble is determined, bubble-bubble interactions will not be discussed. A more accurate model, for the purposes and use as an NTR, may in fact be a column or jet of hydrogen, but as an initial model, a single spherical bubble will be discussed. For this initial model, it is assumed that once the bubble reaches the uranium vapor, the bubble will disperse and become well-mixed within the uranium vapor. Molecular Hydrogen $\left(H_{2}\right)$ is considered, however dissociation may need to be explored in later models. To take advantage of the rotational symmetry of the cylindrical reactor, this model will be built in a cylindrical coordinate system. The desired model seeks to simultaneously calculate the uranium layer temperature, density, and pressure profiles; the bubble temperature, position, and radius; as well as solve for the nuclear fission effective multiplication factor, and the energy deposition rate. The variables will be defined as $T_{u}(r), \rho_{u}(r), P_{u}(r), T_{B}(t), R_{B}(t), r_{B}(t), k_{e f f}$, and E_{d}, respectively. Fluid dynamics, heat transfer, and neutronics must be explored in order to determine the performance of this reactor concept.

2.1 Bubble Energy Balance

A good starting point for this model will begin by developing a governing equation that includes many of the above unknowns. Starting from the energy balance on the bubble, we have:
a) $\quad d t \int_{V_{B}(t)} \rho_{B} c_{p_{B}} T_{B} d V=\oint_{S_{B}(t)} \mathbf{q} \cdot \hat{n} d A$
b) $\quad c_{p_{B}} \frac{d}{d t}\left(\rho_{B} T_{B}\right) V_{B}=q_{I N}(t) 4 \pi r_{B}^{2}(t)+\frac{d P_{B}}{d t} V_{B}$

Given that $q_{I N}=h\left[T_{u}\left(R_{B}(t)\right)-T_{B}(t)\right]$

$$
\begin{equation*}
c_{p_{B}} \frac{d}{d t}\left(\rho_{B} T_{B}\right) V_{B}=h\left[T_{u}\left(R_{B}(t)\right)-T_{B}(t)\right] 4 \pi r_{B}^{2}(t)+\frac{d P_{B}}{d t} V_{B} \tag{2.1}
\end{equation*}
$$

where $h, c_{p_{B}}, \rho_{B}, R_{B}, r_{B}, T_{B}, T_{u}\left(R_{B}(t)\right)$ are the convective heat transfer coefficient, specific heat of the bubble, bubble density, bubble position relative to plenum centerline, bubble radius, bubble temperature, and uranium temperature at $R_{B}(t)$, respectively, and the bubble volume is $V_{B}(t)=\frac{4}{3} \pi r_{B}^{2}(t)$ and the bubble surface area is $S_{B}(t)=4 \pi r_{B}^{2}(t)$. Equation (2.1) assumes that the hydrogen is well-mixed at all times (t) within the bubble, the uranium temperature $\left(T_{u}\right)$ is uniform around bubble, and the bubble is spherical.

Assuming H_{2} behaves as a real gas:

$$
\begin{gather*}
\rho_{B}(t)=\frac{P_{B}(t)}{Z R_{H_{2}} T_{B}(t)} \tag{2.2}\\
R_{H_{2}}=\frac{\bar{R}}{M W_{H_{2}}} \tag{2.3}
\end{gather*}
$$

where $R_{H_{2}}$ is the specific gas constant of hydrogen, \bar{R} is the ideal gas constant, and Z is the compressibility factor of hydrogen.

If we take $t=0$ to be the instant that the bubble is injected into the uranium layer, then the initial conditions can be set as $P_{B}(t=0)=P_{0}, T_{B}(t=0)=T_{0}$, $\rho_{B}(t=0)=\frac{P_{0}}{Z R_{H_{2}} T_{0}}, r_{B}(t)=r_{B 0}$, and $R_{B}(t=0)=r_{u_{f}}$, where $r_{u_{f}}$ is the location of
the interface between solid and liquid uranium. We now have multiple time-dependent unknowns: $T_{B}(t), P_{B}(t), T_{u}\left(R_{B}(t)\right), R_{B}(t)$, and $r_{B}(t)$.

In order to tackle the above unknowns, we can start with the Young-Laplace equation:

$$
\begin{equation*}
P_{B}(t)-P_{u}\left(R_{B}(t)\right)=\frac{2 \sigma_{s t}}{r_{B}(t)} \tag{2.4}
\end{equation*}
$$

where $P_{u}\left(R_{B}(t)\right)$ is the pressure in the uranium layer at $R_{B}(t)$, and $\sigma_{s t}$ is the surface tension coefficient for the uranium-hydrogen interface. At the melting point, the surface tension is approximately 1500 dynes/cm according to [6] and [7].

Equation (2.4) introduces a new unknown $P_{u}(r)$, which we can assume $P_{u}(r)$ is calculable via the Navier-Stokes equations applied within the uranium layer, allowing us to determine $r_{B}(t)$.

2.2 U-Layer Heat Transfer

In order to find for temperature distribution $T_{u}(r)$, which is assumed to be steadystate, we will need to use the energy equation [8] [9] applied within the uranium layer:

$$
\begin{equation*}
\rho_{u} c_{p_{u}}\left[\frac{u_{\theta} T_{u, \theta}}{r}+u_{r} T_{u, r}\right]=K_{u}\left[T_{u, r r}+\frac{T_{u, r}}{r}\right]+\dot{S}(r) \tag{2.5}
\end{equation*}
$$

where $\rho_{u}, c_{p_{u}}, K_{u}$ are the density, specific heat, and thermal conductivity of uranium, respectively; $\dot{S}(r)$ is the volumetric heating term due to nuclear heating; $u_{\theta}=u_{\theta}(r)$ is the θ-velocity component in the uranium layer; u_{r} is the r-velocity component in the uranium layer, which we assume is negligible, and therefore:

$$
\begin{equation*}
u_{r}=0 \tag{2.6}
\end{equation*}
$$

If we assume the fluid cylinder has rotational symmetry, then T_{u} is symmetric:

$$
\begin{equation*}
\Rightarrow T_{u, \theta}=0 \tag{2.7}
\end{equation*}
$$

Equation (2.5) assumes K_{u} is fixed across u-layer, however since ΔT_{u} is large, it may be worth exploring a variable K_{u} in further study via $\Phi_{q}=-K \nabla T$. In this model, we will also neglect axial variation in T_{u}. Using the above assumptions, equation (2.5) reduces to:

$$
\begin{equation*}
\frac{d^{2} T_{u}}{d r^{2}}+\frac{1}{r} \frac{d T_{u}}{d r}+\frac{\dot{S}(r)}{K_{u}}=0 \tag{2.8}
\end{equation*}
$$

For any given $\dot{S}(r),(2.8)$ can be solved numerically, or analytically, if $\frac{d \dot{S}(r)}{d r} \ll 1$, by further assuming $\dot{S}(r) \approx$ constant $\equiv \dot{S}_{0}$. Then 2.8 becomes:

$$
\begin{equation*}
T_{u}^{\prime \prime}+\frac{1}{r} T_{u}^{\prime \prime}+\frac{\dot{S}_{0}}{K_{u}}=0 \tag{2.9}
\end{equation*}
$$

2.3 U-Layer Fluid Dynamics

In order to determine $r_{B}(t)$ in equation (2.4) we first need to find the pressure distribution in the U-Layer, $P_{u}(r)$.
a) Working in cylindrical coordinates, the Navier-Stokes equation for the azimuthal component θ [9]:

$$
\rho_{u}\left[u_{r} u_{\theta, r}+u_{z} u_{\theta, z}+\frac{u_{\theta}}{r} u_{\theta, \theta}+\frac{u_{r} u_{\theta}}{r}\right]=-\frac{1}{r} \frac{\partial P_{u}}{\partial \theta}+\mu_{u}\left[u_{\theta, r r}+\frac{u_{\theta, r}}{r}-\frac{u_{\theta}}{r^{2}}\right]
$$

Assuming u_{z} is negligible, $u_{, r r}=u_{, z z}=0$, symmetry of the velocity field, neglecting temperature-dependence of μ_{u} (uranium viscosity), neglecting presence of hydrogen bubbles, and taking into account equation (2.6), the above equation reduces to:

$$
\begin{equation*}
\Rightarrow \frac{1}{r} \frac{d}{d r}\left(r \frac{d u_{\theta}}{d r}\right)-\frac{u_{\theta}}{r^{2}}=0 \tag{2.10}
\end{equation*}
$$

Solving (2.10) analytically gives:

$$
\begin{equation*}
u_{\theta}(r)=r \Omega_{0} \tag{2.11}
\end{equation*}
$$

where Ω_{0} is the angular velocity of the cylinder.
b) From the r-component of the Navier-Stokes equation:

$$
\begin{equation*}
-\rho_{u} \frac{u_{\theta}^{2}}{r}=-\frac{\partial P_{u}}{\partial r} \tag{2.12}
\end{equation*}
$$

and since $P_{u}=$ function of r only:

$$
\begin{equation*}
\Rightarrow \frac{\partial P_{u}}{\partial r}=\frac{d P_{u}}{d r} \tag{2.13}
\end{equation*}
$$

As the u-layer consists of solid, liquid, and gas, densities of each region will be different:

$$
\rho_{u}(r)= \begin{cases}\rho_{u_{s}}(r)=\text { Constant } & r_{u_{f}} \leq r \leq r_{u} \tag{2.14}\\ \rho_{u_{l}}(r)=17270-1.4485\left(T_{u}(r)-1408\right) & r_{u_{v}} \leq r<r_{u_{f}} \\ \rho_{u_{v}}(r)=\frac{P_{u}(r)}{R_{u} T_{u}(r)} & r_{p} \leq r<r_{u_{v}}\end{cases}
$$

where R_{u} is the specific gas constant for uranium, and the density for liquid uranium comes from [10] [11.

Using (2.11), 2.13), and the vapor region of (2.14), we can rearrange (2.12) in terms of $\rho_{u_{v}}(r)$:

$$
\rho_{u_{v}}(r) r \Omega_{0}^{2}=\frac{d}{d r}\left(\rho_{u_{v}}(r) R_{u} T_{u}(r)\right)
$$

Solving for $\rho_{u_{v}}(r)$ gives:

$$
\begin{equation*}
\rho_{u_{v}}(r)=C \exp \left[\frac{\Omega_{0}^{2} r^{2}}{2 R_{u} T_{u}(r)}\right], \quad r_{p} \leq r<r_{u_{v}} \tag{2.15}
\end{equation*}
$$

Given the B.C.s of:

$$
P_{u_{v}}\left(r_{u_{v}}\right)=P_{u_{l}}\left(r_{u_{v}}\right)
$$

$$
\rho_{u_{v}}\left(r_{u_{v}}\right)=\frac{P_{u_{v}}\left(r_{u_{v}}\right)}{R_{u} T_{u}\left(r_{u_{v}}\right)}
$$

we can solve for the constant in 2.15, giving:

$$
\begin{equation*}
\rho_{u_{v}}(r)=\frac{P_{u_{l}}\left(r_{u_{v}}\right)}{R_{u} T_{u}\left(r_{u_{v}}\right)} \exp \left[\frac{\Omega_{0}^{2}}{2 R_{u}}\left[\frac{r^{2}}{T_{u}(r)}-\frac{r_{u_{v}}^{2}}{T_{u}\left(r_{u_{v}}\right)}\right]\right], \quad r_{p} \leq r<r_{u_{v}} \tag{2.16}
\end{equation*}
$$

Plugging (2.16) back into (2.14) and using (2.12) to solve for $P_{u}(r)$, we find:

$$
\begin{gather*}
\rho_{u}(r)= \begin{cases}\text { Constant } & r_{u_{f}} \leq r \leq r_{u} \\
17270-1.4485\left(T_{u}(r)-1408\right) & r_{u_{v}} \leq r<r_{u_{f}} \\
\frac{P_{u}\left(r_{u_{u}}\right)}{R_{u} T_{u}\left(r_{u_{v}}\right)} \exp \left[\frac{\Omega_{0}^{2}}{2 R_{u}}\left[\frac{r^{2}}{T_{u}(r)}-\frac{r_{u_{v}}^{2}}{T_{u}\left(r_{u_{v}}\right)}\right]\right] & r_{p} \leq r<r_{u_{v}}\end{cases} \tag{2.17}\\
P_{u}(r)= \begin{cases}\text { Constant } & r_{u_{f}} \leq r \leq r_{u} \\
\int \rho_{u}(r) r \Omega_{0}^{2} d r & r_{u_{v}} \leq r<r_{u_{f}} \\
\rho_{u}(r) R_{u} T_{u}(r) & r_{p} \leq r<r_{u_{v}}\end{cases} \tag{2.18}
\end{gather*}
$$

This analysis of rotating immiscible gases can generalize the above density and pressure functions to:

$$
\begin{gather*}
\rho_{j}(r, \Omega)=C_{j} \exp \left[\Omega^{2} r^{2} / 2 R_{j} T_{j}(r)\right] \tag{2.19}\\
P_{j}(r, \Omega)=\rho_{j}(r, \Omega) R_{j} T_{j}(r) \tag{2.20}
\end{gather*}
$$

where j represents differing gas regions as seen in Figure 2.1.

Figure 2.1: Rotating immiscible fluids [3]

When looking at the interaction between the gaseous uranium and the hydrogen plenum at the interface $r=r_{p}$,

$$
P_{u}\left(r_{p}\right)=P_{H_{2}}\left(r_{p}\right)
$$

And thus equation 2.19) for each gas yields:

$$
\begin{gather*}
\rho_{u_{v}}\left(r, \Omega_{0}\right)=\rho_{u}\left(r_{p}\right) \exp \left[\frac{\Omega_{0}^{2}}{2 R_{u} T_{u}\left(r_{p}\right)}\left(r^{2}-r_{p}^{2}\right)\right], \quad r_{p} \leq r<r_{u_{v}} \tag{2.21}\\
\rho_{H_{2}}\left(r, \Omega_{0}\right)=\frac{P_{u}\left(r_{p}\right)}{R_{H_{2}} T_{H_{2}}\left(r_{p}\right)} \exp \left[\frac{\Omega_{0}^{2}}{2 R_{H_{2}} T_{H_{2}}\left(r_{p}\right)}\left(r^{2}-r_{p}^{2}\right)\right], \quad 0 \leq r \leq r_{p} \tag{2.22}
\end{gather*}
$$

Given the acceleration potentials for each region from Bauer [3], which consist of pressure and centrifugal terms:

$$
\begin{gather*}
\Psi_{u}=\frac{P_{u}-P_{0}}{\rho_{u}}-\frac{1}{2} \Omega_{0}^{2}\left(r^{2}-r_{p}^{2}\right)-\frac{1}{2} \Omega_{0}^{2} \frac{\rho_{H_{2}}}{\rho_{u}} r_{2}^{2} \tag{2.23}\\
\Psi_{H_{2}}=\frac{P_{H_{2}}-P_{0}}{\rho_{H_{2}}}-\frac{1}{2} \Omega_{0}^{2} r^{2} \tag{2.24}
\end{gather*}
$$

At the interfacial surface $r=r_{p}$, the normal velocities of the U and H_{2} regions are equal, and therefore the free surface boundary condition is given by:

$$
\begin{align*}
& u_{u}=u_{H_{2}} \text { at the interface } r= \\
& \qquad \begin{aligned}
& \rho_{H_{2}}\left(r_{p}\right) \frac{\partial \Psi_{H_{2}}}{\partial t}-\rho_{u}\left(r_{p}\right) \frac{\partial \Psi_{u}}{\partial t}+\left(\rho_{H_{2}}\left(r_{p}\right)-\rho_{u}\left(r_{p}\right)\right) r_{p} \Omega_{0}^{2} u_{H_{2}} \\
&+\frac{\sigma_{s t_{p}}}{r_{p}^{2}}\left(u_{H_{2}}+\frac{\partial^{2} u_{H_{2}}}{\partial \theta^{2}}+r_{p}^{2} \frac{\partial^{2} u_{H_{2}}}{\partial z^{2}}\right)=0
\end{aligned}
\end{align*}
$$

where $\sigma_{s t_{p}}$ is the interfacial tension at $r=r_{p}$ between gases U and H_{2}. If we assume steady state and that $u_{H_{2, z z}}=u_{H_{2, \theta \theta}}=0$, then solving for r_{p} yields:

$$
\begin{equation*}
r_{p}=\left[\frac{\sigma_{s t_{p}}}{\Omega_{0}^{2} \rho_{u}\left(r_{p}\right)\left(1-\frac{\rho_{H_{2}}\left(r_{p}\right)}{\rho_{u}\left(r_{p}\right)}\right)}\right]^{\frac{1}{3}} \tag{2.26}
\end{equation*}
$$

This can also be stated in terms of the rotational Bond number \widetilde{B}_{0} :

$$
\begin{gather*}
\widetilde{B}_{0}=\Omega_{0}^{2} r_{u_{v}}^{3} \rho_{u}\left(r_{p}\right) / \sigma_{s t_{p}} \\
r_{p}=\frac{r_{u_{v}}^{3}}{\widetilde{B}_{0}} \tag{2.28}
\end{gather*}
$$

2.4 Bubble Dynamics

Due to the pressure gradient within the uranium layer, a bubble injected radially inward will see a buoyant force, pushing the bubble inward from $r=r_{u_{f}}$ to $r=r_{u_{v}}$. Given $P_{u}(r)$, we can calculate the instantaneous radial pressure force, $F_{B_{P}}(t)$.

$$
\begin{aligned}
F_{B_{P}}(t) & =-\oint_{S_{B}(t)} P_{u} \hat{n} \cdot \hat{e_{r}} d A \\
& =-\int_{V_{B}(t)} \nabla \cdot\left(P_{u}(r) \hat{e_{r}}\right) d V \\
& =-\int_{V_{B}(t)}\left[\hat{e_{r}} \frac{\partial}{\partial r}+\frac{\hat{e_{\theta}}}{r} \frac{\partial}{\partial \theta}\right] \cdot\left(P_{u}(r) \hat{e_{r}}\right) 4 \pi r^{2} d r \\
& =-\int_{0}^{r_{B}(t)}\left[\frac{d P_{u}(r)}{d r}+\frac{P_{u}(r)}{r}\right] 4 \pi r^{2} d r
\end{aligned}
$$

As $P_{u}(r)$ will be evaluated over $r=R_{B}(t)+r^{\prime}$:

$$
\begin{equation*}
F_{B_{P}}(t)=-\int_{0}^{r_{B}(t)}\left[\left.\frac{d P_{u}(r)}{d r}\right|_{r=R_{B}(t)+r^{\prime}}+\frac{\left.P_{u}(r)\right|_{r=R_{B}(t)+r^{\prime}}}{R_{B}(t)+r^{\prime}}\right] 4 \pi r^{\prime 2} d r^{\prime} \tag{2.29}
\end{equation*}
$$

The bubble is also subject to a drag force $F_{B_{D}}(t)$ and a centrifugal force $F_{B_{C}}(t)$:

$$
\begin{gather*}
F_{B_{D}}(t)=-6 \pi \mu_{u} r_{B}(t) \frac{d R_{B}}{d t} \tag{2.30}\\
F_{B_{C}}(t)=M_{B} R_{B}(t) \Omega_{0}^{2} \tag{2.31}
\end{gather*}
$$

where M_{B} is the mass of the hydrogen bubble, which is a fixed quantity.
The general form of drag on a sphere described by Stoke's Law consists of two components: a normal force $F_{B_{n}}$ due to pressure acting perpendicularly to the surface,
and a tangential force $F_{B_{t}}$ due to shear stress.

$$
\begin{aligned}
& F_{B_{D}}=F_{B_{n}}+F_{B_{t}} \\
& F_{B_{n}}=-2 \pi \mu_{u} r_{B}(t) \frac{d R_{B}}{d t} \\
& F_{B_{t}}=-4 \pi \mu_{u} r_{B}(t) \frac{d R_{B}}{d t}
\end{aligned}
$$

If we neglect tangential drag, as the bubble sphere surface is gas and it is also assumed that there is no relative motion in the tangential direction between the bubble and the uranium layer $\left(v_{\theta_{u}}=v_{\theta_{B}}=\Omega r\right)$, 2.30) reduces to drag due to pressure:

$$
\begin{equation*}
\Rightarrow F_{B_{D}}(t)=-2 \pi \mu_{u} r_{B}(t) \frac{d R_{B}}{d t} \tag{2.32}
\end{equation*}
$$

Adding equations (2.29)-(2.32), we now have the total radial force on the bubble:

$$
\begin{equation*}
F_{B}(t)=F_{B_{P}}(t)+F_{B_{D}}(t)+F_{B_{C}}(t) \tag{2.33}
\end{equation*}
$$

Now we can write Newton's second law governing the bubble's radial motion:

$$
\begin{gather*}
M_{B} \frac{d^{2} R_{B}}{d t^{2}}=F_{B}(t) \tag{2.34}\\
M_{B}=\rho_{0} V_{B}(t=0) \\
M_{B}=\left(\frac{P_{0}}{Z R_{H_{2}} T_{0}}\right)\left(\frac{4}{3} \pi\right) r_{B_{0}}^{3} \tag{2.35}
\end{gather*}
$$

As (2.34) contains both $R_{B}(t)$ and $r_{B}(t)$, we can revisit the Young-Laplace equation (2.4):

$$
\begin{equation*}
r_{B}(t)=\frac{2 \sigma_{s t}}{P_{B}(t)-P_{u}\left(R_{B}(t)\right)} \tag{2.36}
\end{equation*}
$$

The initial bubble radius $r_{B_{0}}$ can be found from Blottner [12 and simultaneously
solving for Ω_{0} by utilizing the Young-Laplace equation at the solid/liquid uranium interface, setting $R_{B}(0)=r_{u_{f}}$, and $P_{B}\left(R_{B}(0)\right)=P_{B_{0}}$:

$$
r_{B}=C * A
$$

where $C=3.97$ and A is the Laplace constant:

$$
A=\left[\frac{\sigma_{s t}}{g\left(\rho_{l}-\rho_{g}\right)}\right]^{1 / 2}
$$

where $g=R_{B}(t) \Omega_{0}{ }^{2}, \rho_{l}=\rho_{u}$, and $\rho_{g}=\rho_{B}$.

$$
\left\{\begin{array}{l}
r_{B_{0}}=C *\left[\frac{\sigma_{s t}}{r_{u f} \Omega_{0}^{2}\left(\rho_{u}\left(r_{u f}\right)-\rho_{B_{0}}\right)}\right]^{1 / 2} \tag{2.37a}\\
P_{B_{0}}-P_{u}\left(r_{u_{f}}, \Omega_{0}\right)=\frac{2 \sigma_{s t}}{r_{B_{0}}}
\end{array}\right.
$$

$P_{B}(t)$ can be found via 2.36):

$$
\begin{gather*}
M_{B}=\left(\frac{P_{B}(t)}{Z R_{H_{2}} T_{B}(t)}\right)\left(\frac{4}{3} \pi\right) r_{B}^{3}(t) \\
P_{B}(t)=\frac{3 M_{B} R_{H_{2}} Z T_{B}(t)}{4 \pi r_{B}^{3}(t)} \tag{2.38}
\end{gather*}
$$

Plugging (2.38) back into 2.36 yields:

$$
\begin{equation*}
r_{B}(t)=\frac{2 \sigma_{s t}}{\frac{C_{0} Z T_{B}(t)}{r_{B}^{3}(t)}-P_{u}\left(R_{B}(t)\right)} \tag{2.39}
\end{equation*}
$$

where $C_{0}=\frac{3 M_{B} R_{H_{2}}}{4 \pi}$
Equation (2.39) describes the bubble growth, and requires both $R_{B}(t)$ and $T_{B}(t)$. Thus, $r_{B}(t), R_{B}(t)$, and $T_{B}(t)$ are all coupled.

2.5 Final Model

Putting everything together, this model seeks to simultaneously calculate $T_{u}(r)$, $\rho_{u}(r), P_{u}(r), T_{B}(t), \rho_{B}(t), P_{B}(t), R_{B}^{\prime}(t), R_{B}(t)$, and $r_{B}(t)$ given the following governing equations:
(2.1) $c_{p_{B}} \frac{d}{d t}\left(\rho_{B} T_{B}\right)=h\left[T_{u}\left(R_{B}(t)\right)-T_{B}(t)\right] 4 \pi r_{B}^{2}(t)$
(2.8) $\frac{d^{2} T_{u}}{d r^{2}}+\frac{1}{r} \frac{d T_{u}}{d r}+\frac{\dot{S}(r)}{K_{u}}=0$
(2.10) $\frac{1}{r} \frac{d}{d r}\left(r \frac{d u_{\theta}}{d r}\right)-\frac{u_{\theta}}{r^{2}}=0$
(2.12) $-\rho_{u} \frac{u_{\theta}^{2}}{r}=-\frac{\partial P_{u}}{\partial r}$
(2.33)

$$
-2 \pi \mu_{u} r_{B}(t) \frac{d R_{B}}{d t}+M_{B} R_{B}(t) \Omega_{0}^{2}
$$

(2.34)

$$
F_{B}(t)=-\int_{0}^{r_{B}(t)}\left[\left.\frac{d P_{u}(r)}{d r}\right|_{r=R_{B}(t)+r^{\prime}}+\frac{\left.P_{u}(r)\right|_{r=R_{B}(t)+r^{\prime}}}{R_{B}(t)+r^{\prime}}\right] 4 \pi r^{\prime 2} d r^{\prime}
$$

(2.39)

$$
M_{B} \frac{d^{2} R_{B}}{d t^{2}}=F_{B}(t)
$$

The governing equations lead to the following system of nonlinear ODEs:

$$
\left\{\begin{array}{l}
R_{B}^{\prime \prime}=\frac{F_{B}(t)}{M_{B}} \tag{2.40a}\\
P_{B}^{\prime}=\frac{3 h\left[T_{u}\left(R_{B}(t)\right)-T_{B}(t)\right]}{r_{B}(t)\left[\frac{c_{p_{B}}}{Z R_{H_{2}}}-1\right]} \\
r_{B}^{\prime}=\frac{-2 \sigma_{s t}}{\left[P_{B}(t)-P_{u}\left(R_{B}(t)\right)\right]^{2}}\left[P_{B}(t)-R_{B}^{\prime} \frac{d P_{u}}{d R_{B}}\right] \\
\rho_{B}^{\prime}=\frac{-3 C_{0}}{R_{H_{2}}} \frac{r_{B}^{\prime}}{r_{B}(t)^{4}} \\
T_{B}^{\prime}=\frac{h\left[T_{u}\left(R_{B}(t)\right)-T_{B}(t)\right] 4 \pi r_{B}(t)^{2}+P_{B}^{\prime} V_{B}(t)}{c_{p_{B}} M_{B}}-\frac{\rho_{B}^{\prime}}{\rho_{B}(t)} T_{B}(t)
\end{array}\right.
$$

2.6 Nuclear \& MCNP

As the CGCR is a nuclear reactor, it is necessary to adhere to the design parameter of being in a critical state. That is to say that the effective multiplication factor, $k_{e f f}$, determined by the six factor formula is equal to 1 :
$k_{\text {eff }}=\frac{\text { neutrons produced by fission in one neutron generation }}{\text { number of neutrons lost through absorption in the preceding neutron generation }}$

$$
k_{e f f}=\eta \cdot \varepsilon \cdot p \cdot f \cdot P_{f} \cdot P_{t}
$$

where $\eta, \varepsilon, p, f, P_{f}$, and P_{t} represent the reproduction factor, fast fission factor, resonance escape probability, thermal utilization factor, fast non-leakage probability, and thermal non-leakage probability, respectively.

The reproduction factor is defined as the ratio of the number of fast neutrons produced by thermal fission to the number of thermal neutrons absorbed in the fuel, which determines the number of neutrons created in the new generation. The fast fission factor is defined as the ratio of the fast neutrons produced by fissions at all energies to the number of fast neutrons produced in thermal fission. The resonance escape probability is the probability that a neutron will be slowed to thermal energy and will escape resonance capture. The thermal utilization factor is the fraction of the thermal neutrons that are absorbed in the nuclear fuel. The fast non-leakage factor is defined as the ratio of the number of fast neutrons that do not leak from the reactor core during the slowing down process to the number of fast neutrons produced by fissions at all energies. And last but not least, the thermal non-leakage factor is defined as the ratio of the number of thermal neutrons that do not leak from the reactor core during the neutron diffusion process to the number of neutrons that reach thermal energies.

If $k_{\text {eff }}>1$, then the reactor is supercritical and the number of neutrons is increasing
exponentially in time. If $k_{e f f}<1$, then the reactor is subcritical and the number of neutrons is decreasing and therefore the chain reaction will never be self-sustaining.

The other critical relation necessary in this problem is nuclear heating, or the nuclear energy deposition rate [13] [14]:

$$
\begin{equation*}
E_{d}=\frac{N}{V \rho} \int_{V} \int_{t} \int_{E} H(E) \Phi(\vec{r}, E, t) d E d t d V \tag{2.41}
\end{equation*}
$$

Where N and ρ are the atomic and mass densities, respectively, $\mathrm{H}(\mathrm{E})$ is the heating response, and $\Phi(\vec{r}, E, t)$ is the particle flux. Energy deposition is in units of $\mathrm{MeV} / \mathrm{g}$. Energy deposition will be utilized for the nuclear heating term in (2.8) by scaling the raw F6 tally by the mass density of the material and by a scalar quantity C_{i} which has units $[1 / \mathrm{s}]$ and is determined by the power normalization given by [13]:

$$
\begin{array}{r}
Q_{i}=E_{d_{i}} \rho_{i} C_{i}\left[\text { Watts } / \mathrm{cm}^{3}\right] \\
\text { ReactorPower }=Q_{\text {tot }}=\sum_{\text {cells }} Q_{i} V_{i} \tag{2.42}
\end{array}
$$

The normalization factor can be determined by:

$$
\begin{equation*}
\operatorname{NormKCODE}=\frac{\nu Q_{t o t}}{\left(1.602 * 10^{-13}\right) Q_{f i s} k_{e f f}} \tag{2.43}
\end{equation*}
$$

where ν, and $Q_{\text {fis }}$ are the average number of neutrons per fission, and recoverable energy per fission in MeV /fission, respectively, and the units of 2.43) are (kcode source neutrons)/second. From (2.43):

$$
\begin{equation*}
E_{d}=\operatorname{NormKCODE} * F_{6} \tag{2.44}
\end{equation*}
$$

Both $k_{\text {eff }}$ and energy deposition can be calculated via radiation transport utilizing the Monte Carlo N-Particle transport package MCNP v.6.1 [14]. This package is
capable of Continuous Energy neutron and photon transport. Interaction probabilities are derived from experimentally obtained nuclear physics cross section data when available. [13] MCNP allows the problem domain to be spatially discretized for reaction rate tallying. For example, this would enable the end user to obtain an estimate for the local energy deposition inside a given volume embedded in the model. The KCODE mode will be used to solve for $k_{\text {eff }}$ and the energy deposition rate in equation (2.41) will be determined by the F6 tally in MCNP.

The problem domain within MCNP is geometrically discretized into cells defined by Boolean combinations of spatial regions. Each cell must be defined spatially, as well by characteristic material, density, and particle importance in said cells and can be seen in the input file in Appendix B.1. The CGCR designed in MCNP can be seen in Figures $2.2 \& 2.3$. To be noted, the uranium region (in blue) has been subdivided into 1 mm increments due to the varying density profile.

Figure 2.2: Reactor top \& side cross-section centrifugal region, as designed in MCNP. Green $=$ Beryllium, Yellow $=L i_{7} H$, Orange $=\operatorname{cold} H_{2}$, Light Blue $=$ Graphite frit, Blue $=$ Uranium, Purple $=$ hot H_{2}

Figure 2.3: Reactor top cross-section centrifugal region, as designed in MCNP. Green $=$ Beryllium, Yellow $=L i_{7} H$, Orange $=$ cold H_{2}, Light Blue $=$ Graphite frit, Blue $=$ Uranium, Purple $=$ hot H_{2}

CHAPTER 3: RESULTS

Utilizing analytical and numerical methods via Mathematica and MATLAB, as well as an initial reactor designed and analyzed in MCNP, a cyclic iteration method was utilized to determine temperature, density, and pressure profiles of the uranium layer $\left(T_{u}(r), \rho_{u}(r), P_{u}(r)\right)$. The initial parameters were chosen to be as follows:

Table 3.1: Initial Parameters ${ }^{1}$

$T_{u}\left(r=r_{u}\right)=800 \mathrm{~K}$	$r_{u}=5 \mathrm{~cm}$	$K_{u}=27 \mathrm{~W} / \mathrm{m} \mathrm{K}$
$T_{u_{\text {fus }}}=1405.3 \mathrm{~K}$	$r_{p}=3 \mathrm{~cm}$	$Q_{\text {tot }}=10 \mathrm{MW}$
$T_{u_{\text {vap }}}=4404 \mathrm{~K}$	$H=100 \mathrm{~cm}$	$Q_{\text {fis }}=200 \mathrm{MeV} /$ fission
$T_{u}\left(r=r_{p}\right)=5500 \mathrm{~K}$	$\mu_{u}=6.5 \mathrm{cP}$	$\rho_{u_{s}}=19100 \mathrm{~kg} / \mathrm{m}^{3}$
$T_{B_{0}}=T_{u_{\text {fus }}}$	$\rho_{B_{0}}=5 \mathrm{~kg} / \mathrm{m}^{3}$	$\rho_{B_{\text {max }}}=10000 \mathrm{~kg} / \mathrm{m}^{3}$
$h=1000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$	$\dot{m}_{H_{2}}=0.05 \mathrm{~kg} / \mathrm{s}$	$\sigma_{s t}=1500 \mathrm{dyne} / \mathrm{cm}$
$c_{p_{B}}=18000 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$	$R_{H_{2}}=4124 \mathrm{~kg} / \mathrm{mol}$	$R_{u}=34.9328 \mathrm{~kg} / \mathrm{mol}$
$T_{\text {crit }_{H_{2}}}=33.2 \mathrm{~K}$	$P_{\text {crit }_{H_{2}}}=12.797 \mathrm{~atm}$	$P_{0}=30 \mathrm{MPa}$

The effective multiplication factor, $k_{\text {eff }}$, was found to have a value of 0.884 ± 0.001, and the raw energy deposition F_{6} was found to have a mean of $7.254 \mathrm{e}-04 \mathrm{MeV} / \mathrm{g} \pm$ $6.833 \mathrm{e}-04 \mathrm{MeV} / \mathrm{g}$. From the temperature profile and melting and boiling points of uranium in Figure 3.1, the locations of uranium phase change were determined to be $r_{u_{f}} \approx 0.0468 m$ and $r_{u_{v}} \approx 0.0338 m$. From the density profile in Figure 3.2, the mass of the uranium in the finite cylinder of height $H=100 \mathrm{~cm}$ was found to be 69.114 kg . For multiples of $\Omega_{0}(5,10,15,20)$, density profiles were fed back into MCNP to find corresponding $k_{\text {eff }}=0.89812,0.93220,0.95964,0.96092$. This can be seen in Figures $3.3 \& 3.4$. From the density profile, the pressure profile was determined and is shown in Figure 3.5. The optimum angular velocity $\left(\Omega_{0}\right)$ for this setup was determined to be 1605.36 Hz . This was found by utilizing equation (2.37).

Figure 3.1: Radial temperature profile T_{u} within uranium layer. Melting and boiling temperatures of uranium are included to show the location of phase change.

Figure 3.2: Radial density profile ρ_{u} for $\Omega_{0} \approx 1605 \mathrm{~Hz}$

Figure 3.3: Radial density profile ρ_{u} for various angular velocities. Increasing angular velocity (Ω) results in an increased density shift radially outwards in the vapor region, as expected.

Figure 3.4: $k_{\text {eff }}$ vs. various multiples of Ω_{0}. This shows that $k_{\text {eff }}$ increases with increasing angular velocity as more mass is allowed in uranium vapor layer.

Figure 3.5: Top: Radial pressure profile P_{u} for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bottom: Radial pressure profile P_{u} for various angular velocities. Increasing angular velocity (Ω) results in an increased pressure shift radially outwards in the vapor region, as well as increased pressure throughout the liquid region, as expected.

From the real gas equation (2.2) and Table 3.1, $Z_{0}=1.0353$. Given conservation of mass and Table 3.1. Initial velocity $R_{B}^{\prime}(0)=-\dot{m}_{H_{2}} /\left(2 \pi H r_{u f} \rho_{B_{0}}\right) \approx-0.034 \mathrm{~m} / \mathrm{s}$. Initial bubble radius $r_{B_{0}}$ is calculated to $\approx 101.3 \mu \mathrm{~m}$. As the bubble is injected radially inward, the solution to ODEs (2.40) suggest an immediate drop in bubble temperature and bubble radius as the bubble compresses to a minimum size $r_{B_{m i n}}=8.04 \mu \mathrm{~m}$ limited by $\rho_{B_{\max }}$, which was chosen to be on the order of metallic hydrogen assuming fusion doesn't occur. By the time the bubble traverses the liquid uranium layer and reaches $r_{u v}, t=2.0881 \mathrm{~ms}, R_{B}^{\prime}=-3.0856 \mathrm{~m} / \mathrm{s}, P_{B}=834.795 \mathrm{MPa}$, and $T_{B}=18.3421 \mathrm{~K}$. The trends can be seen in Figures 3.6 3.10.

Looking to the bubble evolution described by the governing equations (2.1)-(2.40) and the figures in the previous chapter, it can be noted the second term in equation (2.40e is dominant until $\rho_{B_{\max }}$ is reached and $\rho_{B}(t)^{\prime} \Rightarrow 0$; once this occurs, the second term vanishes, causing $T_{B}(t)^{\prime}$ to become positive. Once the hydrogen bubble fully compresses, the centrifugal term in equation 2.40a becomes dominant, thus decelerating the bubble. This therefore shows logical consistency between the bubble evolution equations and figures.

As an extension of this study, for comparison with the preliminary reference design in Figure A. 1 , this single fuel element design was also made into a lattice structure of 13 elements, as seen in Figure 3.11. This lattice resulted in an expected increased $k_{e f f}=1.190 \pm 0.001$.

Figure 3.6: Top: Radial bubble velocity v_{B} vs. radial position r for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bottom: Radial bubble velocity v_{B} vs. $\ln (t)$ for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Indicates the bubble accelerates rapidly during compression and then decelerates once minimum radius is reached.

Figure 3.7: Top: Radial bubble position R_{B} vs. t, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bottom: Radial bubble position R_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$.

Figure 3.8: Top: Bubble temperature T_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bubble initially compresses and super-cools to a minimum temperature $T_{B_{\text {min }}} \approx 0.6591 \mathrm{~K}$, and then increases to 18.3421 K . Bottom: Bubble radius r_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bubble initially compresses to a minimum radius $r_{B_{m i n}}$ and then remains constant.

Figure 3.9: Top: Bubble pressure P_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bubble pressure increases as it moves radially inward. Bottom: Bubble density ρ_{B} vs. $\ln (t)$, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bubble initially compresses to a maximum density $\rho_{B_{\max }}$ and then remains constant.

Figure 3.10: Bubble pressure P_{B} vs. radial position r, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$. Bottom: Uranium layer pressure P_{u} vs. radial position r, for $\Omega_{0} \approx 1605 \mathrm{~Hz}$.

Figure 3.11: Reactor with 13 fuel elements

CHAPTER 4: DISCUSSION AND FURTHER STUDY

Results in the previous chapter suggest that centrifugal separation of uranium and hydrogen will be beneficial. It can also be noted that in Figure 3.3 varying angular velocity will change the density at the liquid/gas uranium interface, as well as indicating that for a constant mass system, r_{p} will vary with varying angular velocity. However, when looking at the pressure profile in Figure 3.5 and the Young-Laplace relation (2.4), we can see that the angular velocity is limited by the initial input pressure provided by the NTRs propellant turbopump as well as current centrifugal technology. A turbopump is necessary to reduce the mass and thickness of the hydrogen pressure tank wall while achieving the required operational pressures for high performance and thrust of the rocket. Pressures above 30 MPa are currently outside of current turbopump capabilities, however, when looking at the trend of bubble pressure within the liquid uranium layer, the potential for utilizing this behavior in dense liquids to step up the pressure could be studied in the future. However, this also relies on the improvement of centrifugal technology; magnetic bearings currently are seeing rpm values of $500,000(=8333 \mathrm{~Hz})$. Minor variation in angular velocity may provide significant control over the dynamics of the uranium gas region; varying angular velocity would result in the change in plenum location r_{p}, as well as allow for the possibility of turning the mass flow rate off/on by increasing/decreasing $P_{u}(r u f, \Omega)$ above/below the input hydrogen pressure. The results of the bubble evolution suggest that this technique may also be able to produce metastable metallic hydrogen, which is a more efficient propellant, that reaches the reaction chamber.

Further study may be required to numerically solve for equation (2.8) with varying $E_{d}(r)$. As the bulk density of uranium and hydrogen seemed negligibly different,
the uranium region was treated as purely uranium; however, further study may be required in regards to accurate mass fractions and porosity of the uranium layer. As the hydrogen bubble reaches the uranium vapor layer, two possible scenarios arise: either (1) the bubble disperses and becomes well-mixed in the uranium layer, in which a diffusion model may be necessary for future study, or (2) the bubble disperses into a column/finger spanning the thickness of the vapor layer, in which a jet model may be in order. Further optimization of design parameters could be done to minimize critical mass and maximize thermal coupling between nuclear fuel and propellant, for comparison to other reactors.

Although the design parameters for the model of a single fuel element resulted in a subcritical state $\left(k_{e f f}<1\right)$, an expanded lattice structure of 13 elements was tested with the designed density profiles resulting in a supercritical state $\left(k_{\text {eff }}>1\right)$. A higher $k_{e f f}$ for a multi-element reactor is to be expected, as there is more fissionable material for neutrons from each element to interact with; however, both subcritical and supercritical states are not desired for a self-sustaining reactor. Therefore continued iteration and optimization with the lattice structure is necessary to find a convergence of the density profile and $k_{e f f}=1$. Additional study of various moderator distributions may also prove beneficial to reactor performance. This could be achieved by seeding the hydrogen propellant with a moderator, by using a temporary "hot frit" that melts/vaporizes and mixes with the uranium fuel upon start-up, by using similar fuel pellets used in PBRs, or a combination thereof.

As this design is highly conceptual, many assumptions will need to be revisited in future models to address thermal properties that vary with temperature. Due to limited data on the thermal properties of high temperature (gaseous) uranium, future experimentation to extend the knowledge base of uranium thermal properties is required to advance the accuracy of this model. Additional study may also investigate the system of mostly gaseous uranium, however such a system may be unstable due
to plasma ionization and potential magnetohydrodynamic instabilities. This research may also extend to other fluid system applications outside of NTP. The successful conclusion of this research has been to demonstrate a first model of CGCR using low enriched uranium metal, centrifugal separation, and fuel/propellant heat transfer.

REFERENCES

[1] Y. Ji, Z. Liu, J. Sun, and L. Shi, "Analysis of the Flow Distribution in a Particle Bed Reactor for Nuclear Thermal Propulsion," Energies, vol. 12, pp. 1-19, September 2019.
[2] M. Houts, "High Performance NTP," March 2020.
[3] H. F. Bauer, "Rotating finite liquid systems under zero-gravity," Forschung im Ingenieurwesen, vol. A, no. 48, pp. 169-179, 1982.
[4] M. Houts, "Potential NTP Research Benefits," November 2019.
[5] M. Houts and S. Mitchell, "Development and Utilization of Nuclear Thermal Propulsion," 2016.
[6] B. Spriet, "Surface tension of uranium and plutonium at the melting point," Mem. Sci. Rev. Met., vol. 60, 1963.
[7] J. Cahill and A. Kirshenbaum, "The surface tension of liquid uranium from its melting point, $1406^{\circ} \mathrm{K}$ to $1850^{\circ} \mathrm{K}$," Journal of Inorganic and Nuclear Chemistry, vol. 27, no. 1, pp. 73-76, 1965.
[8] J. D. Anderson, Modern Compressible Flow: with Historical Perspective. McGraw-Hill, third ed., 2003.
[9] R. L. Panton, Incompressible Flow. Wiley, fourth ed., 2013.
[10] E. A. Fischer, "Density of Liquid Uranium and Derived Equation of State," February 2000.
[11] R. Mulford and R. Sheldon, "Density and heat capacity of liquid uranium at high temperatures." Journal of nuclear materials., 1988, Vol.154(2), p.268-275.
[12] F. G. Blottner, "Hydrodynamics and heat transfer characteristics of liquid pools with bubble agitation," tech. rep., Sandia Labs., Albuquerque, NM (USA), 1979.
[13] W. L. Gurecky, "Development of an MCNP6 - ANSYS FLUENT Multiphysics Coupling Capability," 2015.
[14] MCNP6 Users Manual - Code Version 6.1.1beta, June 2014. LA-CP-14-00745.
[15] E. W. Lemmon, M. O. McLinden, and D. G. Friend, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, ch. Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology.
[16] D. Ofte, "The viscosities of liquid uranium, gold and lead," Journal of Nuclear Materials, vol. 22, no. 1, pp. 28-32, 1967.

APPENDIX A: ADDITIONAL FIGURES

Figure A.1: Preliminary reference design of LEU CGCR with $U F_{6}$ as fuel. Analysis done by U-space, provided by NASA

APPENDIX B: PROGRAM FILES

B. 1 MCNP INPUT

```
c Cell Cards
```



```
c Surface Cards
c solution cylinder
1 cz 3.0 $ hot H2/LEU cyl surf
    cz 3.1
    Cz 3.2
    cz 3.3
    cz 3.4
    Cz 3.5
    Cz 3.6
    cz 3.7
    cz 3.8
    cz 3.9
    cz 4.0
    cz 4.1
    Cz 4.2
    cz 4.3
    cz 4.4
    Cz 4.5
    cz 4.6
    Cz 4.7
    cz 4.8
    Cz 4.9
    Cz 5 $ inner porous centrifuge wall surf
    cz 6 $ outer porous centrifuge wall surf
    cz 6.1 $ inner reflect surf
    Cz 7.1 $ outer reflect surf
    pz 50 $ centrifuge top
c reactor vessel
26 rcc 0 0 -50 0 0 110 50 $ outer Mod surf
c Data Cards
mode n p
kcode 5000 1 20 100 $ Calculate keff
ksrc 0 4.05 0
c Materials
M1 1001.84c 1.0 $ Hot H2 @ 2700K
M2 92235.84c -0.1975 $ LEU W%U-235 19.75
    92238.84c -0.8025
M3 3007.86c -0.97988 $ Li7H
    1001.86c -0.02012
```

```
M4 4009.80c 1.0 $ Beryllium
MT4 be.20t
M5 6000.82C -0.995041 $ porous(50%) graphite saturated with H2 @900K
        1001.82c -0.004959
    M6 1002.85c 1.0 $ liquid H2
M7 6000.86c 1.0 $ graphite
M7T grph.20t
c Tallies
e0:n 0.1 1.0 20.0 $ Default energy bins (MeV)
f2:n,p 26.1 26.2 26.3 T $ photon & neutron flux through surface
f4:n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 $ flux in cells
    16 17 18 19 20 21 22 23 24 25
f6:n,p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
    17 18 19 20 21 22 23 24 25 $ energy deposition
```


B. 2 MCNP OUTPUT

--1
| Copyright 2008. Los Alamos National Security, LLC. All rights | | reserved.
This material was produced under U.S. Government contract
DE-AC52-06NA25396 for Los Alamos National Laboratory, which is | operated by Los Alamos National Security, LLC, for the U.S.
| Department of Energy. The Government is granted for itself and
| others acting on its behalf a paid-up, nonexclusive, irrevocable
worldwide license in this material to reproduce, prepare derivative |
| works, and perform publicly and display publicly. Beginning five
| (5) years after 2008, subject to additional five-year worldwide
| renewals, the Government is granted for itself and others acting on |
| its behalf a paid-up, nonexclusive, irrevocable worldwide license |
| in this material to reproduce, prepare derivative works, distribute |
| copies to the public, perform publicly and display publicly, and to |
| permit others to do so. NEITHER THE UNITED STATES NOR THE UNITED
| STATES DEPARTMENT OF ENERGY, NOR LOS ALAMOS NATIONAL SECURITY, LLC, |
| NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, |
| OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, |
| COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, |
| OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INERINGE |
| PRIVATELY OWNED RIGHTS.

```
1mcnp version 6 ld=05/08/13 04/27/20 10:00:27
```

\qquad
probid $=04 / 27 / 20$ 10:00:27
ixr $\mathrm{n}=\mathrm{INP} \mathrm{U}_{-} \mathrm{OD}_{-} 10_{-}$ID_6_dens_prof_pure_vls_4
warning. Physics models disabled.

82-	$\mathrm{f} 6: \mathrm{n}, \mathrm{p}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15												
16																	\quad	17	18	19	20	21	22	23	24	25		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																		
83-																												
deposition energy																												

comment. total fission nubar data are being used.
warning. 1001.82c and 1001.84 c are both called for.
warning. 1001.84 c and 1001.86 c are both called for.
warning. 1 of the materials appear at more than one density.
1cells
print table 60

$1113.02409 \mathrm{E}-045.06100 \mathrm{E}-04 \quad 3.11018 \mathrm{E}+03 \quad 1.57406 \mathrm{E}+00$ $1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$2 \quad 2 \quad 1.51579 \mathrm{E}-04 \quad 5.97680 \mathrm{E}-02 \quad 1.91637 \mathrm{E}+021.14538 \mathrm{E}+01$ $1.0000 \mathrm{E}+00 \quad 1.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$3121.51703 \mathrm{E}-045.98170 \mathrm{E}-02 \quad 1.97920 \mathrm{E}+021.18390 \mathrm{E}+01$ $1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$4121.51845 \mathrm{E}-045.98730 \mathrm{E}-02 \quad 2.04204 \mathrm{E}+021.22263 \mathrm{E}+01$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$5 \quad 2 \quad 6.85888 \mathrm{E}-03 \quad 2.70447 \mathrm{E}+00 \quad 2.10487 \mathrm{E}+02 \quad 5.69256 \mathrm{E}+02$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$\begin{array}{llllll}6 & 2 & 3.34893 \mathrm{E}-02 & 1.32049 \mathrm{E}+01 & 2.16770 \mathrm{E}+02 & 2.86243 \mathrm{E}+03\end{array}$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$7 \quad 2 \quad 3.44551 \mathrm{E}-02 \quad 1.35858 \mathrm{E}+01 \quad 2.23053 \mathrm{E}+02 \quad 3.03034 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$\begin{array}{llllll}8 & 2 & 3.53941 \mathrm{E}-02 & 1.39560 \mathrm{E}+01 & 2.29336 \mathrm{E}+02 & 3.20062 \mathrm{E}+03\end{array}$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$2 \quad 3.63078 \mathrm{E}-02 \quad 1.43163 \mathrm{E}+01 \quad 2.35619 \mathrm{E}+02 \quad 3.37319 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$10 \quad 2 \quad 3.71973 \mathrm{E}-02 \quad 1.46670 \mathrm{E}+01 \quad 2.41903 \mathrm{E}+02 \quad 3.54799 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$\begin{array}{llllll}11 & 2.80641 \mathrm{E}-02 & 1.50088 \mathrm{E}+01 & 2.48186 \mathrm{E}+02 & 3.72497 \mathrm{E}+03\end{array}$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$12 \quad 2 \quad 3.89092 \mathrm{E}-02 \quad 1.53420 \mathrm{E}+01 \quad 2.54469 \mathrm{E}+023.90406 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$13 \quad 2 \quad 3.97336 \mathrm{E}-02 \quad 1.56671 \mathrm{E}+01 \quad 2.60752 \mathrm{E}+02 \quad 4.08523 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$1424.05385 \mathrm{E}-02 \quad 1.59844 \mathrm{E}+01 \quad 2.67035 \mathrm{E}+02 \quad 4.26841 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$15 \quad 2 \quad 4.13246 \mathrm{E}-02 \quad 1.62944 \mathrm{E}+01 \quad 2.73319 \mathrm{E}+02 \quad 4.45356 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$\begin{array}{lllllll}16 & 2 & 4.20928 \mathrm{E}-02 & 1.65973 \mathrm{E}+01 & 2.79602 \mathrm{E}+02 & 4.64064 \mathrm{E}+03\end{array}$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$17 \quad 2 \quad 4.28440 \mathrm{E}-02 \quad 1.68935 \mathrm{E}+01 \quad 2.85885 \mathrm{E}+02 \quad 4.82960 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$18 \quad 2 \quad 4.44166 \mathrm{E}-02 \quad 1.75136 \mathrm{E}+01 \quad 2.92168 \mathrm{E}+02 \quad 5.11691 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$1922 \quad 4.84399 \mathrm{E}-02 \quad 1.91000 \mathrm{E}+01 \quad 2.98451 \mathrm{E}+02 \quad 5.70042 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$20 \quad 2 \quad 4.84399 \mathrm{E}-02 \quad 1.91000 \mathrm{E}+01 \quad 3.04734 \mathrm{E}+02 \quad 5.82043 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$21224.84399 \mathrm{E}-02 \quad 1.91000 \mathrm{E}+01 \quad 3.11018 \mathrm{E}+02 \quad 5.94044 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$
$22 \quad 5 \quad 4.51482 \mathrm{E}-02 \quad 8.54236 \mathrm{E}-01 \quad 3.45575 \mathrm{E}+03 \quad 2.95203 \mathrm{E}+03$
$1.0000 \mathrm{E}+001.0000 \mathrm{E}+00-1.000 \mathrm{E}+00$ $6 \quad 2.53305 \mathrm{E}-03 \quad 8.47190 \mathrm{E}-033.80133 \mathrm{E}+023.22045 \mathrm{E}+00$

1
energy
$1.0000 \mathrm{E}-01 \quad 4.34177 \mathrm{E}-05 \quad 0.0063$
$1.0000 \mathrm{E}+00 \quad 4.60398 \mathrm{E}-04 \quad 0.0036$
$2.0000 \mathrm{E}+01 \quad 6.74903 \mathrm{E}-04 \quad 0.0041$
total $1.17872 \mathrm{E}-03 \quad 0.0027$
cell
2
energy
$1.0000 \mathrm{E}-01 \quad 2.66051 \mathrm{E}-04 \quad 0.0144$
$1.0000 \mathrm{E}+00 \quad 7.76408 \mathrm{E}-05 \quad 0.0038$
$2.0000 \mathrm{E}+01 \quad 1.15375 \mathrm{E}-04 \quad 0.0045$
total $4.59067 \mathrm{E}-04 \quad 0.0085$
cell
3
energy
$1.0000 \mathrm{E}-01 \quad 2.61474 \mathrm{E}-04 \quad 0.0129$
$1.0000 \mathrm{E}+00 \quad 7.77843 \mathrm{E}-05 \quad 0.0038$
$2.0000 \mathrm{E}+01 \quad 1.16213 \mathrm{E}-04 \quad 0.0045$
total 4.55472E-04 0.0075
cell
4

1969	energy	
1970	$1.0000 \mathrm{E}-01$	$2.55082 \mathrm{E}-040.0113$
1971	$1.0000 \mathrm{E}+00$	$7.82706 \mathrm{E}-050.0038$
1972	$2.0000 \mathrm{E}+01$	$1.17579 \mathrm{E}-040.0044$
1973	total	4.50931E-04 0.0066
1974		
1975	cell	
	5	
1976	energy	
1977	$1.0000 \mathrm{E}-01$	$2.44964 \mathrm{E}-040.0095$
1978	$1.0000 \mathrm{E}+00$	$7.87479 \mathrm{E}-050.0037$
1979	$2.0000 \mathrm{E}+01$	$1.17989 \mathrm{E}-040.0043$
1980	total	$4.41700 \mathrm{E}-040.0055$
$\begin{aligned} & 1981 \\ & 1982 \end{aligned}$		
	cell	
	6	
1983	energy	
1984	$1.0000 \mathrm{E}-01$	$2.33354 \mathrm{E}-040.0077$
1985	$1.0000 \mathrm{E}+00$	$7.91752 \mathrm{E}-050.0034$
1986	$2.0000 \mathrm{E}+01$	$1.18645 \mathrm{E}-040.0040$
1987	total	4.31174E-04 0.0044
1988		
1989	cell	
	7	
1990	energy	
1991	$1.0000 \mathrm{E}-01$	$2.25796 \mathrm{E}-040.0069$
1992	$1.0000 \mathrm{E}+00$	7.97257E-05 0.0033
1993	$2.0000 \mathrm{E}+01$	$1.20013 \mathrm{E}-040.0039$
1994	total	4.25534E-04 0.0039
$\begin{aligned} & 1995 \\ & 1996 \end{aligned}$		
	cell	
	8	
1997	energy	
1998	$1.0000 \mathrm{E}-01$	$2.23873 \mathrm{E}-040.0064$
1999	$1.0000 \mathrm{E}+00$	$7.99264 \mathrm{E}-050.0032$
2000	$2.0000 \mathrm{E}+01$	$1.21318 \mathrm{E}-040.0037$
2001	total	4.25117E-04 0.0036
2002		
2003	cell	
	9	
2004	energy	
2005	$1.0000 \mathrm{E}-01$	$2.26951 \mathrm{E}-040.0062$
2006	$1.0000 \mathrm{E}+00$	$8.02480 \mathrm{E}-050.0031$
2007	$2.0000 \mathrm{E}+01$	$1.22145 \mathrm{E}-040.0036$
2008	total	4.29344E-04 0.0036
2009		
2010	cell	
	10	
2011	energy	
2012	$1.0000 \mathrm{E}-01$	$2.31420 \mathrm{E}-040.0061$
2013	$1.0000 \mathrm{E}+00$	$8.06878 \mathrm{E}-050.0030$
2014	$2.0000 \mathrm{E}+01$	$1.22493 \mathrm{E}-040.0035$
2015	total	$4.34601 \mathrm{E}-040.0035$
2016		
2017	cell	
2018	energy	
2019	$1.0000 \mathrm{E}-01$	$2.40245 \mathrm{E}-040.0060$
2020	$1.0000 \mathrm{E}+00$	8.09582E-05 0.0030
2021	$2.0000 \mathrm{E}+01$	$1.24229 \mathrm{E}-040.0034$
2022	total	4.45433E-04 0.0034
2023		

2024	cell		
2025	energy		
2026	$1.0000 \mathrm{E}-01$	$2.53460 \mathrm{E}-04$	0.0058
2027	$1.0000 \mathrm{E}+00$	8.14408E-05	0.0029
2028	$2.0000 \mathrm{E}+01$	$1.25999 \mathrm{E}-04$	0.0034
2029	total	4.60900E-04	0.0034
2030			
2031	cell		
	13		
2032	energy		
2033	$1.0000 \mathrm{E}-01$	$2.70570 \mathrm{E}-04$	0.0057
2034	$1.0000 \mathrm{E}+00$	8.18886E-05	0.0028
2035	$2.0000 \mathrm{E}+01$	$1.27269 \mathrm{E}-04$	0.0033
2036	total	4.79727E-04	0.0034
2037			
2038	cell		
	14		
2039	energy		
2040	$1.0000 \mathrm{E}-01$	$2.95127 \mathrm{E}-04$	0.0057
2041	$1.0000 \mathrm{E}+00$	8.22675E-05	0.0028
2042	$2.0000 \mathrm{E}+01$	$1.29374 \mathrm{E}-04$	0.0033
2043	total	$5.06768 \mathrm{E}-04$	0.0035
2044			
2045	cell		
	15		
2046	energy		
2047	$1.0000 \mathrm{E}-01$	3.30298E-04	0.0056
2048	$1.0000 \mathrm{E}+00$	8.28928E-05	0.0027
2049	$2.0000 \mathrm{E}+01$	$1.31225 \mathrm{E}-04$	0.0032
2050	total	5.44416E-04	0.0035
2051			
2052	cell		
	16		
2053	energy		
2054	$1.0000 \mathrm{E}-01$	3.80192E-04	0.0055
2055	$1.0000 \mathrm{E}+00$	8.36352E-05	0.0026
2056	$2.0000 \mathrm{E}+01$	$1.33559 \mathrm{E}-04$	0.0031
2057	total	$5.97387 \mathrm{E}-04$	0.0036
2058			
2059	cell		
	17		
2060	energy		
2061	$1.0000 \mathrm{E}-01$	4.59363E-04	0.0053
2062	$1.0000 \mathrm{E}+00$	$8.45924 \mathrm{E}-05$	0.0026
2063	$2.0000 \mathrm{E}+01$	$1.36398 \mathrm{E}-04$	0.0031
2064	total	6.80353E-04	0.0037
2065			
2066	cell		
	18		
2067	energy		
2068	$1.0000 \mathrm{E}-01$	5.94594E-04	0.0050
2069	$1.0000 \mathrm{E}+00$	8.57502E-05	0.0025
2070	$2.0000 \mathrm{E}+01$	$1.40085 \mathrm{E}-04$	0.0030
2071	total	8.20429E-04	0.0037
2072			
2073	cell		
	19		
2074	energy		
2075	$1.0000 \mathrm{E}-01$	8.50686E-04	0.0045
2076	$1.0000 \mathrm{E}+00$	8.75293E-05	0.0025


```
the estimated inverse power slope of the 198 largest tallies starting at 3.00801E-02
is 9.7646
the large score tail of the empirical history score probability density function
appears to have no unsampled regions.
fom = (histories/minute)*(f(x) signal-to-noise ratio)**2 = (1.513E+05)*( 5.890E-01)**2
    =(1.513E+05)* (3.469E-01) = 5.249E+04
1status of the statistical checks used to form confidence intervals for the mean for
each tally bin
    tally result of statistical checks for the tfc bin (the first check not passed is
    listed) and error magnitude check for all bins
    4 passed the 10 statistical checks for the tally fluctuation chart bin
    result
        passed all bin error check: }100\mathrm{ tally bins all have relative errors less
        than 0.10 with no zero bins
    2 missed 1 of 10 tfc bin checks: the slope of decrease of largest tallies is
    less than the minimum acceptable value of 3.0
        passed all bin error check: 16 tally bins all have relative errors less
        than 0.10 with no zero bins
        6 passed the 10 statistical checks for the tally fluctuation chart bin
        result
        passed all bin error check: }100\mathrm{ tally bins all have relative errors less
        than 0.10 with no zero bins
    the 10 statistical checks are only for the tally fluctuation chart bin and do not
    apply to other tally bins.
    warning. 1 of the 3 tally fluctuation chart bins did not pass all 10
    statistical checks.
    1tally fluctuation charts
```



```
**********************************************************************************************
********************************
dump no. 2 on file INP_U_OD_10_ID_6_dens_prof_pure_vls_4r nps = 499664
coll = 135022750 - ctm =
    3.09 nrn = 1253109253
        11 warning messages so far.
run terminated when 100 kcode cycles were done.
computer time = 3.11 minutes
mcnp version 6 05/08/13 04/27/20
10:03:46 probid = 04/27/20 10:00:27
```

